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Mental state monitoring is a critical component of current and future human-machine

interfaces, including semi-autonomous driving and flying, air traffic control, decision aids,

training systems, andwill soon be integrated into ubiquitous products like cell phones and

laptops. Current mental state assessment approaches supply quantitative measures,

but their only frame of reference is generic population-level ranges. What is needed

are physiological biometrics that are validated in the context of task performance of

individuals. Using curated intake experiments, we are able to generate personalized

models of three key biometrics as useful indicators of mental state; namely, mental

fatigue, stress, and attention. We demonstrate improvements to existing approaches

through the introduction of new features. Furthermore, addressing the current limitations

in assessing the efficacy of biometrics for individual subjects, we propose and employ a

multi-level validation scheme for the biometric models by means of k-fold cross-validation

for discrete classification and regression testing for continuous prediction. The paper not

only provides a unified pipeline for extracting a comprehensive mental state evaluation

from a parsimonious set of sensors (only EEG and ECG), but also demonstrates the use

of validation techniques in the absence of empirical data. Furthermore, as an example

of the application of these models to novel situations, we evaluate the significance of

correlations of personalized biometrics to the dynamic fluctuations of accuracy and

reaction time on an unrelated threat detection task using a permutation test. Our results

provide a path toward integrating biometrics into augmented human-machine interfaces

in a judicious way that can help to maximize task performance.

Keywords: computational models, machine learning, mental fatigue, stress, attention, validation, N-back recall,

EEG

1. INTRODUCTION

Human physiological monitoring has become ubiquitous in wearable consumer devices, measuring
biomarkers such as heart rate, galvanic skin response, andmovements (Raskovic et al., 2004). These
devices can provide accurate real-time biofeedback and forensic data useful to athletes, students,
soldiers, pilots, and others as an aid to improve performance. The primary limitation of current
monitoring solutions, however, is an inability to interpret and validate measured physiological
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biometrics in the context of task performance. While standard
age-related guidelines for metrics such as heart rate for
cardiovascular fitness are available (Ziegler et al., 1992; Ryan
et al., 1994), such generic population-level guidance is not
sufficient for advanced interfaces to accurately predict and
enhance near-term user performance on mental tasks. For
example, pilot associate systems in aircrafts and military
decision aids rely critically on precision biometrics that reflect
the physiological mental states of an individual user (Horst
et al., 1990; Wilson, 2002; Camhi, 2004). The Air Force
Research Laboratory (AFRL) introduced the Sense-Assess-
Augment taxonomy to organize their research portfolio around
sensing human performers and assessing when a system
should intervene to augment their performance (Galster and
Johnson, 2013). Such real-time human-machine interfaces can
be improved by better mental state predictions. The prediction
capabilities described here can inform behavioral interventions,
enable training systems that are more engaging and effective
for students, automate support systems that can assume control
when a driver or pilot is in stress, or more effectively prescribe
breaks in taxing environments such as those experienced by air
traffic controllers.

Many techniques for assessing and predicting mental states
have been proposed (Gevins and Smith, 2000; Healey and Picard,
2005; Oken et al., 2006; Braboszcz and Delorme, 2011; Cheng
and Hsu, 2011; Putman et al., 2014; Wascher et al., 2014; Trejo
et al., 2015; Ki et al., 2016). Current challenges for existing
approaches include not only the lack of a unified method to
assess various mental states but also the lack of a procedure
to validate the efficacy of their biometric predictions for use in
real life. Based on prior literature, we have identified a small set
of mental states—attention, mental fatigue, stress—that have a
significant effect on behavioral performance. We evaluated and
sought to improve upon the current state-of-the-art features
for these mental states to build personalized models that can
predict task performance on novel generic tasks using data
from a minimal set of biosensors: electroencephalography (EEG)
and electrocardiography (ECG). We will describe the various
biometric models that were considered and a set of validation
tests that allow for a standardized comparison.

Attention is a measure of the ability to filter out distractions
and focus on task-related items. It has been described as an
ability to achieve certainty in perception (Feldman and Friston,
2010). A group at NASA Langley (Pope et al., 1995; Prinzel
et al., 2000) developed a metric called “engagement index” based
on a proportion of EEG power bands beta/(theta + alpha)
to adaptively control the allocation of tasks in an adjustable
autonomy setting. Braboszcz and Delorme (2011) established
two attentional states: a high vigilance state and a low-alertness
mind-wandering state, with the latter characterized by increased
EEG spectral power in the theta and delta bands and decreased
power in the alpha and beta bands. The subjects were instructed
to count breaths and to press a key whenever they realized they
were mind-wandering. EEG data from 8 to 2 s before each mind-
wandering event is labeled as mind-wandering, and the data from
2 to 8 s after each event is labeled as attentive. This breath-
count task is adopted for the present study. Putman et al. (2014)

defined attention as a top-down ability to overcome bottom-
up distractors for effective task performance and proposed that
an effective biomarker for attentional control is a proportion
of spectral power in the theta and beta bands, averaging EEG
data from three frontal electrodes. Ki et al. (2016) found that
EEG alpha band (10 Hz) power is modulated by attention
independent of task or stimulus. Oken et al. (2006) reviewed
prior literature and focused on vigilance as a state of sustained
attention or tonic alertness. They noted that increased theta
and decreased beta power in EEG most often correlate with
worse performance on a sustained attention task, which agrees
with the findings of Braboszcz and Delorme (2011) and Putman
et al. (2014). None of these studies developed a model to
classify and validate the attention level on other novel tasks; but
based on these studies, we chose attention as one of our key
biometrics, and evaluated the theta/beta proportion in one of the
models.

Mental fatigue has a direct relationship to cognitive
performance (Kato et al., 2009; Trejo et al., 2015). Trejo et al.
(2015) found an association between mental fatigue and increase
in the EEG spectral power of frontal theta and parietal alpha
bands. They estimated fatigue using a partial least squares
model coupled with a discrete-output linear regression classifier.
Wascher et al. (2014) noted a mental fatigue-related increase
in frontal EEG theta power as well in occipital EEG alpha
power. Theta band power reliably and continuously increased
with time on the task through a 4-h experimental period, but
alpha band power increased faster, peaking after 1.5 h and
remaining steady for the rest of the time. Wilson and Russell
(2003) used a neural network model on five bands each of EEG
and EOG data crossing most of the spectrum in 10 s windows
with 50% overlap, but they got the best results with EEG alone.
Gevins and Smith (2000, 2003) and Smith et al. (2001) proposed
a workload metric (“Task Load Index”, TLI) as the ratio of frontal
midline EEG theta to parietal alpha power.

Stress has been known to be a critical component of mental
state; however, a precise definition of stress is elusive. It
has been characterized as the body’s physiological response
to environmental challenges: threats to tangible or intangible
resources that are valued by the individual, or depletion of
those resources (Hobfoll, 1989). Stress caused by a current
task is added on top of background stress that may be caused
by life events. In general, the relationship between stress and
performance takes the form of an inverted U-curve (Hebb,
1955). Individual responses to stress vary widely but task
performance is best under moderate stress (at the center of
curve), and either low stress or high stress is detrimental
to performance (Roberts et al., 2016). Stress can be detected
in a number of physiological responses including galvanic
skin response (GSR) (Healey and Picard, 2005), saliva cortisol
level, and pupil dilation (Henckens et al., 2009). Healey and
Picard (2005) experimented with electromyography (EMG),
electrocardiography (ECG), skin conductance, and respiration
with varying success. Hockey et al. (2009) and Ting et al. (2010)
designed a fuzzy decision system that monitors the TLI metric
mentioned above, and heart rate variability (HRV), to assess
the “operator functional state” for deciding whether a complex
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system should be controlled by a human or an automated system
to reduce operational risk.

Focusing on attention, mental fatigue, and stress as the
most pertinent biometrics affecting cognitive behavior, we
have designed a unified pipeline to construct personalized
models based on two intake experiments. These models can
subsequently be used to produce quantified measures of the
three biometrics during task performance. We propose that
integrating all available neural and physiological features into
a meaningful score for each biometric would allow for the
most accurate measures. The intake experiments are breath-
count, a variant of the Braboszcz and Delorme (2011) method
described above, and N-back recall (Kirchner, 1958). Breath-
counting is a relaxing task that causes minimal cognitive load,
but requires sustained attention. And because breath-counting
lowers stress and fatigue, it is used as a baseline low level
for training stress and mental fatigue models. The visual-letter
N-back recall task is used to evoke two different levels of
cognitive workload; 1-back is moderately taxing, and 3-back
is the most taxing. Data required for the proposed metrics is
limited to physiological features extracted from EEG and ECG
data; however, the methods proposed allow for scaling up the
input features for each component of mental state to include
other measurements such as GSR and pupilometry. To address
the challenges in physiological assessment, we validated the
proposed models using k-fold cross-validation and regression
testing. After training models on the simple laboratory intake
experiments, we demonstrated their use in an unrelated, novel
threat detection task, which is a complex real-world perceptual
learning task (illustrated in Figure 2). The task is based on a
virtual reality training system for soldiers called “DARWARS
Ambush!” (MacMillan et al., 2005), and has been used in previous
studies aimed at enhancing the efficacy of training (Clark et al.,
2012; Coffman et al., 2012). This is a relevant task for our
purposes because it is fatiguing, requires sustained attention, and
a failure to detect a threat results in a stressful confrontation.

2. METHODS

Data from the breath-count (Braboszcz and Delorme, 2011) and
N-back recall (Kirchner, 1958) tasks of 18 subjects (Table S1)
were used to train models for each of the three metrics: mental
fatigue, stress, and attention. All subjects participated in a purely
voluntary manner after providing informed written consent
under experimental protocols approved by the Chesapeake
Institutional Review Board. On the evening of the first day, each
subject performed a breath-count task lasting 30 min followed
immediately by a 3-back recall test lasting 21 min. The subject
then rested in a sleep laboratory for 8 h during the night, and the
following morning a 1-back recall task was administered lasting
21 min.

The breath-count task (Braboszcz and Delorme, 2011)
requires sustained attention but minimal cognitive load. As it
is similar to mindful breathing exercises used to reduce stress
and induce a relaxation response (Lum, 1977; Feldman et al.,
2010), it is utilized for training the baseline levels of low mental
fatigue and low stress as well. Prior to the session, subjects were
told to repeatedly count their breaths mentally from 1 to 10. If

they count past 10 or lose count, they were instructed to press a
button, refocus, and restart counting breaths. Mental workload
was applied by means of the visual-letter N-back recall task,
which exploits working memory constraints (Kirchner, 1958).
Subjects were positioned in front of a screen where written
instructions were displayed. The individuals were informed that
a series of characters between A and J would be presented
randomly, and they were to indicate if the new character matched
the one presented N steps prior. In separate tasks, a moderate
loading was measured with N = 1, and a heavy cognitive loading
was measured with N = 3. During testing, the screen displayed
characters one at a time in 12-point Tahoma font in black on
a light gray background. Each letter was presented for 500 ms,
with an inter-stimulus interval of 1,000 ms. A timeline of the
calibration tasks including example collected data is presented in
Figure 1.

To demonstrate how these biometric models are validated
using data from a novel task, we presented a threat detection
task (Jones et al., under review) to the subjects on two
subsequent 24-h periods separated by 3–7 days. The task required
participants to identify the presence of threat cues in still images
taken from the “DARWARS Ambush!” virtual reality training
environment (MacMillan et al., 2005), with a yes or no response
for each image presented for 2 s. One of two types of threats
was shown on each experimental day: people threats including
enemy combatants, snipers, etc., vs. object threats including
IEDs, other explosive devices, trip wires, laser sightings, etc.
On each day, participants were first assessed using test images
without feedback to obtain their baseline level of knowledge
regarding the threat cues from the given threat type. They were
then given 45 min of training, during which they not only viewed
each image and made a response, but also received feedback in
the form of a short movie. If a threat was present and detected,
or if no threat was present and the correct response was given,
the subject was shown a movie with a positive outcome and
a voice-over informing participant that they were doing well.
If a threat was present and not detected, the movie showed
the deadly consequences and the voice-over berated the subject.
Depending on the threat for that trial, feedback might include an
IED exploding, a sniper shooting, a soldier falling, etc. Finally, if
a threat was not present and the wrong response was given, the
participant was shown a video with no bad outcome, but with
a slightly negative voice-over feedback. After training, subjects
were tested again in three sessions without feedback: immediately
after training, in the morning after sleep, and once in the
afternoon (about 24 h after training). Figure 2 shows the task
timeline and sample scenario images. Number of trials for each
threat type that were available for evaluation of the biometric
models on the threat detection task can be found in Table S2, and
a complete task description can be found in Jones et al., (under
review).

2.1. Biometric Assessment
EEG and ECG were collected from all participants using a 32-
channel Neuroelectrics StarStim32 system sampled at 500 Hz.
The 32 Ag-AgCl electrodes were arranged in the international
10–20 system (P7, T7, CP5, FC5, F7, F3, C3, P3, FC1, CP1,
Pz, PO4, O2, Oz, O1, PO3, CP2, Cz, FC2, Fz, AF3, Fp1, Fp2,
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FIGURE 1 | Calibration tasks overview. The timeline of the calibration tasks is shown. An 8-h sleep period where participants were under observation in a sleep

laboratory separates the 1-back recall task from the breath-count and 3-back recall tasks. Sample cue and participant inputs are shown below the respective tasks.

Sample EEG channel spectrograms aligned to the start of the task are shown, as well as sample HRV spectrogram data extracted from the ECG data.

FIGURE 2 | Threat detection task overview. The timeline of the threat detection task used for novel task validation of the biometric models is shown. Red blocks

correspond to sessions where no feedback is provided to the subjects and blue blocks to where feedback is provided. While sessions are back-to-back, there are

short breaks between them where the experimenter ensures that the subjects understand the instructions. The content below each block depicts sample images

shown to the subjects during the respective block. Note the timeline for only one experimental day of the within-subjects design is shown here.

AF4, P8, T8, CP6, FC6, F8, F4, C4, P4) and held in place
with a neoprene EEG cap. Three of the 32 were utilized as
external channels; namely, ECG (PO3) placed under the left
collarbone, and both vertical (AF3) and horizontal (AF4) electro-
oculogram (EOG): one placed superior and lateral to the right
outer canthus, and another inferior and lateral to the left outer
canthus. Two reference electrodes (CMS and DRL) were placed
preauricularly. Pre-processing of EEG data was performed with
an automated artifact removal pipeline (Ketz et al., 2017). As
part of this, EEGLAB (Delorme and Makeig, 2004) was utilized
to perform automatic channel rejection based on outliers in
normalized spectral power within the 1–250 Hz range (>mean +
3 standard deviation), along with band-stop filtering from 59 to
61 Hz, high pass filtering above 0.1 Hz, DC offset removal, and

average re-referencing. Next, again utilizing EEGLAB (Delorme
and Makeig, 2004), Independent Component Analysis (ICA)
was performed following which the Independent Components
(ICs) were ranked as candidate noise components by their
correlation with nuisance signals (accelerometer, EOG, ECG)
using the SemiAutomatic Selection of Independent Components
for Artifact correction (SASICA) plugin for EEGLAB (Chaumon
et al., 2015). At several stages of the process, EEG quality
was assessed using the Signal Quality Index (SQI) (Daly et al.,
2012, 2013). Noise ICs were iteratively selected where the top
ranked component was first added to the noise components
list and subtracted from the pre-processed data. If the change
in SQI following the removal was less than −0.001 (a quality
increase), that IC remained on the noise components list; if
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not, it was removed. The next highest ranking IC was then
added to the noise components list, and the process proceeded
in this fashion until all the ICs had at one time been a part
of the noise components list, or there were a minimum 25%
of the ICs not selected as noise components. The remaining,
non-noisy components were then back-projected to the channel
space to recover the topological signal. Lastly, rejected channels
were replaced by spherical interpolation of nearby channel data
followed by moving average subtraction with a window of 1000
samples for EEG and 50 samples for ECG (for drift correction
and to mean center the signals at 0). Finally, a Fast Fourier
Transform was applied to the time series data to extract spectral
power in different frequency bands (see Table 1) from 10 s
non-overlapping bins for training the mental fatigue and stress
models, and from 6 s windows before and after self-reports
of mind-wandering in the breath-count task (see Figure 5) for
training the attention models. Classifiers were then trained on
these data for each electrode separately to compute the various
biometrics as described below. The final classifications were
computed by taking the mean value of the output predictions
across all the electrodes, except for models based on ECG alone
(namely, the first two models for stress: P1s and P2s ). The testing
of models was performed on 10 s overlapping segments at 1 s
intervals for mental fatigue and stress, and on 6 s overlapping
segments at 1 s intervals for attention.

In the following discussion, our notational convention for
biometrics will be Pn

b
, where b is either attention (a), mental

fatigue (f ), or stress (s), and n is a numeric designation for each
variant of the biometric model. The input data for each of the
biometric models is described in the next 3 subsections, and
the section 2.2 discusses the classifiers trained on each of the
feature sets and the validation techniques used to evaluate the
effectiveness of the different models.

2.1.1. Mental Fatigue
The mental fatigue (Pf ) induced by cognitive loading rises
steadily over time. The breath-count task provides the
representative relaxed baseline state and 3-back task produces
fatigue. To ensure sufficient loading from the 3-back recall task,
only the latter half of the recorded data is utilized. For the mental
fatigue models, we utilized spectral power in different frequency
bands as features with discrete labels, {0,1}, to identify low fatigue
(from the breath-count task) vs. high fatigue (from second half
of 3-back). The features for the two evaluated fatigue models are
shown in Figure 3 and defined as follows (frequency bands are
shown in Table 1):

TABLE 1 | EEG frequency ranges for informative spectral bands.

Band Frequency range (Hz)

δ (delta) 1–3

θ (theta) 4–8

α (alpha) 8–12

β (beta) 13–30

γ (gamma) 30–50

Ŵ (high-gamma) 50–100

• P1
f
: Average EEG spectral power in theta and alpha bands,

per Trejo et al. (2015)
• P2

f
: Average EEG spectral power across all bands from delta

through high-gamma

2.1.2. Stress
The stress metric (Ps) returns a low value on relaxing tasks
and high on challenging tasks. Accordingly, models for stress
are learned from the low-stress breath-count task and the
high-stress 3-back task. In addition to the EEG data, ECG
data is also employed to assess the physiological response to
stressors. Heart rate variability (HRV) is extracted from ECG
(Healey and Picard, 2005) by detecting the QRS waveforms and
computing the interval between consecutive beats (Figure 4).
For the stress models, we utilized specific bands in the HRV
power spectrum that have an underlying interpretation; namely,
lower-frequency (fHRV ≤ 0.08 Hz) spectral power indicates
the influence of the sympathetic nervous system, and higher-
frequency (0.15 Hz ≤ fHRV ≤ 0.5 Hz) power indicates the
influence of the parasympathetic nervous system (Healey and
Picard, 2005). Additional features were drawn from EEG spectral
power in different frequency bands. The ECG and neural features
are visualized in Figure 4 and in Figure 3, respectively.

The features for the four evaluated stress models are defined
as follows:

• P1s : Spectral power of ECG frequencies with 0.1 Hz binning
(motivated by Liu et al., 2006) in the 0.01–0.4 Hz range

• P2s : Average HRV spectral power in VLF, LF, and HF bands
(Table 2, per Healey and Picard, 2005)

• P3s : Average EEG spectral power across all bands from delta
through high-gamma (Table 1)

• P4s : P
2
s + P3s

2.1.3. Attention
The attention metric, Pa, is computed exclusively from the
breath-count task. Each mind-wandering event indicated by
the subject is treated as an event related potential marker.
Nine subjects of 18 were excluded for having less than three
mind-wandering events. As in Braboszcz and Delorme (2011),
neural data taken from 8 to 2 s before the button press are
labeled as inattentive, and data from 2 to 8 s after each button
press are labeled as attentive. Figure 5 shows marked data with
the timeline for a sample mind-wandering event. If the time
windows for inattention and attention were ever to overlap, we
would consider the windows as data for inattention because
the button press did not elicit an expected bout of sustained
attention. For the attention models, we utilized average EEG
spectral power in various frequency bands as features, including
the theta/beta proportion (P1a) proposed by Putman et al.
(2014), and with discrete labels, {0,1}, to identify inattentive vs.
attentive states. The features for the three evaluated attention
models are defined as follows (frequency bands are shown in
Table 1):

• P1a: theta/beta proportion, per Putman et al. (2014)
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FIGURE 3 | EEG features for fatigue, attention, and stress metrics. Spectral power features in different frequency bands used in two variants of the fatigue metric,

three variants of the attention metric, and one variant of the stress metric are illustrated. (A) shows the spectrogram from the full evaluation period for a sample

channel on the 3-back task. (B) shows a zoomed-in segment outlining the time segmentation and feature binning for the different biometric models. The red blocks

are the best EEG features, and the gray blocks are other evaluated features. Table 1 defines the frequency ranges.

FIGURE 4 | ECG features for stress. (A) shows the HRV spectral features extracted from ECG. The red lines, and corresponding blocks, identify the best features for

assessing stress. (B) shows a zoomed-in segment outlining the time segmentation and feature binning for the different stress models. (C) shows the R-R peak

detection for the ECG waveform where the interval between peaks is utilized as the HRV signal.

• P2a: Average EEG spectral power across all bands from delta
through high-gamma, perWilson and Russell (2003), although
they also included EOG

• P3a: Average EEG spectral power in delta, theta, alpha, and beta
bands, per Braboszcz and Delorme (2011).

2.2. Modeling
The neural and cardiac data used to train the models have a
great amount of variability across subjects due to the differences

in the underlying physiology and health of the individuals.

Different statistical models were considered to evaluate the

different feature sets for each mental state component defined

above. For situations where discrete classification is a sufficient
characterization, the following models were evaluated with
categorical outputs: linear discriminant analysis (Duda et al.,
2001), and support vector machine with linear and radial basis
kernels (Chang et al., 2010). Where discrete classification is
not a sufficient output, regression was considered with the
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following models evaluated: linear regression, epsilon-support
vector regression (Basak et al., 2007), and generalized linear
model (GLM, McCullagh and Nelder, 1989) using a binomial
distribution and a logit link function. Of the considered models,
GLM had the best performance for both discrete and continuous
classification and is the model of choice for the presented results.

To evaluate the discrete classification models, standard k-fold
cross-validation was used to assess the classification accuracy of
each feature set for the three mental state components. Data
was separated into 10 partitions and permuted exhaustively with
9 partitions used for training and one partition for testing.
Each partition contained an equal number of samples per class,
and a uniform prior was utilized. Each channel was evaluated
independently, and results were averaged across channels per
subject. To evaluate the regression models, each model was
trained on the same data utilized for the best feature sets
determined from the k-fold validation process for mental fatigue
and stress. Leave-one-out cross-validation provided bounds for
each biometric. Data from the 1-back recall task, which was not
utilized for training, served to evaluate whether a continuous
mapping was learned for the given biometric. It is expected that
if the biometric models are valid, the 1-back recall data should be
rated at an intermediate value somewhere between the relaxing
breath-count task and the more stressful and fatiguing 3-back
recall task. Five subjects of 18 were excluded in the regression
validation for either a lack of neural recordings (one subject) or
excessively noisy ECG recordings despite artifact removal (four
subjects) for the 1-back recall task.

TABLE 2 | HRV frequency ranges for informative spectral bands.

Band Frequency range (Hz)

VLF (Very Low Frequency) 0.01–0.04

LF (Low Frequency) 0.04–0.15

HF (High Frequency) 0.15–0.4

2.2.1. Evaluation on Novel Threat Detection Task
The best biometric models from the k-fold cross-validation
were applied to a novel task to test if the biometrics correlate
with dynamic fluctuations in performance. We measured the
correlation between the temporal dynamics of each predicted
biometric and the subject’s performance (accuracy and reaction
time) on the threat detection task described in Figure 2. Four
subjects of 18 were excluded from analysis for excessively noisy
EEG or ECG recordings despite artifact removal. The task
data was segmented to match the threat detection trials, and
average biometric values were computed for each segment.
The data for the two threat types, namely object and person
threats, were collected on separate days per subject and are
evaluated independently. The significance of the correlations
were evaluated by using a permutation test that compared
them with null distributions of random correlations. For each
biometric, the null distribution of correlations was created
from 3,000 iterations where each iteration randomly shuffled
the performance (response and reaction time) across the trials
through the task. For a subject’s threat detection performance to
be counted as exhibiting significant correlation with a biometric,
the correlations have to be significant for both threat types. If only
for one threat type, the particular subject is counted as 0.5.

3. RESULTS

Using k-fold cross-validation, the different feature sets were
first evaluated to determine the best performing ones. Figure 6
provides the results of this approach for each of the three
biometrics (namely, mental fatigue, stress, attention). Note that
of the feature sets evaluated, P1

f
for mental fatigue, P1s and P2s

for stress, and P1a, P
2
a, and P3a for attention have been previously

proposed in the literature and are considered the current state-
of-the-art. As the cross-validation accuracies for the various
biometric models, as well as the biometric scores under various
conditions, are not known to be other than normally distributed

FIGURE 5 | EEG features for attention. (A) Subject-identified mind-wandering events are plotted as red lines in the spectrogram of EEG data from a sample channel

during the breath-count task. (B) Example of one of the mind-wandering events at time t, with relative windows labeled as inattentive (mind-wandering) prior to user

button press and attentive occurring after the button press.
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FIGURE 6 | Cross-validation results for classification accuracy. 10-fold cross-validation results across 18 subjects with performance averaged across electrodes are

shown in (A,B) for mental fatigue and stress, respectively. 3-fold cross-validation results across nine subjects with performance averaged across electrodes are shown

in (C) for attention. The error bars for (A–C) are the standard error of the mean across subjects and the dotted line represents random chance accuracy.

across the population, we employed a repeatedmeasures ANOVA
and t-tests to statistically analyze the various obtained results.
Two-tailed paired sample t-tests showed that all the evaluated
models for mental fatigue and stress performed significantly
better than chance level of 50% (P1

f
: p < 1e− 8; P2

f
: p < 1e− 11;

P1s : p < 1e− 8; P2s : p < 1e− 7; P3s : p < 1e− 10; P4s : p < 1e− 12).
For the attention models, only P3a performed better than chance
at a trend level (p = 0.0739). Figure 6A shows that P2

f
obtains

the best performance for fatigue by utilizing EEG spectral power
features from all the various physiological bands (namely, delta
through high-gamma). A post-hoc two-tailed paired sample t-test

comparing P1
f
and P2

f
was also very significant (p < 1e − 4).

Figure 6B shows that P4s improves over all prior feature sets by
utilizing HRV spectral features together with the full range of
EEG spectral power features. Post-hoc two-tailed paired sample
t-tests comparing P4s with each of the other stress models were
very significant as well (with P1s : p < 1e − 7; with P2s : p <

1e − 3; with P3s : p < 1e − 3). Figure 6C shows P3a performs
slightly better than the other models for attention, but post-hoc
two-tailed paired sample t-tests comparing the models were not
significant when considering multiple comparisons (P1a vs. P3a :
p = 0.0707; P2a vs. P

3
a : p = 0.0411).

In order to interpret the best GLM models for mental fatigue
and stress (namely, P2

f
and P4s ), we looked at individual features

at each channel for consistency across subjects (>50%) in being
significant (p < 0.05) and the directionality of the correlation. As
a result, we identified a subset of feature-channel combinations
that related to the predicted mental states; see Table S15 for
mental fatigue and Table S16 for stress. For mental fatigue,
the most consistent feature for a positive influence is frontal
gamma, and themost consistent feature for a negative influence is
fronto-central alpha. For stress, the most consistent features for
a positive influence are pre-frontal, central, and centro-parietal
theta, and frontal gamma, and the most consistent features for
a negative influence are fronto-central delta, frontal beta, and
pre-frontal, fronto-central, central, and centro-parietal alpha.
Note, however, that artifact removal is an imperfect process and
there may still be EEG artifact remnants, especially those caused
by slow eye movements (SEMs) and facial muscle activity. In

particular, SEM artifacts are known to contaminate EEG spectral
power in the delta band, and frontal electromyogram (EMG)
artifacts are known to confound endogenous frontal gamma
power.

In order to assess the predictive capabilities of the best
biometric models for mental fatigue and stress within the
continuous range between 0 and 1, a regression test was
performed with data from the 1-back recall task, which was
not used in training the models. The results for mental fatigue
(top) and stress (bottom) are shown in Figure 7. The attention
biometric was not evaluated similarly, due to the lack of data
from a held-out task that would have corresponded with an
intermediate attentional state. While the datasets for breath-
count and 3-back recall tasks are utilized to train the mental
fatigue and stress models for the lower and upper bounds, leave-
one-out cross-validation was utilized to assess performance on
the training data itself. In Figures 7A,D, the prediction scores
averaged across subjects are shown for both training (breath-
count and 3-back tasks) and test (1-back task) data. Two two-
tailed paired sample t-tests were performed for metal fatigue
and stress results to confirm that the intermediate (1-back) task
predictions were between the upper and lower bounds. As p-
values were less than 0.025 (correcting for two comparisons), we
can conclude that the best biometric models for mental fatigue
(P2

f
) and stress (P4s ) predict an intermediate representation for the

1-back recall task. Figures 7B,E show the biometric predictions
for a representative subject on the first half of 3-back recall
task and the 1-back recall task for mental fatigue, and on the
1-back recall task for stress, respectively. And Figures 7C,F

show the biometric predictions on held-out data across subjects.
Model predictions on the 1-back recall task, averaged across
subjects, for mental fatigue and stress were not correlated (p =

0.2645). For mental fatigue, as expected, there is a gradual
increase through time in both 1-back and 3-back recall tasks.
In contrast, stress does not change much over time with the
level determined by the cognitive load of the task. Indeed, one-
way repeated measures ANOVA on model predictions for the
1-back recall task revealed no effect of time for stress (p =

0.9273), but a very significant effect of time for mental fatigue
(p < 1e− 7).
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FIGURE 7 | Regression analysis for mental fatigue and stress metrics. Leave-one-out cross-validated breath-count and 3-back results as well as 1-back hold out and

3-back hold out results are shown in (A–C) for mental fatigue and in (D–F) for stress, respectively. In (A,D), two one-tailed paired sample t-tests are performed for

mental fatigue and stress, respectively, to ensure 1-back task data is predicted to be intermediate between the bounds trained using the breath-count and 3-back

task data. The corresponding p-values for mental fatigue are p < 1e− 4 (breath-count 6= 1-back) and p < 0.005 (1-back 6= 3-back), and for stress are p < 1e− 3

(breath-count 6= 1-back) and p < 1e− 5 (1-back 6= 3-back). (B,E) show the biometric predictions for a representative subject on the first half of 3-back recall task and

the 1-back recall task for mental fatigue, and on the 1-back recall task for stress, respectively. The dashed red and blue lines in (B,E) correspond to the breath-count

and 3-back scores from the respective models for the representative subject. Averaging the results from all subjects, (C,F) show the biometric predictions on held-out

data across subjects. As in (B,E), the dashed red and blues lines correspond to the breath-count and 3-back scores averaged across subjects. In (C,F), the shaded

regions depict standard error of the mean across subjects. **p < 0.01, ***p < 0.001, ****p < 0.0001, *****p < 0.00001.

In order to evaluate the efficacy of the personalized biometric
models on a novel task, the best learned mental fatigue, stress,
and attention models were applied to the threat detection task
to correlate with performance fluctuations. The performance
was assessed using different moving average windows in terms
of number of trials (from 1 through 10). The corresponding
biometric values are sampled and averaged from the temporal
extents of the respective trials. As mentioned in the section
2.2, the significance of behavior-biometric correlations was
determined using a permutation test. The top row of Figure 8
shows the proportion of subjects exhibiting significant (p < 0.05)
correlations as a function of the moving average window for
each of the three biometrics and for either performance metric
(namely, accuracy and reaction time). It is shown there are a
greater number of significant correlations for longer windows,
and for reaction time compared to accuracy. Unlike accuracy,
reaction time is a continuous metric allowing for less noisy
estimates of performance with shorter windows. The second
row depicts the distribution of significant correlation coefficients

for each biometric (red: accuracy; blue: reaction time) against
the overall null distribution (gray) across subjects and between
the two performance metrics obtained from 3,000 iterations
for the permutation test. Correlation data and permutation
test assessment for each subject, biometric, window length,
performance metric are provided in Tables S3–S14. Analyzing
the significant correlation coefficients, it can be noted that they
exhibit both positive and negative values away from the null
distributions across subjects. This indicates that the biometrics
have different effects on performance across subjects. The bottom
row of Figure 8 illustrates the temporal dynamics of performance
(accuracy, reaction time), averaged over 10 trials, as well as for
each of the predicted biometrics for a representative subject
across trials over 24 h in one of the two experiment days.

4. DISCUSSION

The paper not only provides a unified pipeline for extracting a
comprehensive mental state evaluation from a parsimonious set
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FIGURE 8 | Threat detection task biometric evaluation. Evaluation of mental fatigue, stress, and attention for correlation with the temporal dynamics of performance

on the threat detection task across different subjects (and over 23 experimental days) is shown. (A–C) shows the proportion of subjects exhibiting significant

correlations for Pf , Ps, and Pa, and for each performance metric (accuracy, reaction time) as a function of the integration window. (D–F) shows the distribution of the

statistically significant accuracy (red) and response time (blue) correlation coefficients with respect to the overall null distributions (gray), all of which are normalized by

their maximal frequencies for easier comparisons. (G) shows a 10-trial averaged prediction of each of the biometrics as well as the observed accuracies and reaction

times across trials over 24 h for a representative subject.

of sensors (only EEG and ECG), but also addresses the current
limitations in assessing the efficacy of qualitative biometrics for
individual subjects by proposing and employing a multi-level
validation scheme for the biometric models by means of k-fold
cross validation for discrete classification and regression testing
for continuous prediction.

In this regard, we have demonstrated a new approach for
classifying mental state using two calibration tasks (namely,
breath-count and 3-back recall tasks) to construct biometric
models that can be used to score and validate an individual’s
state in subsequent tasks. For both mental fatigue and stress,
new feature sets have been identified that improve upon
the performance of existing approaches. In particular, we see
that using EEG spectral power features across the full range
of physiological bands allows for better representation of all
mental states with a committee of single-electrode evaluations.
This is in contrast to existing approaches that either consider
only a select few bands or have the many-to-one mapping
problem when a proportion between frequency bands is used.
For stress, the relatively worse-performing state-of-the-art P1s
model, which uses fine binning of the spectral bands, yields
above-chance cross-validation accuracy, but because of relatively

more number of input features likely requires more training
examples to effectively learn a representation for the stress
biometric. Nonetheless, our novel proposed P4s model utilizing
both EEG and HRV spectral power features in physiologically
relevant bands provided the best cross-validation performance.
Note that mental fatigue and stress models are built from
essentially the same calibration task data, though the latter half
of 3-back recall task is used to represent high mental fatigue
and the whole of the 3-back recall task is used to represent high
stress. This is based on the understanding that mental fatigue
gradually increases through a tiring and cognitively demanding
task (such as the 3-back), whereas stress becomes elevated on
a faster time scale with increased cognitive load; see Cohen
and Spacapan (1978) and Hancock (1989). Furthermore, HRV
features extracted from ECG are only used for modeling stress
and not mental fatigue. Future work should consider building
a single label-agnostic biometric model that can predict task
performance for individual users that envelopes the potentially
idiosyncratic behavioral effects of traditional biometrics for the
utility of closed-loop intervention applications. Also, the model
inputs should consider all channels together and extract features
that span multiple channels (e.g., coherence between channels
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in different frequency bands). And given that only a subset of
features and channels seem to be related to the predicted mental
states, further improvement in model performance can likely
be obtained by focusing on the most promising features and
channels; see Results section and Tables S15, S16.

Little can be said about the feature sets for the attention
model due to small number of informative labels acquired from
each subject. Across the nine subjects utilized for the attention
analysis, few recorded greater than three mind-wandering events
in the breath-count task, which resulted in the lack of sufficient
data to train the models. The maximum classification accuracy
achieved for any single subject was 65%. As such, the techniques
proposed by Lum (1977), Feldman et al. (2010), and Braboszcz
and Delorme (2011) require further improvement. The basic
design of the breath-count task is good, but subject compliance
might be improved with better instructions. For example, the
facilitator might conduct a guided practice session beforehand,
as few people have experience in concentrating on their breath.
Additionally, subjects should not close their eyes during the task
because they are more likely to fall asleep. And the importance of
recognizing and recording mind-wandering should be stressed to
the subjects. But it should be noted that these issues only affect the
attentionmetric, since the stress and fatigue metrics reference the
entire breath count data as the low level of each metric, and are
independent of mind-wandering events.

Further, we employed a set of validation techniques to
establish the efficacy of the biometrics in the absence of empirical
data. We validated the component mental state metrics described
here using three validation schemes: (1) Classical machine
learning approach of k-fold cross-validation established the
efficacy of discrete binary classification utilizing the biometric
scoring with task-level labeling. (2) As confirmation of the
validity of the continuous mental state scores, we evaluated the
predictive performance of the best mental fatigue and stress
models trained solely on the biometrics in a high state (3-back)
and low state (breath-count). By holding out the intermediate
state biometric data (1-back) during training, we could confirm
that the biometrics provide reasonable values in novel conditions.
Further, we demonstrated that when the models were run
on holdout data for the breath-count, 1-back, and 3-back
experiments, the regression scores fall into the appropriate ranges
(relatively low,medium, or high, respectively). This demonstrates
that the biometrics do provide a useful range and that the
features utilized for training the models generalize beyond the
discrete classification. (3) A permutation test against a novel
task established that the proposed metrics are informative on a
completely unrelated untrained behavioral task.

After training and validating the models on the calibration
tasks, we demonstrated that the same models could be used
to produce biometric assessments in a different real-world
task (namely, the threat detection task, Figure 8). Beyond
the obvious importance of the threat detection task to the
military, it is of course important as well to law enforcement
personnel (Sweet et al., 2017), baggage screeners (Basner
et al., 2008), security guards (Cohen et al., 2008), operators
of unmanned vehicles (Cummings et al., 2007), and others.

As mentioned above, biometrics are only useful and task-
relevant insofar as they are relatable to observable fluctuations
in performance. In this context, it is important to be able to
distinguish between task-related and non-task-related influences.
For example, an office worker who observes a car wreck from his
or her desk may be highly distracted yet show a high attention
biometric, even though attention paid to the car wreck impairs
performance on the relevant task of office work. However,
for a driver who sees the car accident occurring on the road
ahead, the resulting high level of attention is relevant. So the
influence of a physiologically-determined attention metric on
arbitrary task performance may be hard to discern. Examining
the subjects that did not exhibit significant correlations between
biometrics and performance on the novel threat detection task,
we observe remaining artifacts in their neural and cardiac
data that affect the decodability. Apart from differences in the
amount of individual engagement in the task, there could also
be large variations in neural and physiological responses between
subjects as found by other researchers (Hockey et al., 2009;
Ting et al., 2010). While the spread of the significant correlation
coefficients was broad across subjects with seeming negative and
positive modes, the presence of a statistically significant trend in
one direction indicates that population-level biometric models
could also be useful for an individual user lacking calibration
data.

In conclusion, mental state monitoring is a critical component
of current and future human-machine interfaces, including semi-
autonomous driving and flying, air traffic control, decision aids,
training systems, and will soon be integrated into ubiquitous
products like cell phones and laptops. Based on the results
presented in this paper, it is possible to integrate biometrics into
augmented human-machine interfaces in a judicious way that
can help to maximize task performance.
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