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Liking versus Complexity:
Decomposing the Inverted U-curve
Yaǧmur Güçlütürk*, Richard H. A. H. Jacobs and Rob van Lier

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

The relationship between liking and stimulus complexity is commonly reported to
follow an inverted U-curve. However, large individual differences among complexity
preferences of participants have frequently been observed since the earliest studies
on the topic. The common use of across-participant analysis methods that ignore
these large individual differences in aesthetic preferences gives an impression of high
agreement between individuals. In this study, we collected ratings of liking and perceived
complexity from 30 participants for a set of digitally generated grayscale images. In
addition, we calculated an objective measure of complexity for each image. Our results
reveal that the inverted U-curve relationship between liking and stimulus complexity
comes about as the combination of different individual liking functions. Specifically, after
automatically clustering the participants based on their liking ratings, we determined
that one group of participants in our sample had increasingly lower liking ratings for
increasingly more complex stimuli, while a second group of participants had increasingly
higher liking ratings for increasingly more complex stimuli. Based on our findings, we call
for a focus on the individual differences in aesthetic preferences, adoption of alternative
analysis methods that would account for these differences and a re-evaluation of
established rules of human aesthetic preferences.
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INTRODUCTION

The relationship between the complexity of a stimulus and its perceived beauty has been a topic
of great interest with influential studies since the earlier experimental investigations of aesthetics.
For instance, Berlyne showed that complexity is a dominant determinant of interestingness and
pleasingness of a stimulus (Berlyne, 1963; Berlyne et al., 1968). Berlyne (1971) suggested that the
relationship between complexity and pleasingness could be explained by an inverted U-curve,
where the stimuli with intermediate levels of complexity are the most preferable ones. This concept
of an optimal amount of stimulus complexity has been supported by numerous studies that found
an inverted U-curve when characterizing aesthetic preference as a function of complexity (Vitz,
1966; Berlyne, 1971; Saklofske, 1975; Farley and Weinstock, 1980; Imamoglu, 2000).

Although, Berlyne’s theory has been influential in the field of experimental aesthetics
(Silvia, 2005), Nadal et al. (2010) point out some discrepancies among the results of previous
studies investigating the relationship between liking and complexity. Nadal et al. (2010)
illustrate that studies utilizing a systematic manipulation of the degree of stimulus complexity
resulted not always in an inverted U-shaped characterization of aesthetic preference as a
function of complexity, but sometimes increasing, decreasing or U-shaped characterizations
of the relationship. Nadal et al. (2010) suggested that the results vary since different studies
manipulated different complexity dimensions, and different complexity dimensions have different
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relationships with aesthetic preference. Although, we agree that
the various complexity dimensions utilized in these studies
could have a major effect on the divergence of the results,
an additional factor contributing to this divergence could
be the individual differences in aesthetic preferences of the
participants. Large individual differences among complexity
preferences of participants have been frequently observed
even on a single study level (Vitz, 1966; Crosson and
Robertson-Tchabo, 1983; Aks and Sprott, 1996; Jacobsen and
Höfel, 2002). For instance, Jacobsen and Höfel (2002) found
that, while the group-level analysis indicated a preference
for higher levels of complexity, their sample of participants
also included individuals who displayed exactly the opposite
complexity preference patterns. These examples make it clear
that it is desirable to look more carefully at individual
differences. Individual differences in the experimental aesthetics
literature are of course not limited to preference differences
in complexity. More recently, a number of studies explored
the relationship between characteristics of individuals (e.g.,
age, gender, educational background, and personality traits)
and various types of aesthetic preferences such as preference
for paintings of various artistic styles (Chamorro-Premuzic
et al., 2009, 2010; Cleridou and Furnham, 2014), preference
for architecture and music of various artistic styles (Cleridou
and Furnham, 2014), preference for rectangles with various
side length ratios (McManus et al., 2010), strength of musical
aesthetic experiences (Nusbaum and Silvia, 2011) and harmony
preference (Palmer and Griscom, 2013). The results of these
studies were not entirely consistent with each other, such
that for example, while Chamorro-Premuzic et al. (2009,
2010), and Cleridou and Furnham (2014) found correlations
between various personality traits and aesthetic preferences,
McManus et al. (2010), and Palmer and Griscom (2013) did
not. Such inconsistencies between the results of aesthetic studies
further emphasize the need for systematically investigating these
preference differences.

Besides studying the preference differences on an individual
level, we suggest that identifying subgroups of participants with
similar preferences and then characterizing these subgroups can
result in much progress in experimental aesthetics. To embark
on such a task we suggest taking an exploratory approach and
using clustering analysis. Since their initial use in psychology by
Zubin (1938), clustering analysis methods have been embraced
as a means of connecting the study of individuals (idiographic
approach) and the study of cohorts of individuals (nomothetic
approach), for example in health psychology, a field in which gaps
between theory and individual cases are common (Clatworthy
et al., 2005). Similarly, the differences between the nomothetic
and idiographic approaches have been a concern in the study
of aesthetics (Berlyne, 1977; Jacobsen and Höfel, 2002; Jacobsen,
2004; Mallon et al., 2014). Utilization of a clustering approach
in experimental aesthetics would allow detecting subgroups of
individuals having different patterns of preferences in relation to
variable(s) of interest, e.g., complexity, symmetry, color, etc. After
detecting these subgroups, shared characteristics (e.g., personality
traits, mood, cultural background, art education, etc.) of the
individuals belonging to particular subgroups can be further

investigated to increase our understanding of the mechanisms
underlying the aesthetic preferences.

In this study, adopting an exploratory and assumption-
free approach rather than a hypothesis driven one, we aimed
to demonstrate the existence of differences in complexity
preferences of people, and argue against a universal rule
of inverted U-curve for explaining the complexity-liking
relationship. Concretely, using abstract computer-generated art
as stimuli, we first show that liking versus complexity ratings
averaged across all participants result in an inverted U-curve
as often found in the literature. Next, by clustering participants
based on their liking rating patterns, we demonstrate that this
inverted U-curve is a result of combining two different liking
versus complexity functions from two groups of participants.
Finally, we show response time differences between these two
groups of participants and discuss the implications of our
results.

MATERIALS AND METHODS

Participants
Thirty participants (average age± standard deviation: 21.3± 3.5,
19 female) participated in the experiment in exchange for
course credit or monetary compensation. They all had normal
or corrected to normal vision. The study was approved by
the Radboud University Ethics Committee Faculty of Social
Sciences, and all participants provided written informed consent
in accordance with the Declaration of Helsinki.

Stimuli
As stimuli, we generated statistical geometric patterns (SGPs)
using a space filling algorithm that randomly places non-
overlapping geometric shapes that monotonically decrease in size
(Shier, 2011; Shier and Bourke, 2013). The algorithm used in the
present study was originally developed for generating art using
computer programs by Shier (2011). For various examples of
his ‘algorithmic art,’ the reader is referred to Shier’s website at
http://john-art.com.

The stimulus set1 consisted of 144 grayscale SGP images
of basic geometric shapes; namely circle, hexagon, square, and
triangle (see Figure 1A for a subset of the stimulus set, and
supplementary materials for the complete set of stimuli used in
the experiment). Each SGP image was built up by filling a square
surface with same-shaped elements. The value of a parameter
called ‘c’ determined both the size of the first shape element
and the speed with which this size decreased (note that the
parameter ‘c’ is a variable used in the generation of the stimuli,
but not a measure of complexity per se. Further on we will
relate ‘c’ to perceptual complexity). The square was filled up with
element shapes until 55% of its surface area was filled, or until
5000 element shapes had been placed. The elements did not
overlap. The filled-up surface had a mid-level gray color, and each
element had a random gray level. We generated 36 stimuli per

1Stimulus material and data are available upon email request from the
corresponding author.
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FIGURE 1 | Example stimuli and experiment design. (A) Example stimuli with shape elements circle, hexagon, square, and triangle (B) Timeline of the liking and
complexity rating trials.

geometric shape with equally spaced c-values ranging from 0.2
to 1.7. Stimuli were saved as and presented in Portable Network
Graphics (PNGs) file format.

Procedure and Design
The experiment started with a short training session where
participants gave nine-point Likert scale liking ratings for images
presented on a computer screen. Participants were informed that
the lowest rating on the scale (one) meant ‘I do not like it at
all’ and the highest rating on the scale (nine) meant ‘I like it
a lot,’ whereas a rating of five was neutral, and similarly for
complexity ratings one meant ‘very simple’ and nine meant ‘very
complex.’ No further definitions of liking or complexity were
provided. Participants were encouraged to try and use the whole
scale for their ratings. Through the training session, participants
became familiar with the task and the type of stimulus to
expect during the rest of the experiment. The stimuli presented
during the training session were not used during the main rating
sessions. The rest of the experiment consisted of two rating

sessions: liking and complexity (Figure 1B). At the beginning
of each session, an instruction screen reminded participants
either to give ratings for how much they like the images or
how complex they find the images. Every trial started with a
fixation cross in the middle of a mid-level gray screen, which
remained there for 500 ms, followed by the stimulus presentation
for 1 s. This presentation duration is in line with the recent
work by Marin and Leder (2016), who showed that presentation
durations of 1 and 5 s result in very similar complexity and
pleasantness ratings. After the stimulus presentation a rating
screen came up, displaying a scale of numbers from one to
nine. The rating screen stayed on until the response by the
participant. Participant responses were entered through number
keys on a computer keyboard. Once the evaluation was made by
the participant, the selected number was highlighted for 600 ms
before the next trial started. Each rating session consisted of
144 trials in which participants gave ratings to all stimuli. Each
stimulus was presented only once per session and the stimulus
presentation order was randomized for each participant. In order
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to avoid possible differential effects of familiarity on the liking
results, liking sessions always took place before the complexity
sessions.

Analysis
Clustering of Participants Based on their Liking
Ratings
In this study, the k-means clustering algorithm (Lloyd, 1982) was
used to cluster the participants into several groups (ranging from
2 to 8) based on their liking ratings averaged across stimuli having
the same c-value. Cluster analysis groups individual elements in
a set in such a way that the similarity of elements assigned to
the same group is maximized, whereas the similarity between
different groups is minimized. Most often, similarity is defined
in terms of a distance measure between the elements. K-means
clustering algorithm is the simplest and most used clustering
algorithm (Rokach, 2010). In this algorithm each cluster is
represented by its center, which is calculated as the mean of all
data points in that cluster. Starting with an initial set of cluster
centers, the algorithm iteratively partitions data into k clusters by
assigning each data point to a cluster such that the within cluster
sum of squares is minimized. This is equivalent to assigning each
data point to the nearest cluster.

We implemented the k-means clustering algorithm to cluster
participants based on their liking ratings using the kmeans
function of MATLAB with squared Euclidean distance measure.
Cluster centers were initialized with the k-means++ algorithm
(Arthur and Vassilvitskii, 2007) as implemented in MATLAB.

In order to determine the optimum number of clusters, the
average silhouette values across all data were calculated for each
value of k, i.e., for k = 2, 3, 4, 5, 6, 7, and 8. The silhouette value
measures a data point’s within cluster similarity in comparison to
its between cluster similarity (Rousseeuw, 1987). A large average
silhouette value implies a better clustering of the data, i.e., it
implies that the distances between the participants in the same
cluster were minimized while the separation between different

clusters was maximized. Silhouette values were calculated with
squared Euclidean distance measure using the silhouette function
of MATLAB.

RESULTS

First, the liking ratings were normalized, i.e., the z-score of
each rating per participant was calculated. Z-scoring brings
the ratings of the individual participants to the same scale,
while preserving the relative distances between individual ratings
and the shape of the data (Glenberg and Andrzejewski, 2007;
Mitsa, 2010). This scaling in turn allows a comparison of
normalized ratings by eliminating possible confounds in the
data that stem from the rating style of the participants. An
example of confounds that z-scoring helps eliminate is the
differences between the participants in terms of their use of
the range of the rating scale (some confine their ratings to
the middle of the range whereas some use the entire range).
Another example is the response biases (a general tendency to
give high or low ratings) of the participants. Figure 2A shows
the normalized liking ratings for each circle, hexagon, square,
and triangle SGP stimuli averaged across all participants versus
the c-values of the stimuli. The liking ratings and the c-values
were significantly correlated for all shapes (Pearson product-
moment correlation coefficient rcircle = 0.481, pcircle = 0.003;
rhexagon = 0.839, phexagon < 0.001; rsquare = 0.481, psquare = 0.003;
rtriangle = 0.424, ptriangle = 0.010). Similarly, Figure 2B shows
the normalized complexity ratings for each circle, hexagon,
square, and triangle SGP stimuli averaged across all participants
versus the c-values of the stimuli. Overall, as the c-value
increased, the complexity ratings decreased (Pearson product-
moment correlation coefficient rcircle = −0.810, pcircle < 0.001;
rhexagon = −0.900, phexagon < 0.001; rsquare = −0.815,
psquare < 0.001; rtriangle = −0.850, ptriangle < 0.001), however, a
non-linear relationship between the complexity ratings and the
c-values was visible for all shapes. In the further analysis, the main

FIGURE 2 | Liking and complexity ratings for each shape type versus the c-values. (A) Normalized liking ratings for circle, hexagon, square, and triangle SGP
stimuli averaged across participants (colored dots), and across participants and shapes (black dots) versus the c-values. (B) Normalized complexity ratings for circle,
hexagon, square, and triangle SGP stimuli averaged across participants (colored dots), and across participants and shapes (black dots) versus the c-values. Error
bars show standard error of mean.
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focus will be on measures of complexity (subjective and objective)
and liking, but not the c-values.

Along with a subjective measure of complexity, i.e., the
complexity ratings, Kolmogorov complexity approximated by the
compressed file sizes of the images was used as an objective
measure of stimulus complexity (Donderi and McFadden, 2005;
Donderi, 2006). Kolmogorov complexity is defined as the length
of the shortest program that can describe an output (Solomonoff,
1986). Kolmogorov complexity approximated by the compressed
file size has been previously utilized in several other studies
(Donderi and McFadden, 2005; Forsythe et al., 2008, 2011; Marin
and Leder, 2013). In this study, PNG compression, which is
a data format supporting lossless data compression was used.
Furthermore, for comparison purposes correlational results of
zip compression, which is often used in literature (Forsythe
et al., 2011; Landwehr et al., 2011; Marin and Leder, 2013), are
also presented (Table 1). The PNG compression and the zip
compression performed very similarly, and were almost perfectly
correlated (Pearson product-moment correlation coefficient
r = 0.999).

For each participant the normalized liking ratings of circle,
hexagon, square, and triangle SGP stimuli having the same
c-value were averaged, resulting in 36 liking ratings per
participant. The same procedure was repeated for the complexity
ratings, resulting in 36 complexity ratings per participant.
Figure 3 shows the normalized liking versus complexity ratings
averaged across participants. The graph of liking ratings versus
the complexity ratings revealed an inverted U-curve. Figure 4
shows the normalized liking and complexity ratings for each
stimulus averaged across all shape types and participants versus
the PNG compressed file sizes of the stimuli averaged across
all shape types. Similar to the relationship between liking and
subjective complexity ratings presented in Figure 3, liking ratings
and the PNG compressed file sizes displayed an inverted U-curve
relationship (Figure 4A). Furthermore, the average liking ratings
and the file sizes were significantly negatively correlated (see
Figure 4A and Table 1). On the other hand, as expected,
complexity ratings increased with increased file size (Figure 4B).
The two measures of complexity (i.e., the subjective ratings and
the objective file sizes) were significantly and highly correlated
(Table 1).

Next, a clustering approach was adopted in order to investigate
the role of individual differences in forming this relationship by
identifying subgroups of individuals with different complexity
preferences. As described earlier, normalized liking ratings of
circle, hexagon, square, and triangle SGP stimuli having the

FIGURE 3 | Liking versus complexity ratings of all participants. All
ratings are normalized averages across all shapes and participants. Dots
represent the stimuli, and the line represents a quadratic function fit. Error bars
show standard error of mean. An inverted U-curve relationship between liking
and complexity is visible.

same c-value were averaged, resulting in 36 liking ratings
per participant. These liking ratings formed the input to the
clustering algorithm. That is, the input to the clustering algorithm
was a 30 by 36 matrix, containing the 36 normalized liking ratings
for each one of the 30 participants. Using k-means clustering
algorithm, several groupings of participants (k= 2, 3, 4, 5, 6, 7, 8)
were identified. Specifically, participants were clustered into 2, 3,
4, 5, 6, 7, and 8 different subgroups based on their liking ratings
averaged across stimuli having the same c-value. Afterward, to
determine the optimal number of clusters among the formed
subgroups, average silhouette values of the identified clusters
were calculated.

Comparison of average silhouette values showed that the
clusters with k = 2 had a significantly larger average silhouette
value (Figure 5A) than all other values of k (Student’s
t-test, p < 0.05 for all comparisons, Bonferroni corrected for
multiple comparisons), meaning that for this dataset, the most
appropriate grouping of the participants could be obtained
when they were clustered into just two groups (Rousseeuw,

TABLE 1 | Bivariate correlations between various complexity measures, liking ratings, and the c-values.

Measure Normalized complexity ratings File size (PNG) File size (Zip) C-value Normalized liking ratings

Normalized complexity ratings 1 0.946∗∗ 0.940∗∗ −0.855∗∗ −0.461∗

File size (PNG) 0.946∗∗ 1 0.999∗∗ −0.863∗∗ −0.615∗∗

File size (Zip) 0.940∗∗ 0.999∗∗ 1 −0.865∗∗ −0.628∗∗

C-value −0.855∗∗ −0.863∗∗ −0.865∗∗ 1 0.705∗∗

Normalized liking ratings −0.461∗ −0.615∗∗ −0.628∗∗ 0.705∗∗ 1

Reported values are r-values, i.e., Pearson product-moment correlation coefficients.∗ indicates p-values less than 0.01, and ∗∗ indicates p-values less than 0.001.
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FIGURE 4 | Liking and complexity ratings versus the PNG compressed file sizes. (A) Normalized average liking ratings for circle, hexagon, square, and
triangle SGP stimuli averaged across shapes and participants, versus the average PNG compressed file sizes of the stimuli. (B) Normalized average complexity
ratings for circle, hexagon, square, and triangle SGP stimuli averaged across shapes and participants, versus the average PNG compressed file sizes of the stimuli.
Error bars show standard error of mean.

FIGURE 5 | Evaluation of grouping of participants into different numbers of clusters. (A) Average silhouette values of clusters for k = 2, 3, 4, 5, 6, 7, and 8.
Error bars show standard error of mean. k = 2, where the participants were divided into two clusters, had a significantly higher average silhouette value than the
remaining numbers of clusters. (B) Silhouette value distribution of participants as they were assigned to Cluster 1 and Cluster 2, where k = 2.

1987). Therefore, further analyses were performed only on the
clusters obtained with k = 2. Figure 5B shows the silhouette
values of participants as they were assigned to Cluster 1 and
Cluster 2. Cluster 1 consisted of 20 participants (average age
25.1 ± 3.3, 7 males and 13 females), and Cluster 2 consisted
of 10 participants (average age 22.7 ± 3.5, four males and six
females).

Plotting the average liking versus complexity ratings of these
two clusters separately revealed a negative relationship between
liking and complexity ratings for Cluster 1 (Pearson product-
moment correlation coefficient r = −0.789, p < 0.001), and
a positive relationship between liking and complexity ratings
for Cluster 2 (Pearson product-moment correlation coefficient
r = 0.874, p < 0.001). See Figure 6A for the results. In
other words, participants in Cluster 1 liked the simple stimulus

images more than the complex ones and participants in Cluster
2 liked the complex stimulus images more than the simple
ones.

The same patterns were found for liking versus the PNG
compressed file sizes (Figure 6B). Concretely, average liking
ratings of participants in Cluster 1 and PNG compressed
file sizes of the stimuli were highly negatively correlated
(Pearson product-moment correlation coefficient r = −0.849,
p < 0.001), whereas average liking ratings of participants
in Cluster 2 and PNG compressed file sizes of the stimuli
were highly positively correlated (Pearson product-moment
correlation coefficient r = 0.842, p < 0.001). On the other
hand, average complexity ratings of the participants in the two
clusters were very similar (Figure 6C). The average complexity
rating vs. the PNG compressed file size regression slopes
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FIGURE 6 | Ratings of the participants in the two clusters. (A) Normalized average liking versus complexity ratings of participants in Clusters 1 and 2. While
participants in Cluster 1 liked the stimuli more as the stimulus complexity decreased, participants in Cluster 2 liked the more complex stimuli more. The dots
represent the stimuli and the lines represent the regression lines. (B) Normalized average liking ratings of participants in Clusters 1 and 2 versus Kolmogorov
complexity approximated by PNG compressed file sizes of the stimuli. The opposite patterns of the two clusters observed for liking versus subjective complexity in
panel A are also observed here for liking versus Kolmogorov complexity. (C) Normalized average complexity ratings of the participants in Cluster 1 and Cluster 2
versus Kolmogorov complexity approximated by PNG compressed file sizes of the stimuli. There are no discernible differences between the average complexity
ratings of the participants in different clusters.

of the two clusters did not differ significantly [ANCOVA,
F(1,68) = 3.07, p = 0.085], suggesting that the perceived
complexities of the stimuli did not differ between the two
clusters.

Additionally, in order to statistically compare whether a
single inverted U-curve pattern (i.e., a quadratic function) or
a combination of two different preference patterns belonging
to the two clusters of participants (i.e., combination of two
linear functions) better explain the liking-complexity relationship
in our data, we performed regression analyses. Specifically we
compared the following two generalized linear mixed models:

Liking = β0 + β1Complexity+ β2Complexity2

+ b0Participant + ε

Liking = β0 + β1Complexity+ β2Cluster + β3Complexity

× Cluster + b0Participant + ε

Where β i denotes the fixed-effect coefficients, b0 denotes
the random-effect coefficients and ε denotes the residuals.
Random-effects terms were included in both models in order
to account for the repeated measures structure of the data.
Models were implemented using MATLAB. Since liking ratings
were observed to be normally distributed, normally distributed
responses and identity link function options were selected during
the implementation. Table 2 shows the estimated coefficients of
the two models.

Next, the two models were compared using a simulated
likelihood ratio test with 1000 simulations. Table 3 shows the
results of simulated likelihood ratio test. The cluster-based model
had lower Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values than the quadratic model,
indicating that the cluster-based model is the better fitting

model (Hox, 2002). Note that the p-value for the simulated
likelihood ratio test was less than 0.001, further demonstrating
that the cluster based model significantly better explains the
data.

As a final analysis, we looked at the response times of the
participants. Participants in Cluster 1, who had a preference
toward simpler patterns, had significantly shorter average
response times (M = 1.639 s, SD = 0.108 s) for liking ratings
than participants in Cluster 2 (M = 1.803 s, SD = 0.197), who
preferred more complex patterns (Student’s t-test, p< 0.001).The
average response times for complexity ratings of participants in
Cluster 1 (M = 1.477 s, SD= 0.103 s) and Cluster 2 (M = 1.494 s,
SD= 0.210) did not differ (Student’s t-test, p= 0.396).

DISCUSSION

In this study, abstract computer-generated art of varying levels
of complexity was evaluated in terms of liking and complexity.
Consistent with the literature, we found an inverted U-curve
relationship between liking and complexity of these images.
Next, utilizing a data-driven clustering approach, we revealed
subgroups of people with different preferences for image
complexity. Note that we neither had an a priori assumption
regarding the number of clusters nor the shape of the liking-
complexity relationships in the different clusters. Following the
clustering approach, two subgroups having opposite preferences
for image complexity (one which liked simple patterns more
than the complex ones, and another which liked complex
patterns more than the simple ones) were identified. The two
groups differed in terms of how much they liked the complex
or simple patterns, but not how they perceived complexity.
Furthermore, a comparison of a quadratic model (representing
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TABLE 2 | Estimated fixed-effect coefficients of the quadratic and cluster-based models.

Model Coefficient name Estimate SE DF t-statistic p-value Lower CI (95%) Upper CI (95%)

Fixed-effect coefficients of
the quadratic model

Intercept 0.067 0.026 1077 2.530 0.012 0.015 0.119

Complexity −0.045 0.024 1077 −1.912 0.056 −0.092 0.001

Complexity2
−0.117 0.034 1077 −3.425 <0.001 −0.185 −0.050

Fixed-effect coefficients of
the cluster-based model

Intercept ∼ 0 0.048 1076 ∼ 0 1 −0.095 0.095

Complexity −1.004 0.064 1076 −15.662 <0.001 −1.130 −0.878

Cluster ∼ 0 0.034 1076 ∼ 0 1 −0.067 0.067

Complexity ∗ Cluster 0.719 0.045 1076 15.978 <0.001 0.631 0.807

The meanings of the abbreviations in the column headers are as follows: SE, standard error; DF, degrees of freedom; CI, confidence interval.

TABLE 3 | Simulated likelihood ratio test results.

Model DF AIC BIC Log likelihood LRT-statistic p-value (95% CIs)

Quadratic model 5 1923.5 1948.5 −956.77 217.49 <0.001 (0.00002–0.006)

Cluster-based model 6 1708 1737.9 −848.02

The meanings of the abbreviations in the column headers are as follows: DF, degrees of freedom (number of free parameters in the model); AIC, Akaike information
criterion for the model; BIC, Bayesian information criterion for the model; Log likelihood, maximized log likelihood for the model; LRT-statistic, likelihood ratio test statistic;
CI, confidence interval.

the inverted U-curve relationship) and a cluster-based model
(representing the combination of two linear relationships)
revealed that the cluster-based model was a better fit to the
data at hand. Interestingly, the group of participants who liked
the simpler patterns more were faster in their liking evaluations
compared to the group that preferred complex patterns. In
contrast, there were no differences between the groups in
terms of the time they took to evaluate the complexity of the
images.

Possible Interpretations of the Results
An important point to keep in mind when attempting to
interpret our results is the exploratory – rather than hypothesis
driven – approach that we took in this study. One implication
of this approach is that we can describe the differences between
the two identified clusters in terms of the measurements
at hand, but cannot make claims about causal relationships
regarding the factors influencing these results. For example,
by clustering participants based on their liking ratings, a
non-random assignment of participants to one of the two
groups was introduced. This in turn might have increased the
possibility of groups having different distributions in terms
of several unidentified factors such as intelligence, personality,
art experience, motivation, etc. Because one or multiple of
these unidentified factors might have had an influence on the
response time results, the strength of conclusions that can be
derived from the results about the response time differences
becomes limited. In other words, our interpretations of the
results should be viewed in light of the fact that all the
analyses and statements trying to characterize the clusters are
post hoc.

We showed that the group of participants who preferred
simpler patterns were faster in their liking evaluations compared

to the group that preferred complex patterns. The liking rating
response time differences that we identified between the groups
were not present for the complexity rating responses. This leads
us to think that the unidentified factors contributing to these
response time differences should be more specifically related to
aesthetic evaluation of images (e.g., art experience/education, art
interest, motivation, personality), rather than a more general
factor which would also effect the complexity evaluation response
times (e.g., intelligence). Furthermore, on average, the complexity
of the images were perceived similarly in the two clusters as
shown in Figure 6C. This suggests that the preference differences
of the two clusters cannot be explained by the differences in their
perception of complexity.

A partial explanation to our results could be provided
by the fluency theory (Reber et al., 2004). According to
the fluency theory, experience of fluent processing results
in positive affect toward stimuli. Based on this theory, one
would expect decreased liking toward complex (and hence
less fluently processed) stimuli compared to simpler (and
hence more fluently processed) stimuli. The majority of the
participants in our experiment (20 out of 30) were assigned
to Cluster 1 which showed a monotonic decrease in liking for
stimuli with increased complexity. Their behavior is in line
with the fluency theory. However, the average tendency of
the remaining ten participants in Cluster 2 was a monotonic
increase in liking for stimuli with increased complexity,
which is difficult to account for with the fluency theory
of aesthetic liking. Future studies can investigate differential
effects of fluency on participants who have different complexity
preferences in order to evaluate the merit of such an
interpretation.

A recent framework by Graf and Landwehr (2015),
called the Pleasure-Interest Model of Aaesthetic Liking
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(PIA Model), claims to provide a better explanation for
contradictory preference patterns for aesthetic stimuli that
are easy or difficult to process. According to Graf and
Landwehr (2015), an aesthetic object may be processed
in two stages. First an automatic processing takes place,
and then if the viewer is motivated enough to process the
stimuli further, a controlled processing follows. Similar to the
fluency theory, the PIA Model predicts that merely automatic
processing of stimuli would result in a monotonic decrease
of liking as the stimulus complexity increases. The model
further predicts that controlled processing could result in
an inverted U-curve if the complexity levels of stimuli are
high enough to cause dislike and confusion. Our results
do not conflict with this model, however to explain the
results in terms of the PIA model, assumptions need to be
made. These assumption are related to the motivation levels
of the participants, perceived complexity of the stimulus
material and factors affecting the response times. Testing
these assumptions would go beyond the scope of this
paper. Additional studies would be required to test the PIA
model.

Relation to Past and Future Research
We believe that it is important to try and characterize the groups
of people with different complexity preferences as found in the
present study. Previous studies give some valuable insight in
this direction. For example, preference for complexity has long
been associated with creativity and artistic tendencies (Barron
and Welsh, 1952; Mackinnon, 1962; Barron, 1963; McWhinnie,
1968). In fact, the Barron-Welsh art scale (Barron and Welsh,
1952) which measures an individual’s preference for complexity
has been used to assess creativity in several previous studies
(for a review, see Gough et al., 1996). Along with creativity
and artistic tendencies, a person’s age has been shown to affect
their preference for complexity. Particularly, older individuals
have been shown to prefer simpler visual stimuli (Munsinger
et al., 1964; Alpaugh and Birren, 1977; Crosson and Robertson-
Tchabo, 1983). In the present study, although the average age
of Cluster 1 (M = 25.1, SD = 3.3) was higher than that of
Cluster 2 (M = 22.7, SD = 3.5), this difference was very small
and not significant (Student’s t-test, p = 0.082). However, since
our sample of participants consisted of a similarly aged group of
young adults between the ages of 20 and 32, such a result was
expected.

More recently, the personality traits ‘openness to experience’
and ‘conscientiousness’ (of the Big Five personality inventory
by Goldberg, 1999) along with ‘frequency of visits to
galleries/museums’ have been shown to correlate with preference
for more complex art (Chamorro-Premuzic et al., 2010;
Cleridou and Furnham, 2014). However, it is important to
note that these correlations were only able to account for a
limited amount of the variability in the data. Nevertheless, it
is important for future studies to investigate the distribution
of personality traits as well as artistic and creative tendencies
within the clusters of participants who have different complexity
preferences.

Here, we focused on complexity because it is a relatively
general and overarching concept that has been shown to
relate to the appreciation of a stimulus on several dimensions
such as the number of elements, irregularity of shape and
arrangement, heterogeneity of elements and asymmetry (Berlyne,
1971). Additionally, in the past decades various measures of
pattern complexity have been suggested, developed and shown to
be relevant for perception, e.g., Birkhoff’s complexity elements,
C (Birkhoff, 1933; Eysenck, 1941), the amount of structural
information (Leeuwenberg, 1969, 1971; Boselie, 1984; van der
Helm et al., 1992), amount of algorithmic information, i.e.,
Kolmogorov complexity (Donderi and McFadden, 2005; Marin
and Leder, 2013), and the amount of self-similarity, i.e., fractal
dimension (Mandelbrot, 1977, 1981; Cutting and Garvin, 1987;
Spehar et al., 2003). Therefore, we found complexity to be a
good starting point for studying the individual differences in
preferences. It would however be interesting to further investigate
how the individual differences in complexity preferences relate
to the previously identified individual differences in preferences
for other visual perceptual attributes, such as harmony (Palmer
and Griscom, 2013) or symmetry (Jacobsen and Höfel,
2002).

Recently, Spehar et al. (2015) have shown that participants’
visual sensitivity to various visual properties (e.g., amplitude
spectrum characteristics of synthetic images and spatial
frequency of sine-wave gratings) highly correlate with their
visual preferences. In a future study, it would be very interesting
to investigate the relationship between visual sensitivity of
individuals and their preference for complexity. Furthermore,
another interesting question to investigate would be whether or
not a clustering of participants as found in our study would be
observed for more complex artistic stimuli with interpretable
contents.

CONCLUSION

The results of our study have both theoretical and practical
implications. Here, we showed that one of the most well-
known rules of aesthetic preference, i.e., the inverted U-curve of
preference for complexity, can in fact be an artifact that arises
from selecting a non-ideal analysis method. By employing an
averaging approach, most experimental aesthetics studies risk
reaching conclusions about a non-existent average observer.
Besides the need for utilization of new analysis methods that
take into account the differences between individuals, theoretical
implications of this finding include a need for re-evaluation of
established rules of human aesthetic preferences and revision
of existing theories, in a way that would explain e.g., the
monotonically increasing and monotonically decreasing liking
as a function of complexity, rather than a global mid-level
complexity preference. Similarly, in the practical sense, our
results are relevant for designers and artists. Rather than opting
for a mid-level complexity in their designs to please the
average observer, they can utilize more targeted design strategies
for appealing to different groups of individuals. However,
characteristics of these groups remain to be identified.
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