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Neural field theory is used to model and analyze realistic corticothalamic responses to

simple visual stimuli. This yields system transfer functions that embody key features

in common with those of engineering control systems, which enables interpretation

of brain dynamics in terms of data filters. In particular, these features assist in finding

internal signals that represent input stimuli and their changes, which are exactly

the types of quantities used in control systems to enable prediction of future input

signals, and adjustment of gains which is argued to be the analog of attention in

control theory. Corticothalamic dynamics are shown to be analogous to the classical

proportional-integral-derivative (PID) filters that are widely used in engineering.
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1. INTRODUCTION

The brain must carry out functions that implement attention to external stimuli, prediction of their
future course, and decision with regard to actions to take in response, including interventions to
control aspects of the environment. In the natural environment, a large fraction of visual processing
deals with the prediction of spatiotemporal trajectories of objects and the taking of actions to either
intercept or avoid them. For example, an organism may seek to capture and eat an object in its
environment or to avoid being captured and eaten. These decisions thus differ markedly from the
binary decision and discrete classification tasks widely studied in cognitive neuroscience.

With regard to attention to multiple sensory streams, there is extensive evidence that attention
paid to individual streams is apportioned on an approximately Bayesian basis (Feldman and
Friston, 2010; Friston, 2010). Notably, the weight placed on a particular stream is approximately
inversely proportional to its variance (Feldman and Friston, 2010; Friston, 2010). These biological
observations, along with advances inmachine learning and neuroscience, havemotivated a plethora
ofmodels of attention and prediction in the brain, each with Bayesian features, withmostmotivated
by cortical neuroanatomy and neurophysiology. However, none of the proposed frameworks has
yet been shown to be fully implementable in the brain’s tissues.

One example of this point is the model of Rao and Ballard (1999), who used the Kalman filter
to model visual information processing in the brain. A Kalman filter is a Bayesian approach that
applies when all the distributions of internal states, external data, and their uncertainties, are
Gaussian distributed and the underlying internal dynamics are linear. Rao and Ballard showed
that a Kalman filter could accomplish some prediction outcomes, and demonstrated neuronal
implementation of some of its steps, but did not explain how its all complex matrix operations
would actually be implemented in the brain.
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Helmholtz (1867) suggested that the brain predicts its
inputs and adjusts an internal model to minimize mismatches
between these predictions and external subsequent inputs.
Friston and coworkers elaborated on this idea to develop
Bayesian estimation schemes with both bottom-up and top-down
signaling, and proposed that the brain employs a hierarchical
Bayesian approach for perception and, crucially, action (Lee and
Mumford, 2003; Friston, 2005, 2010; Hawkins and Blakeslee,
2007; Daunizeau et al., 2010b,a). The common theme of these
approaches rests upon the minimization of the mismatch
between top-down predictions and bottom-up expectations.
Subsequent work Mathys et al. (2011, 2014) expanded classic
Bayesian inference to optimize the precision of prediction errors
which enabled them to include reinforcement learning into
the ensuing hierarchical Gaussian filter (HGF) for perception,
attention, and action. This family of models has been shown
to be able to carry out a number of sophisticated prediction
tasks, but this raises a number of questions. Specifically, they
rely on the brain being able to determine, store, and update
multivariate probability distributions of Bayesian priors, to carry
out multidimensional integrations over these distributions, and
to compute large scale matrix operations, all in real time.
Although these problems have been recognized, and suggestions
have been made to simplify the evaluations by means of reduced
moment-based representations, for example (Bastos et al., 2012;
Pouget et al., 2013; Mathys et al., 2014; Friston et al., 2017), it has
yet to be established that the brain can carry out the necessary
calculations.

The current state of affairs is thus that each proposal in the
literature is motivated by the real brain, but relies in places on
mathematical steps which have no established implementation
in neural tissue. Hence, although these schemes have many
plausible features, and many interesting applications have been
demonstrated, none has been shown to be fully realizable in the
brain.

Motivated by the need for a formulation of brain dynamics
that is physiologically realizable, analytically and numerically
tractable, and experimentally testable, we take a different
approach. Instead of deciding on a favored mathematical
formulation and assuming that it works in the brain, the
present work takes the physically motivated reverse approach
of first analyzing realistic corticothalamic responses to simple
visual stimuli using neural field theory (NFT). This enables
us determine what filter properties they exhibit, rather than
advancing a predetermined model. We thus analyze the
corticothalamic system, focusing on the response of primary
visual cortex V1 to spatially unstructured stimuli which has been
widely used in visual flicker experiments to probe steady state
visual evoked potentials (SSVEPs) (Spekreijse, 1966; Spekreijse
et al., 1973; Herrmann, 2001; VanRullen and Macdonald, 2012).
In doing this we postpone application to more complex stimuli in
order to focus on establishing the first example of a fully neurally
implementable scheme for prediction, followed in a subsequent
paper by attention and decision. This involves treating the brain
first and foremost as a physical system that is responding to its
environment, rather than as a computer or abstract information
processing engine. Some of the dynamical processes that we

uncover may be able to be fruitfully interpreted as information
processing or computation, but such interpretations are subject
to the fact that the brain is a physical object.

We first employ NFT tomodel the corticothalamic system and
determine the extent to which its dynamics can be interpreted
within a control systems framework which has the potential to
encompass prediction, gain tuning, and control. Most control
systems and Bayesian schemes such as Kalman filtering are
reduced or constraint form of Bayesian learning under optimal
estimation theory (Chen, 2003). In carrying out our analysis,
we determine which signals within the system represent input
stimuli and their rates of change, because these are the classes
of quantities used in control systems to enable prediction of
future input signals, and adjustment of gains which is argued
to be the analog of attention in control theory. The finding
of analogous quantities in the corticothalamic system enables
interpretation of its dynamics in terms of control systems, and
assists in localizing the structures in which gain control is possible
in principle. In a forthcoming paper, we will use these findings
to propose physiologically-based mechanisms for attention and
control via feedbacks. At each stage, we are explicit about the
neural implementation of the mechanisms.

This paper is structured as follows. Section 2 briefly outlines
the corticothalamic model of the brain using the neural
field theory and then we obtain transfer functions for the
corticothalamic model. The transfer functions are analyzed and
data filter interpretations of them are presented at Section 3.
Section 4 concludes and discusses future work.

2. MATERIALS AND METHODS

2.1. Corticothalamic Neural Field Theory
In this section we outline the essentials of NFT, then apply it
to a generalized corticothalamic model. For more details see
Robinson et al. (2002, 2004).

2.1.1. Neural Field Theory
NFT averages over short spatial and temporal scales to obtain
equations for the evolution of dynamical variables within
each neural population a, which are the local mean cell-body
potentials Va, the mean rate of firing at the cell body Qa, and the
propagating axonal pulse rate fields φa.

The mean firing ratesQa are related to the cell body potentials
Va(r, t), relative to resting, by

Qa(r, t) = S[Va(r, t)], (1)

where S is a sigmoid function that increases smoothly from 0 to
Qmax as Va(r, t) increases from −∞ to ∞. An approximation of
this function is (Wilson and Cowan, 1973; Freeman, 1975)

S[Va(r, t)] =
Qmax

1+ exp
{

−[Va(r, t)− θ]/σ ′
} , (2)

where θ is the mean neural firing threshold and σ ′π/
√
3 is

the standard deviation of the difference between the steady
state depolarization of individual neurons and their thresholds.
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Effectively, the threshold response of a single neuron is smeared
out to yield a sigmoid when averaged over the population.

Signals arriving at neurons of type a stimulate
neurotransmitter release at synapses. This is followed by
propagation of voltage changes along dendrites and soma
charging, with dynamics that spread the temporal profile of the
signals. The total cell body potential can thus be written

Va(r, t) =
∑

b

Vab(r, t), (3)

where the subscripts on Vab distinguish the different
combinations of afferent neural type and synaptic receptor,
and

Dab(t)Vab(r, t) =
∑

b

Nabsabφb(r, t − τab), (4)

where the differential operator Dab that governs the temporal
response of Vab to afferent pulse rate fields φb is

Dab(t) =
1

αabβab

d2

dt2
+

(

1

αab
+

1

βab

)

d

dt
+ 1. (5)

The operator Dab encapsulates the rates βab and αab of the rise
and fall, respectively, of the response at the cell body. On the right
of Equation (4),Nab is themean number of synapses on neurons a
from neurons of type b, sab is the mean time-integrated strength
of soma response per incoming spike, and φb(r, t − τab) is the
mean spike arrival rate from neurons b, allowing for a time delay
τab due to anatomic separations between discrete structures. The
overall connection strength between two neural populations is
νab = Nabsab.

Each part of the corticothalamic system gives rise to neural
pulses, whose values averaged over short scales form a field

φa(r, t) in our model that propagates at a velocity va. To a good
approximation, φa(r, t) obeys a damped wave equation whose
source of pulses isQa(r, t) (Jirsa andHaken, 1996; Robinson et al.,
1997), with

Da(r, t)φa(r, t) = Qa(r, t), (6)

where the spatiotemporal differential operator Da(r, t) is

Da(r, t) =
1

γ 2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇

2. (7)

Here the damping rate γab satisfies γa = va/ra, where ra and va
are the characteristic range and conduction velocity of axons of
type a.

2.1.2. Corticothalamic Model
Corticothalamic NFT incorporates key anatomic connectivities
as shown in Figure 1. The neural populations included are
cortical excitatory (e) and inhibitory (i) neurons, the thalamic
reticular nucleus (r), thalamic relay neurons (s) that project to
the cortex, thalamic interneurons (j), and noncorticothalamic
neurons responsible for external inputs (n). In the present case,
external inputs are visual, the relevant relay nucleus is the lateral
geniculate nucleus (LGN), and its projections are to the primary
visual cortex (V1).

The only nonzero values of τab in our model are the forward
delays τes = τis ≈ 20 ms and the backward delays including
τse = τje = τre ≈ 60 ms, which correspond to thalamocortical
and corticothalamic propagation times, respectively. The use of
a single form of Dab corresponds to the approximation that the
mean dendritic dynamics can be described by a single pair of time
constants.

In our model, only the axons of excitatory cortical neurons
a = e are long enough to yield significant propagation

FIGURE 1 | Physiologically based corticothalamic model in which the arrows represent excitatory effects and the circles depict inhibitory ones. The populations are

cortical excitatory (e) and inhibitory (i) neurons, the thalamic reticular nucleus (r), thalamic relay neurons (s) that project to the cortex, and non-corticothalamic neurons

responsible for external inputs (n). Gray boxes depict the lateral geniculate nucleus (LGN) (left), the thalamic reticular nucleus (TRN) (middle), and primary visual cortex

(right).
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TABLE 1 | Physiologically estimated model parameters for normal adults in the

alert, eyes-open state (Robinson et al., 2004).

Quantity Description Value Unit

Qmax Max firing rate 250 s−1

θ Firing threshold 15 mV

σ ′ Threshold spread 3.3 mV

γe Cortical damping rate 100 s−1

αab Inverse decay time 80 s−1

βab Inverse rise time 320 s−1

τes Forward delay time 20 ms

τse Feedback delay time 60 ms

effects in Equation (7); in the other cases, ra is so small
that the solution of equations above can be approximated by
φa(r, t) = S[Va(r, t)] = Qa(r, t). In the cortex, the number
of synapses is closely proportional to the numbers of source
and target neurons (Robinson et al., 1997, 1998; Braitenberg and
Schüz, 1998), which implies that νee = νie, νes = νis, and νei = νii.
Table 1 lists the nominal values estimated for the corticothalamic
model parameters; the details can be found in Robinson et al.
(2004).

2.2. Steady States, Linearity, and Transfer
Functions
The NFT equations are nonlinear in general, and highly
nonlinear phenomena like epileptic seizures have been studied
with them (Breakspear et al., 2006). Normal brain states have
been shown to correspond to spatially uniform steady states of
corticothalamic NFT, and are obtained by setting all time and
space derivatives to zero (Robinson et al., 2002, 2004; Abeysuriya
et al., 2015). Stable steady state solutions are interpreted as
representing the baseline of normal activity, which yields firing
rates in accord with experiment (Robinson et al., 2002, 2004).
Time dependent brain activity is then represented by linear
perturbations from the steady states—an approximation that
has reproduced a host of experimental phenomena, including
evoked responses (Robinson et al., 1997, 1998, 2002, 2004, 2005,
2008; O’Connor and Robinson, 2004; Rowe et al., 2004; Kerr
et al., 2008; van Albada et al., 2010; Roberts and Robinson, 2012;
Abeysuriya et al., 2015; Sanz-Leon and Robinson, 2017). In this
section, we calculate the linear transfer functions of stimuli to
corticothalamic populations.

2.2.1. Linear Dynamics
The low firing rate of steady-states have been identified with
normal states of brain activity (Robinson et al., 1997) and
nonlinear terms are only found to be significant in very
strong stimulation conditions (Herrmann, 2001; Roberts and
Robinson, 2012; Abeysuriya et al., 2015). The criterion for linear
approximation to be valid is that voltage perturbations should
be significantly less than σ ′/3. Linear perturbations relative to

uniform steady-state values φ
(0)
a , where a = e, i, r, s, and V

(0)
a

approximately obey the damped wave equation

Dab(r, t)φ(r, t) = ρaVa(r, t), (8)

where we henceforth use the symbols φa and Va to denote the
linear perturbations of these quantities relative to their steady-
state values, unless otherwise indicated, and ρa = dS (Va) /dVa,
evaluated at V0

a . The external field φn which drives the brain via

the relay nuclei also comprises a steady-state component φ
(0)
n plus

a time-varying signal that causes the response, denoted by φn.
The differences from threshold voltage variations of about±σ ′/3
are therefore needed before nonlinear terms become appreciable
relative to the linear ones. This yields the variations of order
1mV , or slightly larger, which corresponds to approximately a 2-
fold firing rate bound. Detailed analysis of the model with respect
to these parameters can be found in Robinson et al. (2004).

Operation with Dab on both sides of Equation (8), plus use of
Equation (4), yield

Dab(t)Dab(r, t)φa(r, t) =
∑

b

Gabφb(r, t − τab), (9)

with

Gab = ρaνab = ρaNabsab. (10)

The gain Gab is the response in neurons a due to unit input
from neurons b; i.e., the number of additional pulses out for each
additional pulse in.

A transfer function is the ratio of the output of a system
to its input in the linear regime. Either the Laplace or Fourier
transform can be used to determine transfer functions, but
the former is more widely used in engineering control theory,
particularly to analyze responses to impulses. To derive transfer
functions one may apply the Laplace transform to both sides of
Equation (9) to transform it from time t to complex frequency
s. The unilateral Laplace transform is defined by Ogata and Yang
(1970)

L[f (t)](s) = f (s) =
∫ ∞

0
f (t)e−stdt, (11)

where s = −iω = Ŵ − i� is the complex frequency that
parametrizes the response est . Here, the real quantities � and Ŵ

denote the oscillation frequency and growth rate of the response,
respectively, so stable responses correspond to s lying in the left
half of the complex plane, with neutrally stable responses having s
on the imaginary axis. Alternatively, one may use the continuous
Fourier transform F , which is equivalent to evaluating the
bilateral Laplace operator with imaginary argument

F[f (t)](ω) = L[f (t)]|s=−iω (12)

=
∫ ∞

−∞
f (t)eiωtdt. (13)
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Before we calculate system transfer functions, we note that the
operator in Equation (4) has the Laplace transform

Dab(s) =
(

1+
s

αab

) (

1+
s

βab

)

. (14)

We define the corresponding filter function by

Lab(s) = D−1
ab

(s) =
(

1+
s

αab

)−1 (

1+
s

βab

)−1

. (15)

The Laplace transform of Equation (7) is

Da(k, s) =
(

1+
s

γa

)2

+ k2r2a , (16)

where we have also Fourier transformed the spatial Laplacian
operator via ∇2 → −k2 where k is the wave number.

2.2.2. Transfer Function to Thalamus From Retina
The firing rate (in the spatial-Fourier, temporal-Laplace domain
henceforth) in the reticular nucleus is

φr = GreLree
−sτseφe + GrsLrsφs. (17)

For relay neurons in the LGN, the firing rate φs is

φs = GseLsee
−sτseφe + GsjLsjφj

+ GsrLsrφr + GsnLsnφn. (18)

By substituting φr from Equation (17) into Equation (18), the
transfer function to thalamus from retina is found to be

Tsn(k, s) =
φs(k, s)

φn(k, s)
, (19)

=
M(s)U(s)

M(s)R(s)− N(s)P(s) exp
[

−s(τes + τse)
] , (20)

where

M(s) = Dee(1− GeiLii)− GeeLee, (21)

U(s) = 1− GsrsLsrs, (22)

R(s) = GsnLsn, (23)

P(s) = GseLse + GsreLsre, (24)

N(s) = GesLes, (25)

where Gabc = GabGbc, and Labc = LabLbc.

2.2.3. Transfer Functions to Cortex From Retina
By setting a = e and a = i in Equation (9), the axonal fields of
V1 cortical cells are found to obey

Deeφe = LeeGeeφe + LeiGeiφi + LesGese
−sτesφs, (26)

φi = LiiGiiφi + LieGieφe + LisGise
−sτesφs. (27)

Replacement of φi in Equation (26) by means of Equation (27),
yields the transfer function to the cortex from the thalamus,

Tes(k, s) =
φe(k, s)

φs(k, s)
=

N(s)

M(s)
exp (−sτes), (28)

where M(s) and N(s) are as in Equations (21–25). Multiplying
Equations (19) and (28) yields the overall transfer function to
cortex from retina:

Ten(k, s) =
φe(k, s)

φn(k, s)
, (29)

= Tes(k, s)Tsn(k, s), (30)

=
U(s)N(s) exp (−sτes)

M(s)R(s)− N(s)P(s) exp
[

−s(τes + τse)
] . (31)

Replacement of φs and φe in Equation (27) bymeans of Equations
(19) and (31) yields the transfer function to the inhibitory
population from the retina,

Tin(k, s) =
φi(k, s)

φn(k, s)
, (32)

=
V(s)U(s) exp (−sτes)

O(s)
[

M(s)R(s)− N(s)P(s) exp
{

−s(τes + τse)
}] . (33)

where

O(s) = 1− GiiLii, (34)

V(s) = GieLie(s)N(s)+ GisLisM(s). (35)

2.2.4. Transfer Function to TRN From Retina
Replacement of φs and φe in Equation (17) bymeans of Equations
(19) and (31), yields the transfer function to the TRN from retina,

Trn(k, s) =
φr(k, s)

φn(k, s)
, (36)

=
W(s)U(s)

M(s)R(s)− N(s)P(s) exp
[

−s(τes + τse)
]

,
(37)

where

W(s) = GreLreN(s) exp
[

−s(τes + τse)
]

+ GrsLrsM(s). (38)

Frontiers in Human Neuroscience | www.frontiersin.org 5 September 2018 | Volume 12 | Article 334

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Babaie Janvier and Robinson NFT of Corticothalamic Prediction

FIGURE 2 | Magnitude of the transfer functions Tan to populations a = s, r, i, e

vs. frequency, as labeled, for k = 0 and the parameters in Table 1.

TABLE 2 | Estimated (dimensionless) synaptic gains for normal adults in the alert,

eyes-open state (Robinson et al., 2004).

Gain Value Gain Value

Gee 6.8 Gie 6.8

Gse 2.5 Gre 1.0

Gii 8.1 Gei −8.1

Gsr −1.9 Grs 0.19

Ges 1.7 Gis 1.7

Gsn 0.8 Gsn 0.8

2.2.5. Corticothalamic Transfer Function

Characteristics
The frequency response of the transfer functions is the transfer
function evaluated on the imaginary axis of the s-plane, where
s = −i�. Figure 2 shows the frequency responses of all
populations for the nominal parameter values in Table 2, using
the Control System Toolbox of Matlab 2017a to carry out the
calculations. More detailed analysis of the model with respect
to these parameters can be found in Robinson et al. (2002,
2004) and Abeysuriya et al. (2015). Only the the spatially-
uniform effects of perturbations, i.e., k = 0, is explored in
this study. Low frequencies are passed, while high frequencies
are attenuated, and for input signals with small frequency, each
transfer function represents an amplifier with constant gain. At
higher frequencies, pronounced resonances at 9 and 18 Hz are
present in all transfer functions, which can be associated with
the alpha and beta peaks in the brain’s wake state. The functions
become less resonant as the signal gets further away from retina
to the cortex: the thalamic functions Tsn and Trn have higher
amplitude and wider bandwidth than the cortical ones Ten and
Tin.

The transfer function fully describes the linear system
properties and enables us to investigate its response to
any external signal. Setting the denominator of the transfer
function to zero yields the characteristic equation of the

system, whose roots are its eigenvalues and mark the poles;
these poles determine the basic modes into which the system
response can be decomposed. Furthermore, all corticothalamic
transfer functions calculated above, have some or all of
their poles (basic modes) in common, which is a direct
result of the interconnectedness of the system. Roots of the
numerator of the transfer function are the zeros of the system;
signals at these frequencies are not transfered through the
system.

3. RESULTS

3.1. Control Systems Interpretation of
Corticothalamic Transfer Functions
In this section, we decompose the transfer functions into
elementary modes whose behaviors we associate with data filters
whose control system properties are well understood. Only the
spatially-uniform effects of perturbations, i.e.,he simpler the
description of the system, alt k = 0, have been explored in this
study.

3.1.1. Reduced Model
The corticothalamic transfer functions, are ratios of exponential
polynomials of s. We approximate each transfer function Tab(s)
by a rational function, whose properties can be interpreted in
terms of data filters (Ogata and Yang, 1970; Kwakernaak and
Sivan, 1972), with

Tab(s) =
q(s)

p(s)
=

q(s)
n
∏

j=1
(s+ pj)

, (39)

where q(s) and p(s) are polynomials of degree m and n,
respectively, with m < n. Therefore, when the pj are all distinct
(we do not consider degenerate roots here), one has the partial
fraction decomposition

Tab(s) =
n

∑

j=1

rj

s+ pj
, (40)

where the residues rj are

rj = (s+ pj)Tab(s)|s=−pj . (41)

The smaller n is, the simpler the description of the system,
although accuracy is lost if n is made too small. In subsequent
sections, we seek the smallest n that retains the main
dynamics. Generally, this leads to the most heavily damped
modes (poles with the largest negative real parts) being
discarded.

3.1.2. Filter Identification
Once we have a few-pole approximation of the system transfer
function, we examine it from a control-systems perspective to
determine its predictive properties. Using Equation (40), the
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response φb of population b to an input signal φa can be written
as

φb(s) =
∑

j

φ
j

b
(s) =

∑

j

rj

s+ pj
φa(s), (42)

where Equation (42) defines φ
j

b
(s).

A general transfer function will have one or more pairs of
complex conjugate poles in the Laplace domain, in addition
to one or more real poles. Therefore, each pair of conjugate
poles generates a real response mode. We also pair up real
poles in the next part of the analysis to conveniently treat both
cases together as second order filters whose functions are well
known.

Hence, we consider the partial transfer function of the sum of
two fractions associated with poles pj and pj+1 either both real or

conjugate pair, which we denote by TJ
ab
(s), with

T
J
ab
(s) = K

s+ τ−1
p

(s+ pj)(s+ pj+1)
, (43)

τp =
rj + rj+1

rjpj+1 + rj+1pj
, (44)

K = rj + rj+1. (45)

Equation (43) yields

φ
J
b
(s) =

(

s+ τ−1
p

)

[

K

(s+ pj)(s+ pj+1)

]

φa(s), (46)

= H
J
ba
(s)GJ

a(s)φa(s). (47)

By defining

φI
a(s) = GJ

a(s)φa(s), (48)

we can write

φ
J
b
(s) = HJ

ba
(s)φI

a(s), (49)

= H
J
ba
(s)GJ

a(s)φa(s). (50)

Equations (48) and (49) express how the input φa(s) first passes
through G

J
a(s) to generate φI

a(s), which is transfered via HJ
ba
(s) to

generate the response φ
J
b
(s).

The input φa(t) passes through the filter GJ
a(s),

GJ
a(s) =

K

(s+ pj)(s+ pj+1)
. (51)

Transforming Equation (51) to the time domain yields

φI
a(t) =

∫ t

0
g(t − τ )φa(t)dτ , (52)

where

g(t) = ke−pjt − ke−pj+1t , (53)

with

k =
K

|pj+1 − pj|
; (54)

hence this filter acts as an integrator in the form of a convolution;
Figure 3A shows a schematic illustration of this convolution.
This filter can be rewritten as a standard second-order filter, as

GJ
a(s) =

K�2
0

s2 + 2ζ�0s+ �2
0

, (55)

where K is the low frequency gain, �0 is the natural frequency, ζ
is the damping coefficient, and the filter’s bandwidth termed as B
and is 2ζ�0. At s≪ �0 the right of Equation (55) approaches K,
while in the opposite limit it approaches K/s2. When ζ > 1, the

FIGURE 3 | Schematic of stages in the predictor given by Equation (47). (A) The input signal φa (t) first passes through GJa (s), a second-order low-pass convolution

filter. (B) The filtered signal φIa(t) then passes through HJ
ba

(s), where, linear extrapolation over a prediction time τp yields the predicted signal φP (t).
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filter is overdamped and exponentially decays to the steady state
without oscillating, while larger values of ζ yield a slower return
to equilibrium. A critically damped filter has ζ = 1 and returns
to the steady state as quickly as possible without oscillating.
When ζ < 1, the filter is underdamped and exhibits damped
oscillations. The peak frequency response occurs at±�peak, with

�peak =
{

0, ζ ≥ 1/
√
2

�0

√

1− 2ζ 2, 0 ≤ ζ < 1/
√
2
. (56)

The peak magnitude of GJ
a(s) satisfies

GJ
a

(

i�peak

)

=







1, ζ ≥ 1/
√
2

1

2ζ
√

1− ζ 2
, 0 ≤ ζ < 1/

√
2
. (57)

Figure 4A shows the behavior of a nominal GJ
a(i�) when ζ

changes, for fixed �0 and K. Figure 4B shows the response of
this filter when the input φa(t) is a Dirac delta function for a the
same range of ζ .

The convolved signal φI
a is transferred through the filter

H
J
ba
(s). By transforming Equation (49) into the time domain one

then finds

φ
J
b
(t) = τ−1

p φP(t), (58)

φP(t) = τp
d

dt
φI
a(t)+ φI

a(t), (59)

where τp is termed the prediction time and φP
a the predicted

signal. Hence, the filter HJ
ba

predicts its own input a time τp in

the future, which is illustrated in Figure 3B. Figure 4C shows the
magnitude of the T

J
ba

for the same nominal GJ
a(i�), ζ = 0.3,

and H
J
ba
(s) =

(

s+ τ−1
p

)

when τp varies. Figure 4D shows how

Tba predicts the Dirac delta function when τp varies. At larger τp
the response signal attains its final steady state value more slowly
with a smaller resonant peak and less oscillation.

The above convolution plus prediction processes can be
interpreted as a Proportional-Integral-Derivative (PID) control
scheme used in engineering control systems (Ogata and Yang,
1970; Kwakernaak and Sivan, 1972). Specifically, in the time
domain Equation (46) becomes

φ
J
b
(t) =

(

d

dt
+

1

τp

) ∫ t

0
g(t − τ )φa(t)dτ , (60)

which is a continuous-time serial PID. In this equation the
integral (I) smooths the input signal to reduce the effects of noise.
The smoothed signal is then extrapolated a time τp into the future
by the combined effects of the proportional (P) and derivative (D)
operators in the first parentheses on the right. Hence, each pair of
poles in Equation (40) yields a partial transfer function that can
be interpreted as a PID controller.

3.2. Control System Interpretation of
Corticothalamic Dynamics
We now examine each corticothalamic transfer function from
Section 2.2 to determine its control-systems characteristics.

3.2.1. Corticothalamic Filters
We find that a 16-pole approximation of Ten is accurate
to within a root-mean-square (rms) fractional error of 0.01

FIGURE 4 | Dependence of filter properties on parameters. (A) Magnitude of a typical second order filter GJa(s) from Equation (55) for �0 = 35 s−1, K = 1, and

various ζ , as labeled. (B) Response of GJa(s) to an impulse input signal for various ζ . (C) Magnitude of the total TJ
ba

= HJ
ba

(s)GJa(s), for fixed ζ = 0.3 and

HJ
ba

(s) = (s+ τ−1
p ) for various τp. (D) Response of TJ

ba
when the input signal is an impulse function for various τp.
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over the frequency range 0 to 150 Hz for the parameters
in Table 2, while a 6-pole approximation suffices for most
purposes, accurate to within an rms fractional error of 0.02
over the same range. Figure 5A shows the poles of the 16-
and 6-pole approximations of Ten, while Figure 5B shows the
magnitudes of both functions. These results show that the 6-
pole approximation retains the main features of the dynamics

and is sufficient for analyzing its effects; in most cases, it
exhibits slightly shifted versions of the least-damped poles
of the 16-pole approximation. Similar observations apply to
the other transfer functions Tin, Trn, and Tsn whose 6-pole
approximations are accurate to within an rms fractional error
of 0.02. The pole maps and the frequency responses for these
approximations are plotted in Figures 5C–H. We used the

FIGURE 5 | Poles and magnitudes of rational approximations to the transfer functions Tan. (A) Poles of 16-pole (black squares) and 6-pole (red crosses)

approximations of Ten. (B) Magnitude of 16-pole (black) and 6-pole approximations of Ten vs. frequency. (C) Same as (A) for Tin. (D) Same as (B) for Tin. (E) Same as

(A) for Trn. (F) Same as (B) for Trn. (G) Same as (A) for Tsn. (H) Same as (B) for Tsn.
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Control System Toolbox of Matlab 2017a to carry out these
approximations.

Turning to filter analysis, six poles can be summed in pairs
that dominate at low (f . 5 Hz), alpha (5 Hz . f . 15 Hz) and
beta (15 Hz . f ) frequency ranges, respectively. We thus write

Tr
bn(s) =

6
∑

j=1

rj

s+ pj
, (61)

= Tlow
bn (s)+ T

alpha

bn
(s)+ Tbeta

bn (s), (62)

where b = s, r, i, e and Tlow
bn

is the sum of the two real poles while

T
alpha

bn
and Tbeta

bn
are the sums over the complex conjugate pairs

of poles that represent oscillatory responses in the alpha and beta
frequency ranges, respectively; in each case pj = Ŵj ± i�j.

3.2.2. Filter Properties of T low
bn

This filter has two poles on the negative real axis at p1 = Ŵ− and
p2 = Ŵ+, with

Ŵ± =−
(

ζ ±
√

ζ 2 − 1
)

�0. (63)

This corresponds to all ζ > 1 and determines that Glow
n

is an overdamped (no oscillation) low-pass filter. The cut-off
frequency of Glow

n is �low
0 =

√
Ŵ−Ŵ+ s−1. The parameters

of Tlow
bn

calculated for populations b = s, r, i, e are listed in the
Table 3. The impulse response takes the form

φlow
bn (t) =r− exp

(

Ŵ−t
)

+ r+ exp
(

Ŵ+t
)

. (64)

Because the second exponential decays faster than the first,
the response is approximately first-order integrator with a time
constant Ŵ− for large ζ . Thus, poles closest to the positive half of
the s-plane dominate the response.

3.2.3. Filter Properties of T
alpha
bn

and Tbeta
bn

Both filters share the same main features because each comprises
a complex conjugate pair of poles. Therefore, we focus on the

alpha filter’s properties. The poles are complex conjugates lying
in the left half of the s-plane with pj, pj+1 = Ŵ ± i�c,

Ŵ = −ζ�0, (65)

�c = �0

√

1− ζ 2, (66)

where �c is termed the cut-off frequency and 0 ≤ ζ < 1. The

frequency response of G
alpha
n has a resonance with

�peak = �0

√

1− 2ζ 2, (67)

|Galpha
n (�peak)| =

1

2ζ
√

1− ζ 2
, (68)

as the resonance frequency and magnitude, respectively. Note
that �peak 6= �c and that the two frequencies are equal only for
ζ = 0, which corresponds to a pure oscillator with Ŵ = 0, more
generally, the resonance bandwidth is 2Ŵ.

Regarding the temporal response, wemust consider the nature
of the residues at the poles as well as the pole locations. Since
pj = p∗j+1, these residues are conjugates, so the impulse response

of G
alpha
n is

φI
n(t) =

�0
√

1− ζ 2
exp (−�0ζ t)

× cos
[(

�0

√

1− ζ 2
)

t −
π

2

]

. (69)

and the predicted signal passed through H
alpha

bn
is

φ
alpha
n (t) =τ−1

p φ
p
n(t), (70)

= 2|r| exp(−�0ζ t) cos
[(

�0

√

1− ζ 2
)

t − arg (r)
]

. (71)

The parameters calculated for this filter are listed in Table 3. The
corresponding frequency responses for b = s, r, i, e are plotted
in Figure 6. An alpha rhythm (7.5–12 Hz) is detectable in every
population’s alpha response, with peak frequences ranging from

TABLE 3 | Parameters obtained for low, alpha, and beta filters of corticothalamic transfer functions Tan using filter identification method developed in Section 3.

Ten Tin Trn Tsn

Quantity Description Low Alpha Beta Low Alpha Beta Low Alpha beta Low Alpha Beta Unit

−Ŵ− damping rate 1st pole 9.3 14.1 26.9 8.6 10.2 20 10.2 13.5 27 15.3 23.8 22.3 -

−Ŵ+ damping rate 2nd pole 17.2 14.1 26.9 5.5 14.5 20 14.5 13.5 27 337 23.8 22.3 -

�c cut-off frequency 0 57.4 143 0 56.8 130 0 56.2 101 0 57.9 84 s−1

|K| gain 1.8 3.82 1.62 28.7 33.1 3.4 7.44 4.3 8.3 52.2 48.8 4.6 -

ζ damping coefficient 1.04 0.23 0.18 1.02 0.24 0.15 1.01 0.23 0.26 2.45 0.38 0.25 -

�0 natural frequency 12.6 59.1 145 6.8 58.6 131 12 57.8 104 71.8 62.6 86.8 s−1

B bandwidth 26.5 28.3 53.9 14.2 29 40.2 24.5 27 55.4 352 47.8 44.6 s−1

�peak resonance frequency 0 55.6 140 0 54.9 128 0 54.5 97.2 0 52.7 90 s−1

Mpeak resonance magnitude 1 2.1 2.7 1 2.1 3.3 1 2.2 2.0 1 1.4 2.0 -

τp prediction time 16 28 6 20 17 2 73 7 15 18 23 2 ms
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FIGURE 6 | Magnitudes of transfer functions Tan and their low-, alpha-, and beta-frequency parts vs. frequency. Note that the total magnitude is not the sum of the

magnitudes of the three parts because of phase difference between them. (A) Ten. (B) Tin. (C) Trn. (D) Tsn.

≈ 8.4 Hz for the specific nuclei to ≈ 9.3 Hz for inhibitory
neurons in the cortex.

Similar results for beta filters are also listed in Table 3 and
plotted in Figure 6. The beta responses exhibit resonances in the
beta band (12.5−−30 Hz) where amplitudes are significantly
smaller than the alpha resonances.

Both alpha and beta filters have higher peaks in thalamus than
cortex. Furthermore, in every population except s, the damping
rate of alpha filters are approximately half of the beta filters’,
meaning the alpha waves live longer than beta waves in these
populations. But, the result shows that alpha and beta waves
would last for the same time in the response of population swhere
their damping rates are relatively close. This suggests that beta
waves live longer in the LGN response to stimuli than in the rest
of the system.

Calculating τp from the filter parameters yields

τp�0 =
[

√

1− ζ 2
Im(r)

Re(r)
− ζ

]−1

, (72)

and shows that τp is governed by both the filters’ poles and
their corresponding residues. Alpha and beta filters of the
corticothalamic functions have small damping rates, ζ ≪ 1, and
therefore the the prediction time in Equation (72) for these filters
can be approximated as

τp�0 ≈
Re(r)

Im(r)
. (73)

The quantity τp�0 represents what portion of its resonance cycle
the filter predicts in advance. One significant observation is that
alpha and beta filters of populations e, i and s present very similar
patterns of having τp of alpha filters longer than those of their
beta filters. In contrast, the population r has the opposite relation,
which means its beta filter predicts further in advance.

3.3. Simulation With Random Input Signal
Aside from the issue of how to interpret corticothalamic
dynamics in terms of data filters per se, there is the central
question of how well these filters enable the system to predict its
complex input signals out to some horizon in the future.

The corticothalamic system can only respond significantly
to signals out to approximately the flicker fusion frequency
of around 20 Hz. Hence, as a particularly severe test of its
prediction capabilities, we simulate the system response to white
noise, bandwidth limited to 30 Hz, with total power Pn. We
are interested in time-varying, but spatially unstructured stimuli.
The perturbation analysis then corresponds to presenting the
entire filed of view with a stimulus that consists of a sequence
of luminances that fluctuates according to a small amplitude
(perturbation) around a base level of intensity (steady-state).
Such stimuli are widely employed in visual flicker experiments
to probe SSVEPs (Herrmann, 2001; VanRullen and Macdonald,
2012).We used Control System Toolbox of Matlab 2017a to carry
out the calculations of time responses for transfer function Ten

using the relevant equations and parameters in the Tables 1, 2,
and to generate a random seed for φn to stimulate the system.
Note that the random noise does not affect spectra or other
conclusions; it only changes the specific realization of the time
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TABLE 4 | Optimal parameters computed for Ten filters, when stimulated with

white noise of bandwidth 30 Hz and total power Pn.

Optimization

Scheme

kl ka kb PR/Pn τd (ms)

Optimize the individual

filters

4.4 0 0 0.53 49

0 11.2 0 0.39 12

0 0 28 0.33 6

Optimize the total of

sum of filters through a

single gain, as in

Equation (76)

3.6 3.6 3.6 0.46 51

Optimize the total of

sum of filters through

separate gains, as in

Equation (77)

1.9 8.9 28 0.29 50

series. We estimate the time offset τd between the measured
output and the stimulus and denote the shifted signal by
φe (t − τd). We then define the difference between the stimulus
and the output of each filter as

φR(t) =φn(t)− Kφe(t − τd), (74)

≈φn(t)−
[

kl ka kb
]







φlow
e (t − τ l

d
)

φ
alpha
e (t − τ a

d
)

φbeta
e (t − τ b

d
)






, (75)

which we term the residual signal. For each filter, we find the
optimal K that minimizes the power of residual signal, termed
as PR. The power of the residuals is minimized to reduce
the error between the predicted values and the real coming
information subject to temporal frequencies that would normally
be encountered in the signal part of sensory input. The resulting
parameters are listed in the Table 4.

Figure 7A shows the optimized outputs of the slow filter
contribution to Ten, and its residual signal compared to
the stimuli. This filter predicts the slow trends of the
external stimulus, corresponding to its large prediction horizon.
Figure 7B shows the power spectra of the corresponding signals,
which show that the narrow bandwidth of the filter limits it
to predicting slow changes because it suppresses PR at low
frequencies. The filter has a relatively narrow bandwidth which
results in an optimal kl that reduces P

R/Pn to 0.53.
Figure 7C shows the optimally normalized outputs of the

alpha filter contribution to Ten, and its residual signal compared
to the stimuli. The alpha filter requires larger gain ka than the
low frequency filter and has a short delay time. Figure 7D shows
the power spectra of the corresponding signals which show that
this filter acts as an alpha band predictor with PR/Pn = 0.39 that
cannot forecast higher frequencies or slow trends. Similar results
for the beta filter are plotted in Figures 7E,F. The results show a
need for a significantly higher gain kb to achieve the closest fit to

the stimuli; however, this filter can reduce PR/Pn–0.33 because of
its significant tail at lower frequencies.

Slow, alpha, and beta filters detect and predict different
frequency bands and generate responses, each of which focuses
on information in the relevant band. This explains the need for
a parallel set of filters normalized so that information about slow
trends, and alpha and beta-band oscillations can be retrieved; the
best response is obtained by summing the filters. We thus sum
the filters in forms in which the gains can be controlled so that
the full response is adjusted to optimally track the stimuli. In the
first case, we normalize the total sum of the filters through a single
factor, k, witch might correspond to an overall neuromodulation,
for example. This yields

φ(I)
en ≈ k

(

φlow
bn + φ

alpha

bn
+ φbeta

bn

)

, (76)

and we adjust k so that PR is minimized. The parameters
listed in Table 4 then result in a minimum of PR/Pn = 0.46.

Figure 7G plots the normalized-shifted φ
(I)
en and the residual

signal compared to the stimuli for these parameters. Figure 7H
shows the corresponding power spectrum plots. The results are
quite close to the results of individual low-frequency filter in
terms of residual power and time delay, because Tlow

en has the
highest magnitude, and normalizing the sum of the filters by
a single gain causes it to retain its dominance over the total
response.

More accurate tracking of the stimuli could be achieved by
tuning the parameters separately for each filter. If the gains
km could be separately adjusted for m = l, a, b, denoting the
low-frequency, alpha, and beta filters, respectively, then

φ(II)
en ≈ klφ

low
bn + kaφ

alpha

bn
+ kbφ

beta
bn . (77)

Such an outcome might well be achievable by the real brain
because we know that the strengths of the slow, alpha and beta

peaks do not vary in lockstep. Figure 7I shows the response φ
( II)
en

and the residual signal compared to the stimuli for the parameters
listed in Table 4, yielding PR/Pn = 29. Figure 7J confirms that
this response contains information about slow trends of the
stimulus, while alpha and beta band waves are predicted with

more emphasis than in φ
(I)
en .

Overall, these results show that the response of population e to
the stimulus can be approximated by the sum of predicted values.
To improve the performance, various normalization constants
can potentially be allocated to different filters through gain
adjustments. Although we focus on Ten here, the same approach
can be used to reveal the mechanisms behind other populations’
dynamics and prediction capabilities.

4. DISCUSSION

Motivated by the need for a formulation of brain’s global
dynamics that starts from its physical characteristics (rather than
a predetermined formalism or endpoint) and is analytically,
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FIGURE 7 | Responses of the population e with gain adjustment, and corresponding power spectra. (A) Time series of stimulus (black), normalized-shifted filter

output kφen
(

t− τd
)

(red) and residual signal (green) for T lowen . (B) Power spectra of response signals obtained for φ lowen . (C) Same as (A) for φ
alpha
en . (D) Same as (B) for

φ
alpha
en . (E) Same as (A) for φbetaen . (F) Same as (B) for φbetaen . (G) Same as (A) for 8

(0)
en. (H) Same as (B) for φ

(0)
en . (I) Same as (A) for φ

(I)
en. (J) Same as (B) for φ

(II)
en.
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numerically, and experimentally tractable, we have used a neural
field corticothalamic model to evaluate the transfer functions for
various population of neurons. Particular attention has been paid
to the understanding of the transfer functions from a control
systems perspective. The main results are:

(i) NFT transfer functions for each corticothalamic population
were derived and approximated as rational polynomials. These
were explored to determine the linear response of each
population, and its rate of change, to any stimulus, which are
exactly the types of quantities that are used in control systems to
enable prediction of future states, and adjustment of gains which
is argued to be the analog of implementing attention.

(ii) We approximated transfer functions, while preserving
accuracy over the dominant frequency range. These were then
used to uncover basic modes by which each population in
the corticothalamic system responds to external signals. All
corticothalamic transfer functions were then shown to be
dominantly governed by a few basic modes and to have similar
frequency responses, with different gains.

(iii) Notably, it was shown that each pair of basic modes yields
a sub-response that can be expressed in terms of a standard
second order PID filter with a low-frequency, alpha, or beta
resonance.

(iv) Slow, alpha, and beta filters operate in parallel, with each
filter capturing and processing part of the information coming
from the external world. The total response to stimuli is obtained
by summing these independent responses. This corresponds
to the common practice in control systems of using a set of
controllers to improve the performance of a tracking system.

(v) Using a random white noise covering the bandwidth of
human vision as the stimulus, the responses of corticothalamic
filters were simulated. We explored the tracking performance of
each filter as well as their sum for the excitatory population in the

cortex. The results showed each filter successfully tracks part of
the stimulus, while a better prediction is obtained by summing
them after separate optimal gain adjustments. This showed
how the filters’ gains can be adjusted to improve prediction of
the future input signal based on its recent time course (value
and derives, implicitly) and internal corticothalamic dynamics.
Attention, in the other words, may be implemented in the brain
through control and adjustment of input gains. This suggested
directions for modeling attention in our framework by using
mismatches between internal models and external stimuli to
drive gain changes. This study will lead to modeling decision and
control, and generalization to encompass more general stimuli
and sensory systems.

Overall, the results show and interpret the utility of control
theory schemes in understanding brain’s dynamics, yielding
insights into dynamic processes that underlie cognition and
action without imposing an outcome in advance.
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