AUTHOR=Hanlon Faith M. , Dodd Andrew B. , Ling Josef M. , Bustillo Juan R. , Abbott Christopher C. , Mayer Andrew R.
TITLE=From Behavioral Facilitation to Inhibition: The Neuronal Correlates of the Orienting and Reorienting of Auditory Attention
JOURNAL=Frontiers in Human Neuroscience
VOLUME=11
YEAR=2017
URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2017.00293
DOI=10.3389/fnhum.2017.00293
ISSN=1662-5161
ABSTRACT=
Successful adaptive behavior relies on the ability to automatically (bottom-up) orient attention to different locations in the environment. This results in a biphasic pattern in which reaction times (RT) are faster for stimuli that occur in the same spatial location (valid) for the first few hundred milliseconds, which is termed facilitation. This is followed by faster RT for stimuli that appear in novel locations (invalid) after longer delays, termed inhibition of return. The neuronal areas and networks involved in the transition between states of facilitation and inhibition remain poorly understood, especially for auditory stimuli. Functional magnetic resonance imaging (fMRI) data were therefore collected in a large sample of healthy volunteers (N = 52) at four separate auditory stimulus onset asynchronies (SOAs; 200, 400, 600, and 800 ms). Behavioral results indicated that facilitation (valid RT < invalid RT) occurred at the 200 ms SOA, with inhibition of return (valid RT > invalid RT) present at the three longer SOAs. fMRI results showed several brain areas varying their activation as a function of SOA, including bilateral superior temporal gyrus, anterior thalamus, cuneus, dorsal anterior cingulate gyrus, and right ventrolateral prefrontal cortex (VLPFC)/anterior insula. Right VLPFC was active during a behavioral state of facilitation, and its activation (invalid – valid trials) further correlated with behavioral reorienting at the 200 ms delay. These results suggest that right VLPFC plays a critical role when auditory attention must be quickly deployed or redeployed, demanding heightened cognitive and inhibitory control. In contrast to previous work, the ventral and dorsal frontoparietal attention networks were both active during valid and invalid trials across SOAs. These results suggest that the dorsal and ventral networks may not be as specialized during bottom-up auditory orienting as has been previously reported during visual orienting.