AUTHOR=Won Kyungho , Kwon Moonyoung , Jang Sehyeon , Ahn Minkyu , Jun Sung Chan TITLE=P300 Speller Performance Predictor Based on RSVP Multi-feature JOURNAL=Frontiers in Human Neuroscience VOLUME=13 YEAR=2019 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2019.00261 DOI=10.3389/fnhum.2019.00261 ISSN=1662-5161 ABSTRACT=
Brain-computer interface (BCI) systems were developed so that people can control computers or machines through their brain activity without moving their limbs. The P300 speller is one of the BCI applications used most commonly, as is very simple and reliable and can achieve satisfactory performance. However, like other BCIs, the P300 speller still has room for improvements in terms of its practical use, for example, selecting the best compromise between spelling accuracy and information transfer rate (ITR; speed) so that the P300 speller can maintain high accuracy while increasing spelling speed. Therefore, seeking correlates of, and predicting, the P300 speller’s performance is necessary to understand and improve the technique. In this work, we investigated the correlations between rapid serial visual presentation (RSVP) task features and the P300 speller’s performance. Fifty-five subjects participated in the RSVP and conventional matrix P300 speller tasks and RSVP behavioral and electroencephalography (EEG) features were compared in the P300’s speller performance. We found that several of the RSVP’s event-related potential (ERP) and behavioral features were correlated with the P300 speller’s offline binary classification accuracy. Using these features, we propose a simple multi-feature performance predictor (