AUTHOR=Dideriksen Jakob L. , Negro Francesco , Falla Deborah , Kristensen Signe R. , Mrachacz-Kersting Natalie , Farina Dario TITLE=Coherence of the Surface EMG and Common Synaptic Input to Motor Neurons JOURNAL=Frontiers in Human Neuroscience VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2018.00207 DOI=10.3389/fnhum.2018.00207 ISSN=1662-5161 ABSTRACT=
Coherence between electromyographic (EMG) signals is often used to infer the common synaptic input to populations of motor neurons. This analysis, however, may be limited due to the filtering effect of the motor unit action potential waveforms. This study investigated the ability of surface EMG–EMG coherence to predict common synaptic input to motor neurons. Surface and intramuscular EMG were recorded from two locations of the tibialis anterior muscle during steady ankle dorsiflexions at 5 and 10% of the maximal force in 10 healthy individuals. The intramuscular EMG signals were decomposed to identify single motor unit spike trains. For each trial, the strength of the common input in different frequency bands was estimated from the coherence between two cumulative spike trains, generated from sets of single motor unit spike trains (reference measure). These coherence values were compared with those obtained from the coherence between the surface EMG signals (raw, rectified, and high-passed filtered at 250 Hz before rectification) using linear regression. Overall, the high-pass filtering of the EMG prior to rectification did not substantially change the results with respect to rectification only. For both signals, the correlation of EMG coherence with motor unit coherence was strong at 5% MVC (