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We introduce a novel method for the measurement of information level in fMRI (functional

Magnetic Resonance Imaging) neural data sets, based on image subdivision in small

polygons equipped with different entropic content. We show how this method, called

maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis

technique, independent from the standard blood-oxygen-level dependent signals. MNC

facilitates the objective detection of hidden temporal patterns of entropy/information in

zones of fMRI images generally not taken into account by the subjective standpoint

of the observer. This approach befits the geometric character of fMRIs. The main

purpose of this study is to provide a computable framework for fMRI that not only

facilitates analyses, but also provides an easily decipherable visualization of structures.

This framework commands attention because it is easily implemented using conventional

software systems. In order to evaluate the potential applications of MNC, we looked for

the presence of a fourth dimension’s distinctive hallmarks in a temporal sequence of

2D images taken during spontaneous brain activity. Indeed, recent findings suggest that

several brain activities, such as mind-wandering and memory retrieval, might take place

in the functional space of a four dimensional hypersphere, which is a double donut-like

structure undetectable in the usual three dimensions. We found that the Rényi entropy

is higher in MNC areas than in the surrounding ones, and that these temporal patterns

closely resemble the trajectories predicted by the possible presence of a hypersphere in

the brain.
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INTRODUCTION

In this paper, we introduce a novel technique of fMRI images analysis, called computational
proximity method, i.e., nucleus clustering in Voronoï tessellations (Peters and Inan, 2016a). The
images are subdivided in contiguous (without interstice or overlap) polygons, called the “Voronoï
polygons.” They yield a densitymap, called “tessellation,” thatmakes it possible tomake an objective
measurement of the polygon areas’ spatial distribution and helps to define “random,” “regular,” and
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“clustered” distributions (Duyckaerts and Godefroy, 2000;
Edelsbrunner, 2014). Tessellations have been already used in
neuroscience, i.e., to investigate spatial relations and connectivity
between neural mosaics in the retina (Mozos et al., 2011) or
to evaluate histological cortical sections (Peters et al., 2016)
and pattern recognition (Hettiarachchi and Peters, 2017). In a
Voronoï tessellation of an fMRI image, of particular interest
is the presence of maximal nucleus clusters (MNC), i.e., zones
with the highest number of adjacent polygons (Peters et al.,
2016). MNC reveals regions of the brain, independent from
blood-oxygen-level dependent (BOLD) signals, characterized by
different gradient orientation and diverse functional dimensions
(Saye and Sethian, 2011).

To evaluate the power and potentialities of this novel
approach, we used the Voronoï tessellation technique combined
with Rényi entropy, in order to test the brain-hypersphere
hypothesis. Indeed, it has been recently hypothesized that brain
activity is shaped in the guise of a functional hypersphere, which
performs complicated 4D movements called “quaternionic”
rotations (Tozzi and Peters, 2016a). They give rise to the so-
called “Clifford torus,” a closed donut-like structure wheremental
functions might take place. The torus displays glued trajectories
similar to a video game with spaceships in combat: when a
spaceship flies off the right edge of the screen, it does not
disappear but rather comes back from the left (Weeks, 2002).
The human brain exhibits similar behavior, i.e., the unique ability
to connect far-flung events in a single, coherent picture (Atasoy
et al., 2016). During brain functions such asmemory retrieval and
mind-wandering, concepts flow from one state to another and
appear to be “glued” together. It has also been recently proposed
that the brain, when evaluated in the proper dimension (Kida
et al., 2016), is equipped with symmetries in one dimension
that disappear (said to be “hidden” or “broken”) in just one
dimension lower (Tozzi and Peters, 2016b). A symmetry break
occurs when the symmetry is present at one level of observation,
but “hidden” at another level: it suggests that a 4D hypersphere
could be equipped with symmetries, of great importance in order
to explain central nervous system (CNS) activities, undetectable
at the usual 3D cortical level.

Although we live in a 3D world with no immediate perception
that 4D space exists at all, the brain hypersphere rotations can
be identified through their “cross section” movements on a more
accessible 3D surface, as if you recognized some object from its
shadow projected on a screen. We may thus evaluate indirect
clues of the undetectable fourth dimension, such hypersphere
rotations’ hallmarks or signs on a familiar 3D surface. Here we
show that, in temporal fMRI series from spontaneous and evoked
brain activity, MNC discloses the typical patterns of quaternionic
rotations and hidden symmetries.

MATERIALS AND METHODS

Here we describe the novel approach for fMRI neuroimages
analysis. In brief, we show how fMRI images of the brain can be
divided in small polygons, called tessellation regions, that display
different levels of information. We elucidate how the differences
amongst the small polygons make it possible for to evaluate
otherwise hidden activities of the brain, and how such activities

are the expression of transitory functional increases in nervous
dimensions.

Samples
In order to validate the novel method via systematic analysis, we
favored studies focused on intrinsic (also called spontaneous, or
resting-state) instead of task-evoked activity, because the former
is associated with mental operations that could be attributed
to the activity of a torus (donut-shaped view of brain activity):
“screens” are glued together and the trajectories of thoughts
follow the internal toroid-shaped surface of a hypersphere. For
example, spontaneous brain activity has been associated with
day dreaming propensities, construction of coherent mental
scenes, autobiographical memories, experiences focused on the
future, dreaming state (for a description of the terminology, see
(Andrews-Hanna et al., 2014).

We evaluated two published data sets of spontaneous, intrinsic
activity, for a total of 64 images:

(a) Spontaneous activity structures of high dimensionality
(termed “lag threads”) can be found in the brain, consisting
of multiple highly reproducible temporal sequences (Mitra
et al., 2015). We retrospectively evaluated published video
frames showing “lag threads” computed from real BOLD
resting state rs-fMRI data in a group of 688 subjects, obtained
from the Harvard-MGH Brain Genomics Superstruct Project.
We assessed 4 sets of coronal sections (including a total
of 54 Images) from the published videos (Threads 1, 2,
3, and 4): http://www.pnas.org/content/suppl/2015/03/24/
1503960112.DCSupplemental

(b) We also analyzed 10 well-matched published pairs of
networks, from the 20-component analysis of the 29,671-
subject BrainMap activation database and (a completely
separate analysis of) a 36-subject resting FMRI dataset (Smith
et al., 2009).

Furthermore, we also evaluated 16 images from extrinsic (task-
related) activity of the brain, in order to compare them with
the intrinsic activity of the previous 64 images. We assesssed
16 fMRI images from visual tasks experiments, which illustrate
the activity of different brain areas elicited by basic vision and
object recognition (Mandelkow et al., 2016). In Mandelkow et al.
(2016), a voxel-wise ANOVA F-statistic map (threshold p < 1%,
uncorrected) was superimposed on the T1 -weighted anatomical
MRI of one representative subject (16 axial slices in radiological
convention).

Each of the 80 tessellated images (64 from intrinsic and 16
from extrinsic brain activity) leads to the MNC mesh clustering
described in the next paragraph. Such tessellations are also called
tilings or meshes. This retrospective work was conducted in
conformity with the ethical standards of the field and does not
involve human subjects or animals.

Tessellations of Brain Images
This section explains how fMRI brain images can be subdivided
into small polygons. In technical terms, we introduce
nucleus clustering in Voronoï tessellations of plane surfaces
(Edelsbrunner, 2006; Peters, 2016). A Voronoï tessellation is a
tiling of a surface with various shaped convex polygons. Let E be
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a plane surface such as the surface of an fMRI image and let S
be a set of generating points in E. Each such polygon is called a
Voronoï region V(s) of a

V(s) =
{

x ∈ E : ‖x− s‖ ≤
∥

∥x− q
∥

∥ for all q in S
}

.

In other words, a Voronoï region V(s) is the set of all points x on
the plane surface E that are nearer to the generating point s than
to any other generating point on the surface (Figures 1A,B). In
this investigation of fMRI images, each of the generating points
in a particular Voronoï tessellation has a different description.

Each description of generating point s is defined by the gradient
orientation angle of s, i.e., the angle of the tangent to the point s.

Nucleus Clustering in Tessellated Images
This section elucidates why the small polygons described above
are equipped with different, assessable characteristics. In very
simple words, some polygons are different from the others,
because they display higher number of sides. A nucleus cluster
in a Voronoï tiling is a collection of polygons that are adjacent
to (share an edge with) a central Voronoï region, called the
cluster nucleus. In this work, the focus is on maximal nucleus
clusters, which highlight singular regions of fMRI images. A pair

FIGURE 1 | The segmentation of fMRI images into small polygons, which makes it possible to compare the different morphological features displayed

by the different groups. (A) Surface tiling of a sample Voronoï region V (s) = . Each region in the tiling represents a generating point with particular fMRI image

features, such gradient orientation and brightness. It is also worth noting that no two regions have the same description. For this reason, every Voronoï region has a

slightly different shape. This tiling is derived from the fMRI image in (B), which displays Voronoï region V (s) on a fMRI image taken from Mitra (11). (C) Displays a sample

maximal nucleus cluster N for a particular generating point represented by the dot • in N. In this Voronoï tiling, the nucleus N has 10 adjacent polygons. Since N has

the highest number of adjacent polygons, it is maximal. This cluster N is of particular interest, since the generating point • in N has a gradient orientation that is different

from the gradient orientation of any other generating point in this particular tiling. In (D), the maximal nucleus cluster N is shown in situ in the tiling of an fMRI image.
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of Voronoï regions are considered strongly near, provided the
regions have an edge in common (Peters, 2016; Peters and Inan,
2016b). A maximal nucleus cluster N contains a nucleus polygon
with the highest number of strongly near (adjacent) Voronoï
regions (Figures 1C,D).

For technical readers, the gradient orientation angle θ of
a point (picture element) in an fMRI image is found in the
following way. Let img(x,y) be a 2D fMRI image. Then:

Gx =
∂img

∂x
,

Gy =
∂img

∂y
,

θ = tan−1

[

Gy

Gx

]

= tan−1





∂img
∂y

∂img
∂x



 = arctan





∂img
∂y

∂img
∂x



 .

In other words, the angle θ of the generating point of mesh
nucleus is the arc tangent of the ratio of the partial derivatives of
the image function at a particular point (x,y) in an fMRI image.

In sum, for each fMRI temporal frame, we produced
tessellated images with one or more maximal mesh regions (i.e., a
maximal region which contains the maximal number of adjacent
regions). Furthermore, we produced tessellated images showing

one or more MNC. Each maximal nucleus cluster N contains a
central Voronoï region—the nucleus—surrounded by adjacent
regions, i.e., Voronoï region polygons.

Also, for technical readers, we provide the steps for
constructing a Voronoï tiling (regions) of an fMRI image, so
that every generating point has gradient orientation (GO) angle
θ that is different from the GO angles of each of the other points
used in constructing the tiling on an fMRI image (see Figure 2).
This form of construction guarantees that each nucleus of a
mesh cluster is derived from a unique generating point. This is
accomplished by weeding out all image pixels with non-unique
GO angles. The end result is a collection of Voronoï regions that
highlight different structures in a tessellated fMRI image. Each
Voronoï region V(s) is described by feature vector that includes
the GO of the generating point s.

Since each s is unique (not repeated in the set of generating
points in Figure 2), each nucleus mesh cluster N has a unique
description. Taking this a step further, we identify maximal
nucleus clusters on a tessellated fMRI image. In effect, each
maximal N tells us something different about each region of
a tiled fMRI image, since we include, in the description of a
maximal nucleus, the number adjacent regions as well as the GO
of the nucleus generating point.

Informational Entropy in fMRI Tessellations
Here we show why the fMRI polygons with more sides, called
MNCs, display higher amounts of informational entropy, and
therefore a higher informational content. Summarizing the
previous paragraphs, the major new elements in the evaluation
of fMRI images are: nucleus clusters, maximal nucleus clusters,
strongly near maximal nucleus clusters, convexity structures
that occur whenever maximum nucleus clusters intersect (Peters
and Inan, 2016a). We showed in the above paragraphs that

in a Voronoï tessellation of an fMRI image, of particular
interest is the presence of maximal nucleus clusters (MNC),
i.e., clusters with the highest number of adjacent polygons. In
this section, we introduce a measure of the information that
MNCs in fMRI images yield. We demonstrate that MNC reveal
regions of the brain with higher levels of cortical information in
comparison with non-MNC cortical regions, uniformly yield less
information.

In a series of papers, Rényi (1961, 1966), introduced a measure
of information of a set random events. Let X be a set random
events such as the occurrence of polygonal areas in a Voronoï
tessellation and let β > 0,β 6= 1, p(x) the probability of the
occurrence of x in X. Then Rényi entropy Hβ (X) is defined by

X = {x1, · · · , xn} ,

Hβ (X) =
1

1− β
log2

n
∑

i=1

pβ (xi).

Because of the relationship between Rényi entropy of a set of
events and the information represented by events, Rényi entropy
and information are interchangeable in practical applications
(Rényi, 1982; Bromiley et al., 2010). In fact, it has been shown that
Rényi entropyHβ (X) is a monotonic function of the information
associated with X. This means that Rényi entropy can be used as
a measure of information for any order β > 0.

Let XMNC,XnonMNC be sets of MNC polygonal regions
and non-MNC polygonal regions in a random distribution of
tessellation polygons. Also, let p(x) = 1

x , p(y) = 1
y be the

probability of occurrence of x ∈ XMNC, y ∈ XnonMNC. Notice
that the nuclei in MNCs have the highest concentration of
adjacent polygons, compared to all non-MNC polygons. Based
on measurements of Rényi entropy for observed MNC vs. non-
MNC polygons, we have confirmed that Rényi entropy of nucleus
polygon clusters is consistently higher than the set of non-
MNC polygons (Figures 3, 4). This finding indicates that MNCs
yield higher information than any of the polygon areas outside
the MNCs.

In sum, Rényi entropy provides a measure of the information
in maximal nucleus clusters and the surrounding regions of fMRI
images. This means that the information from areas occupied
by MNCs vs. non-MNC areas can be measured and compared.
Furthermore, the maximal nucleus clusters are equipped with
higher entropy values (and corresponding higher information),
which contrasts with measure of information in the surrounding
non-MNC regions. Hence, MNCs make it possible to pinpoint
the sources of most information in fMRI images.

Borsuk-Ulam Theorem Comes into Play
Here we show how a simple theorem from topology is able to
shed new light on the fMRI polygons equipped with different
content of information. The Borsuk-Ulam Theorem (Borsuk,
1993; Dodson and Parker, 1997) states that:

Every continuous map f : Sn → Rn must identify a pair

of antipodal points (on Sn)

with matching descriptions.
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FIGURE 2 | The steps in the method used to construct the mesh on an fMRI image shown in Figure 1D.

That is, each pair of antipodal points on an n-sphere maps to
Euclidean space Rn (Beyer and Zardecki, 2004). Points on Sn are
antipodal, provided they are diametrically opposite (Marsaglia,
1972; Weisstein, 2015). For further details, see Tozzi and Peters
(2016a,b). The two antipodal points can be used not only
for the description of simple topological points, but also for
more complicated structures (Borsuk, 1969), such spatial or
temporal patterns functions, signals, movements, trajectories and
symmetries (Saye and Sethian, 2011; Peters, 2016). If we simply
evaluate CNS activity instead of “spatial signals,” BUT leads
naturally to the possibility of a region-based, not simply point-
based, brain geometry, with many applications (Tozzi and Peters,
2017).We are thus allowed to describe nervous systems functions

or shapes as antipodal points on a n-sphere (Figure 3). This
means that the activities under assessment (in this case, the 4D
torus movements) can be found in the feature space derived
from the descriptions (feature vectors) in a tessellated fMRI
image.

If we map the two antipodal points on a n–1 –sphere,
we obtain a single point. The signal shapes’ functions can
be compared (Weeks, 2002; Saye and Sethian, 2011): the two
antipodal points representing systems features are assessed at one
level of observation, while the single point is assessed at a lower
level (Figures 5A,B). Although BUT was originally described in
terms of a natural number n that expresses a structure embedded
in a spatial dimension, nevertheless the n value can stand for
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FIGURE 3 | Rényi entropy values of maximal nucleus clusters, compared with the surrounding areas of fMRI images. The x axis displays the values of the

Beta parameter for 1.1 ≤ β ≤ 2.5.

FIGURE 4 | Rényi entropy values vs. number polygon areas vs. 1.1 ≤ β ≤ 2.5 of maximal nucleus clusters in fMRI images. MNC Nuclei surrounded by

polygons with smaller areas have higher Rényi entropy, which tells us that smaller MNC areas yield more cortical information than MNCs with larger areas.

other types of numbers: it can be also cast as an integer, a rational

or an irrational number (Tozzi and Peters, 2016b). We might
regard functions or shapes as embedded in an n-sphere, where

n stands for a temporal dimension instead of a spatial dimension.

This makes it possible to use the n parameter as a versatile tool

for the description of fMRI brain features (Figure 5C).

In sum, BUT and its variants say that:

(a) There exist regional spatial fMRI patterns (shapes, functions,
vectors) equippedwithmatching description, e.g., they display
the same features.

(b) We are allowed to assess the spatial patterns described by the
MNC in terms of signals or temporal patterns (in our 4D case,
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FIGURE 5 | BUT and its variants applied to fMRI neuroimages. (A,B) display respectively one and two maximal nuclei clusters ((11), Thread 2). Antipodal points

with matching description (on a spatial circumference) can be detected in both the images. Note that the MNC do not necessarily correspond to the “traditional”

BOLD activations (shown in red) detectable in fMRI neuroimaging studies. (C) displays a temporal matching description between two maximal nuclei clusters at time

T0.1 and T1.3 seconds. Note that, in this Figure, the n-sphere number n refers to the time, and not to a spatial dimension. The curved arrow depicts the time

conventionally passing clockwise along the circumference of the n-sphere.

the movements and trajectories on the 3D brain), in order
to achieve a real-time description of the movements of the
hypersphere.

Quaternionic Movements
In this paragraph, we describe the peculiar brain features that
we expect our MNCs might help to elucidate and assess. In
a previous study (Tozzi and Peters, 2016a), the presence of
a hypersphere was detected invoking BUT: we viewed the
antipodal points as brain signals opposite each other on a
Clifford torus, i.e., we identified the simultaneous activation
of brain antipodal signals as a proof of a perceivable “passing
through” of the fourth dimension onto the nervous 3D
surface.

Here we evaluated instead, in resting-state fMRI series, a more
direct hallmark of the presence of a hypersphere: the trajectory
and the temporal evolution of the signals on the 2D brain surface,
in order to see whether they match the predicted trajectories
of the Clifford torus. To evaluate a hypersphere in terms of a
framework for brain activity, we first needed to identify potential
brain signal loci where quaternion rotations might take place: we
thus embedded the brain in the 3D space of a Clifford torus and
looked for its hallmarks or hints (Figure 6).

RESULTS

In all the 80 assessed images, either from intrinsic or extrinsic
activity of the brain, we found that clusters of higher activity,
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FIGURE 6 | The 3D Stereographic projection of the “toroidal parallels” of a hypersphere (from https://www.youtube.com/watch?v=QlcSlTmc0Ts; see

also http://www.matematita.it/materiale/index.php?lang=en&p=cat&sc=2,745). The orange arrows illustrate the trajectories followed by the 4D quaternionic

movements of a Clifford torus when projected onto the surface of the 3D space in which it is embedded. The circled numbers describe the trajectories, starting from

the conventional point 1 (the letters u,d,r,l denote respectively the upper, down, right, and left trajectories on the surface of the 3D parallelepiped). Note that the arrows

follow the external and medial surfaces of the 3D space in a way that is predictable. Just one of the possible directions of the quaternion movements is displayed: the

flow on a Clifford torus may indeed occur in every plane. In this Figure, the spheres on the right grow in diameter, forming a circle of increasing circumference on the

right surface of the 3D space. Conversely, on the opposite left side, the spheres shrink and give rise to a circle of decreasing circumference on the left surface of the

3D space.

which are equipped with higher Rényi entropy compared
with the surrounding zones, are scattered throughout different
nervous areas. Therefore, some micro-areas of a specific
anatomical zones contain more information than the adjacent
ones. In other words, the MNC approach detects regions in
the brain with the higher Rényi entropy, compared with the
surrounding ones. In 50% of the 80 analyzed images, more than
one cluster is detectable.

Concerning the 64 images from spontaneous, intrinsic, resting
state activity of the brain, the data analysis shows also that the
MNC activity displays in 79.68% (51 of 64) the typical features of
the Clifford torus’ movements. This supports the hypothesis that
a functional hypersphere occurs during resting state brain activity
(Figure 7). At the beginning, the trajectory of spontaneous
activity follows the median sections (see timeframes 0.1–0.3 in
Figure 7), then moves toward the posterior part of the brain,
where a reflexion of four trajectories along the lateral surfaces
occurs (0.4). This pattern closely matches the one predicted by
the model illustrating the quaternionic movements on a Clifford
torus. The temporal sequence also show the hypersphere moves
on the brain, and it moves relatively slowly. The hypersphere
does not display a regular or continuous movement, rather it
proceeds forward and then backward for a short time (time 0.5
and 0.6). From 0.7, the trajectory follows the patterns predicted
by Figure 6.

In the four available temporal series of the 54 images
of spontaneous activity from Mitra et al. (2015), the MNC

movements follow a specular, repetitive temporal pattern of
activation (Figures 7–9). For example, the pictures of the first and
the last time display MNC activity with matching description.
Note that, in the 64 rest-related images, the areas encompassing
MNCs do not match those equipped with BOLD activity in
71.87% (46/64) (Figure 9).

Concerning the 16 images from evoked, task-related activity
elicited by basic vision and object recognition (Mandelkow
et al., 2016), they showed a widely distributed MNC pattern
throughout the brain. Fifty percent (8/16) of the images displayed
the pattern predicted by the presence of a hypersphere, against
the above mentioned 79.68% of correspondence detected in
images of intrinsic activity.

The results can be summarized as follows: MNCs sequences
of brain region activations, apart from differences depending
on slight methodological distinctions among the assessed
papers, exhibit a stereotyped topographical firing pattern. The
movements of a hypersphere are clearly detectable, and the MNC
activity clearly displays antipodal points in a temporal sequence,
independent from fMRI activation. Such features are more
marked in images taken from intrinsic, rather than extrinsic,
task-related activity of the brain.

CONCLUSIONS

There are two state-of-the-art approaches for understanding the
communication among distributed brain systems using fMRI
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FIGURE 7 | (A) Depicts a real pattern of maximal nuclei clusters temporal activation (from Mitra et al., 2015, Thread 4). Note that the typical trajectories of a Clifford

torus are clearly displayed (see Figure 6 for comparison). If you look at the parallelepipedal 3D projections of the 4D quaternionic movements (Figure 6), the MNC

embedded in the 2D brain surface stand for the 4D movements INTERNAL to the parallelepiped, while the MNC lying outside of the 2D brain surface stand for the 4D

movements on the SURFACE of the parallelepiped in (B). The movements described by maximal nucleus clusters are temporally specular. A matching description

among temporal frames occurs, so that, for example, the frame 0.2 displays the same MNC features of 1.3. This means that the hypersphere moves in a stereotyped

sequence and according a repetitive temporal sequence, following the trajectories predicted by the quaternionic model.
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FIGURE 8 | Temporal antipodal points (from Thread 2 frames). The straight lines connecting opposite points on the temporal circumference depict “pure”

antipodal points, while the curved lines depict non-antipodal points with matching description.

data. The first approach termed as dynamic causal modeling
uses models of effective connectivity, while the second, called
Granger causal modeling, uses models of functional connectivity
(Friston, 2009, 2010). Our paper introduces a novel method,
based on computational proximity (CP). This novelty can be
expressed as follows: rather than being correlated with the
“classical” BOLD activity, the CP method shows how spatial
regions are correlated through their “proximity” (descriptive
closeness to each other). From the experiments reported here, we
are beginning to see different forms of brain function represented

by the MNCs. We have demonstrated that computational
proximity (i.e., strongly near nucleus mesh clusters) in 2D
fMRI images is able to reveal hidden temporal patterns of
Rényi entropy, enabling us to detect functional information
frommorphological data. The combination of tessellated images,
topological framework provided by BUT, and Rényi entropy
indicators of the information levels of image regions provide
a systematic basis for the study of fMRIs. The validation of
this approach to fMRI analysis stems from the mathematics of
BUT and Rényi entropy. Central to this form of neural analysis
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FIGURE 9 | (A) This figure (from Thread 1 timeframes) depicts another way to illustrate temporal antipodal points. The temporal sequences are displayed clockwise,

from T = 0.1 to T = 1.3. The Voronoï regions embedded in MNC are depicted as circles. The white circles refer to the presence of mesh clusters at high activity in the

initial times, the gray circles in the intermediate times and the darker circles in the later times. (B) MNC activity on 13 superimposed, consecutive brain images from

Thread 1 (from time T0 to T13). Note that the areas of nuclei activation are scarcely superimposed to the “classical” zones of BOLD activation (shown in red).

is its introduction of tessellated fMRI images. Tessellation is a
natural choice, since fMRI images by their nature both visual and
geometric. There is a natural transition from a tessellated fMRI
image to a consideration of those fMRI regions where the greatest
changes occur. The greatest-change-regions are in the form of
maximal nucleus clusters (MNCs) in each tessellated image.
Detected MNCs in tessellated fMRI images are then subjected
to analysis by BUT and the mechanics of Rényi entropy. The
end result is a complete, verifiable, rigorous analysis fMRI images
that are easily understood because of their visual character. The
accuracy of the tessellated fMRI image approach stems from the
computational geometry that leads to the detection of MNCs
(Peters, 2016; Peters and Inan, 2016a; Peters et al., 2016; Tozzi
and Peters, 2016b).

Here we have shown that a morphological analysis of simple
2D images taken from fMRI video frame sequences might give
insights into the functional structure of neural processing. In a
previous study, we evaluated the possible hints of a hypersphere
on simple fMRI scans during resting state brain activity (Tozzi
and Peters, 2016a). We showed how, due to the Borsuk-Ulam
theorem (BUT), the fMRI activation of brain antipodal points
could be a signature of 4D. The antipodal points predicted by
BUT could be evaluated not just on images taken from fMRI
studies, but also on datasets from other neuro-techniques, such
as, for example, EEG. In the current study, we used a novel
method, in order to confirm the data of the previous work with
a completely different and more sophisticated approach. Indeed,
looking at the sequences of maximal nucleus clusters and their
entropy, we found experimental patterns compatible with the
ones predicted by the hypersphere model. We detected on the
3D brain “shadows” of a 4D hypersphere rotating according

to quaternion movements: these “hints” make it possible for
us the possibility to visualize both the spatial arrangement
and the movements of the corresponding Clifford torus. In
other words, in particular during spontaneous brain activity,
the apparently scattered temporal changes in MNCs follow a
stereotyped trajectory which can be compared with the 4D
movements of a hypersphere. Our study uncovered evidence
of hypersphere during spontaneous activity, demonstrating that
brain activity lies on a 3-sphere embedded in 4D space. How
can be sure that the MNC reveals the presence of a brain
hypersphere? Three cues talk in favor of this hypothesis. First,
the MNC patterns, in particular during resting state fMRI data
sets, closely resemble the theoretical trajectories predicted by
Clifford torus movements. Second, temporal sequences of fMRI
images display matching description, in agreement with the
BUT dictates. Third, there is a difference in Rényi entropy
between MNC and the surrounding zones, thereby pointing
toward diverse levels of activity. The reproducibility of the
hypersphere movements suggests that this organizational feature
is essential to normal brain function. Because the Clifford torus
incessantly changes its intrinsic structure, due to the different
transformations of the quaternionic group, it is reasonable to
speculate that each mental state corresponds to a different
hypersphere’s topological space. The concept of a hypersphere
in the brain is also more noteworthy, if we frame it in
the general picture of nervous symmetries (Tozzi and Peters,
2016b).

A shift in conceptualizations is evident in a brain theory of
broken symmetries based on a hypersphere approach. It might
be speculated that symmetries are hidden in a 3D dimension
and restored in the higher dimension of the hypersphere, and
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vice versa. This means that brain functional and anatomical
organization may be better assessed if one considers how certain
hidden “symmetries,” essential to shaping brain gradients and
activity, may only appear under the lens of higher-dimensional
neural representations (Tozzi and Peters, 2016b), i.e., the
hypersphere. We anticipate our essay to be a starting point
for further evaluation, both in physiological and pathological
conditions, of a neural fourth spatial dimension where other
brain functions, such as perception, memory retrieval, might
take place. It is also possible that every brain function displays
a peculiar temporal pattern of such a novel entropic “activity.”
In sum, we operationalized a novel, fairly inexpensive, image-
analysis technique useful in detecting hidden temporal patterns
in the brain. We can assess the spatial patterns described
by MNCs in terms of entropy variations. While, by our
“subjective” and “private” viewpoint, we tend to watch an image
inferring the semantic parts in order to give it a meaning,
MNCs allow the detection of the “objective” entropy, which
do not necessarily correspond to the zones of the figure

that we view as more significant. This means that MNCs
provide a basis for quantifying high-yield information areas
in fMRI image features that are normally “hidden” from our
attention.
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