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Analysis of event-related potential (ERP) data includes several steps to ensure that
ERPs meet an appropriate level of signal quality. One such step, subject exclusion,
rejects subject data if ERP waveforms fail to meet an appropriate level of signal
quality. Subject exclusion is an important quality control step in the ERP analysis
pipeline as it ensures that statistical inference is based only upon those subjects
exhibiting clear evoked brain responses. This critical quality control step is most often
performed simply through visual inspection of subject-level ERPs by investigators. Such
an approach is qualitative, subjective, and susceptible to investigator bias, as there are
no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe
a standardized and objective method for quantifying waveform quality in individual
subjects and establishing criteria for subject exclusion. The approach uses bootstrap
resampling of ERP waveforms (from a pool of all available trials) to compute a signal-
to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower
bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality
as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion.
SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates
the need for subjective evaluation of waveform quality by the investigator. We detail the
SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo
simulations, and demonstrate its utility in practice when applied to ERP datasets.

Keywords: event-related potentials (ERP), signal-to-noise ratio (SNR), bootstrap confidence intervals, subject
exclusion criteria

INTRODUCTION

Analysis of data in event-related potentials (ERP) studies includes two major quality control
steps that exclude data from further analysis: artifact rejection and subject exclusion. Artifact
rejection occurs at the level of individual trials, removing segments of electroencephalogram
(EEG) containing non-brain signals (artifacts) from inclusion in waveform averages. This
step ensures that mean ERP waveforms are not grossly contaminated by non-brain signals
such as muscle activity, eye movements, impedance fluctuations, or amplifier blocking.
There are numerous methods in the ERP literature to quantify, detect, and reject/correct
non-brain artifacts which use methods of minimum/maximum voltage criteria, spectral
decomposition (Goncharova et al., 2003; Delorme et al., 2007), and independent component
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analysis (ICA; Jung et al., 2000; Joyce et al., 2004; Delorme
et al., 2007). Few analytic options exist for the second layer
of data removal for ERP quality control, subject exclusion.
The step of subject exclusion discards individual subject ERPs
from grand mean waveforms and group-level statistics if these
waveforms fail to meet a sufficient level of evoked signal quality.
That is, subject exclusion is used to remove subjects whose
waveforms fail to clearly emerge over baseline noise levels. A
wide variety of factors can impact the quality of waveforms
at the subject level: low trial counts, excessive artifact, shifts
in electrode impedance, failure to fixate attention/vigilance,
fatigue/exhaustion, task disengagement. Because many of these
factors (and the interactions between them) are not easily
detected, documented, or quantified, subject exclusion on the
basis of waveform quality is generally a necessary and critical
step of quality control in ERP experiments as it ensures that
each subject included in an analysis exhibits a stable evoked
brain response. However, unlike the step of artifact rejection,
the ERP literature lacks quantitative approaches to subject
exclusion and current methods are qualitative, subjective, and
lack standardization.

To elucidate the issues of subject exclusion in the ERP
literature, we conducted a review of the Method sections
of ERP papers published over 3 years (2012–2014) in two
neuroscience journals that publish a high proportion of ERP
papers (Neuroimage and Psychophysiology). Out of a total of
331 ERP papers published from 2012 through 2014, 45.9%
(152 of 331) reported excluding subjects on the basis of
electrophysiological signals. Of those papers excluding subjects,
69.1% (105 of 152) did not report any quantifiable criteria and
provided only qualitative justifications for excluding subjects
on the basis of their ERP signal quality (e.g., descriptors such
as ‘‘low signal-to-noise’’). Thus, the most common approach
for evaluating the quality of individual subject data appears to
be the visual inspection of ERP waveforms by investigators.
Such an approach is problematic, as there are no established
criteria of what constitutes a ‘‘good’’ waveform nor do individual
subject waveforms adhere to the canonical patterns that emerge
in grand average waveforms. Without clear and objective
standards, decision criteria for subject exclusion are likely to vary
considerably across laboratories, investigators, and experiments.
Furthermore, visual inspection of ERPs is most commonly
conducted on mean waveforms of individual conditions or
the grand mean of all conditions. The former may introduce
biases in selecting subjects for exclusion whereas the latter
misrepresents the signal-to-noise ratio (SNR) of individual
experimental conditions (formed from far fewer trials).

A second issue was also apparent from our review of
ERP Method sections. Though a number of papers did report
numeric criteria to justify subject exclusion (30.9%; 47 of 152),
these criteria were always based upon an arbitrary number or
percentage of trials available for averaging following artifact
rejection procedures. Though the proportion of trials used
in ERP signal averaging is certainly related to the resultant
waveform’s quality, this relationship is poorly defined at the
subject level. That is, there is no single value that can
accommodate the broad range of individual differences in ERP

signal-to-noise. For example, 50% of artifact-free trials may
produce a strong ERP waveform in one subject whereas 100%
may yield a low quality waveform in another. Moreover, there
was no standardization of numeric criteria in the ERP literature.
Thresholds established for subject exclusion varied considerably
from paper to paper, ranging from 15 to 75% of rejected trials.
Thus, even when numeric criteria are used, the selected threshold
is arbitrary and has a poorly established correspondence to signal
quality.

A final notable point from our review of ERP subject exclusion
procedures is that the majority of ERP papers (54.1%; 179 of 331)
did not report excluding any subjects on the basis of ERP data
quality. However, this does not imply that all subjects included
in these analyses had high quality ERP waveforms. As discussed
above, passing current criterion for subject exclusion provides
no assurance of signal quality as there are no established or
standardized methods for doing so. Furthermore, the absence
of subject exclusion reporting does not necessarily imply that
all subjects should have been included in analyses. An explicit
statement that all subjects passed rejection criteria and exhibited
high quality ERPs was given in only 3 of 179 papers. As such,
the other 176 papers either did not report that all subjects had
passed criteria, did not perform a subject exclusion step, or only
reported post-exclusion sample sizes. Thus, even in papers that
have not excluded subjects, the quality of individual ERPs in the
sample cannot be assured.

The issues of subject exclusion in the ERP literature described
above clearly highlight a great need for an objective, quantitative,
and standardized approach for subject exclusion and data
quality assurance in ERP experiments. Here, we describe such
a method: a simple approach that uses bootstrap resampling
to compute a SNR confidence interval (SNR-CI) for individual
subject ERP waveforms. Bootstrap resampling methods have
been used with wide success in subject-level ERP analyses to
obtain measures of reliability (Fabiani et al., 1998; Fortune
et al., 2004), detect the presence of ERP components (Lv
et al., 2007; McCubbin et al., 2008), and perform hypothesis
testing (Di Nocera and Ferlazzo, 2000; Oruç et al., 2011). The
method described here quantifies the signal strength of an
ERP waveform as SNR (expressed in dB) and uses a bootstrap
resampling procedure (Efron, 1979; Efron and Tibshirani, 1994)
to compute an SNR-CI. The lower bound of this SNR-CI,
the SNRLB, yields a value of SNR that a subject’s waveform
has statistically exceeded. Thus, SNRLB quantifies ERP signal
quality as a statistical boundary of a waveform’s SNR. SNRLB
can be evaluated against a desired criterion to objectively
exclude individual subjects from group-level analyses. Summary
statistics of SNRLB can also serve, more generally, as a metric of
ERP signal quality which can be reported in ERP manuscripts
to convey the quality of a sample at the subject level. We
describe this bootstrap SNR-CI approach in detail, perform
a set of Monte Carlo simulations to demonstrate its efficacy,
and then apply it to an existing ERP dataset to demonstrate
its utility as criterion for subject and metric of signal quality.
The code for computing bootstrap estimates of SNRLB is
freely available at http://www.uark.edu/ua/parkslab/SNRLB and
https://figshare.com/s/f6da4150953b0f9cc3bd.
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BOOTSTRAPPED ERP SNR-CIs

The signal processing logic of ERPs is that by averaging
numerous segments of event-locked EEG, overlapping but
uncorrelated sources of noise will average out to reveal an
underlying phase-locked waveform. Thus, the most basic feature
defining an ERP waveform is that, relative to a pre-stimulus
baseline, the post-stimulus interval exhibits significant voltage
deflections relative to zero. The strength of such post-stimulus
voltage deflections can be readily quantified as the SNR of the
post-stimulus interval relative to the pre-stimulus baseline. SNR
for a mean ERP waveform1 can be derived from the formula:

SNRERP = 20 log10

(
RMSPOST
RMSPRE

)
(1)

where, RMSPOST is the square root of the mean squared (root
mean square, or RMS) of the voltage within a time window of
interest, RMSPRE is the RMS of the ERP pre-stimulus baseline,
and SNRERP is the resultant SNR for the time window of interest,
expressed logarithmically in decibels (dB).

SNRERP provides a simple and straightforward measure that
quantifies the signal strength of an ERP waveform. However,
a single point estimate of SNR derived from a mean ERP
does not fully portray the quality of an evoked signal as it
does not capture the variability of the signal. A CI of SNR
forms a more appropriate metric of ERP signal quality as it
provides a measure of the signal’s reliability. That is, the lower
bound of the SNR-CI (SNRLB) can be interpreted as the level
of SNR that is statistically exceeded by the waveform. Thus,
SNRLB provides a measure of assurance that a desired SNR
criterion has been met. For example, a subject’s ERP could
have a mean SNR of 10 dB but a CI of [−1 dB, 21 dB].
Though mean SNR is relatively high, this subject’s waveform
should be considered unacceptable as it fails to statistically exceed
even 0 dB, a value of SNR indicating no more signal than
noise.

Our SNR-CI method employs bootstrap resampling of ERPs
to compute SNRLB for individual subject waveforms by randomly
drawing from an aggregate pool of EEG segments to obtain
a distribution of SNR values and derive CIs (Figure 1). The
pool of EEG segments is the set of all segments (N) that will
be used to form mean ERP waveforms (Figure 1A). Thus, N
is the set of EEG segments prior to their categorization into
specific experimental conditions but subsequent to preprocessing
(e.g., filtering, ocular correction) and artifact rejection. From
this set of N segments, S segments are randomly sampled (with
replacement), signal averaged, and baseline corrected to form a
bootstrap ERP waveform (Figure 1B). The number of segments
sampled, S, should be equivalent to the number of segments
that will be used to calculate mean ERP waveforms in each
experimental condition. For example, if an experiment had 800
total trials (surviving artifact rejection) that were divided equally

1The SNR of an ERP may also be calculated as the mean SNR of individual
segments rather than SNR of the averaged waveform. Deriving SNR before
signal averaging yields a measure of SNR that reflects all post-event activity
rather than only the phase-locked response (the ERP). As such, calculation of
SNR on signal averages is the most accurate representation of ERP quality.

among eight experimental conditions, the value of S would be
100. SNRERP is then derived from each resampled bootstrap ERP
according to formula [1] (Figure 1C). Bootstrapping of ERPs
and SNR is repeated 9999 times to obtain a large distribution
of SNR values, based on resampled ERPs derived from all
experimental conditions. SNRLB is then derived as the lower
bound of a 90% CI of this distribution of 9999 SNR values
(Figure 1D).

MONTE CARLO SIMULATIONS OF SNRLB
PERFORMANCE

We performed a set of Monte Carlo simulations to examine
the utility of employing SNR-CIs as a metric of ERP signal
quality and criterion for subject exclusion. These simulations
generated large datasets of synthetic ERP subjects, each of which
was composed of 800 segments containing a prototypical ERP
waveform embedded within varying levels of pink noise (1/f
noise). We generated a waveform to approximate a canonical
ERP waveform by summating an 8 Hz one-dimensional Gabor
with a Gaussian (Figure 2). All waveform components peaked
at ±1 (arbitrary units) and had latencies and frequency
approximating those of P1, N1, and P3 components of the
visual evoked potential (the most commonly measured class of
ERP). An equivalent interval (−200 to 800 ms) of 1/f noise
was then generated, normalized, low-pass filtered at 30 Hz,
and summated with the ERP waveform. Eight hundred such
segments were generated for each simulated ERP subject. The
noise level within each simulated subject was manipulated by
multiplying the amplitude of 1/f noise by a factor varying
randomly between 5.0 and 35.0 prior to its summation with the
ERP waveform. Manipulating 1/f amplitude in this way allowed
samples of synthetic subjects with wide ranges of SNR to be
generated.

Optimal Number of Bootstraps for
Computing SNRLB
Because of the rather demanding computational resources
required to perform bootstrap resampling of ERP waveforms,
we first sought to determine the minimum number of bootstrap
iterations that could be used to compute SNRLB without
significant impact on the error of SNRLB estimates. To this
end, we evaluated the minimum number of bootstraps needed
to yield a confidence interval of less than ±0.1 dB in SNRLB
estimates. To determine the number of bootstraps required to
stay within this margin of error, we generated 100 synthetic
ERP subjects. For each of these subjects SNRLB was measured
30 times at each of eight bootstrap values: 199, 499, 999,
1999, 4999, 9999, 19,999, and 39,999. We then obtained the
SNRLB SD for each bootstrap value within each synthetic
subject. SD values were then pooled across all 100 subjects
for each bootstrap value (Figure 3A). From these pooled SDs,
we derived 90% CIs for each bootstrap value (Figure 3B).
A value of 9999 bootstraps yielded a CI of ±0.09 dB
around the SNRLB estimate. This value of 9999 bootstraps was

Frontiers in Human Neuroscience | www.frontiersin.org 3 February 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Parks et al. SNR-CIs for ERP Subject Exclusion

FIGURE 1 | Procedure for computing bootstrap SNR-CIs. From the set of all electroencephalogram (EEG) segments from a subject (A), a number of segments
equivalent to that going into ERP condition means, S, are randomly sampled with replacement and signal averaged (B). SNR is then calculated for the time window
of interest (C). This process is repeated 9999 times to obtain a large distribution of SNR values and obtain a 90% CI (D).

employed in all subsequent simulations and applications of
SNRLB.

Classifying the Presence of an ERP with
SNRLB
We next sought to demonstrate that SNRLB provided an effective
criterion for simply classifying the presence (vs. absence) of
an ERP waveform embedded in varying levels of noise. We
generated 5000 synthetic subjects that contained an underlying
ERP (signal present) and 5000 with segments consisting entirely
of 1/f noise (signal absent). SNRLB was then computed for each
subject by resampling 200 segments 9999 times (N = 800; S = 200;
9999 bootstraps). The accuracy of SNRLB at classifying subjects as
signal present vs. signal absent was then evaluated at 401 criterion
ranging between −20 dB and +20 dB (0.1 dB increments).
The resultant receiver operating characteristic (ROC) curve is
plotted in Figure 4A. Area under the ROC curve was 0.996,
indicating exceptional accuracy at classifying signal present vs.
signal absent subjects. Overall classification accuracy (mean of
true and false positives) was best (>90%) at criterion levels
between −1.2 and 0.9 dB, with peak classification accuracy
of 98.2% at −0.6 dB (Figure 4B). These simulations clearly
demonstrate that SNRLB can serve as an effective metric for
establishing the presence of an underlying ERP signal embedded
within varying levels of noise. However, it should be noted,
that although a criterion of −0.6 dB yielded the greatest
accuracy in classifying the presence of a signal, this criterion
value is too low in practice. Any value of SNRLB less than
or equal to 0 dB is much too liberal as it indicates that
the ERP waveform does not reliably exceed baseline levels of
noise.

Classifying the Quality of an ERP with
SNRLB
The above simulation demonstrates that SNRLB is an accurate
metric to classify the presence vs. absence of an underlying
waveform and provides proof of concept that SNRLB can be
utilized as a criterion for ERP subject exclusion. However,
merely classifying the presence vs. absence of a signal is an
oversimplification of the subject exclusion process. The problem
of excluding ERP subjects is not to make a simple determination
as to whether or not a signal is present. Rather, the problem is
to determine whether or not an evoked response has achieved
a sufficient level of signal quality. To assess SNRLB as such a
metric we first examined the relationship between SNRLB and
the quality of an underlying ERP waveform. Because the true
underlying waveform is known in our simulated datasets, the
statistical fit (R2) between the ERP of a synthetic subject and
the actual underlying signal can be calculated. The obtained
value of R2 then provides a quantitative index of signal quality
that can be evaluated against SNRLB. We generated a sample of
10,000 synthetic subjects, each containing an underlying ERP
waveform embedded in a randomly selected noise level (random
noise multiplier between 5.0 and 35.0; Figure 2). For each
synthetic subject’s dataset, we computed a bootstrap estimate
of SNRLB (N = 800, S = 200, 9999 bootstraps). For each of
these 9999 bootstraps we also calculated an R2 between each
bootstrap ERP and the underlying waveform, then obtained
a mean R2 value for each subject. We then correlated these
R2 values with SNRLB using Spearman’s rho (rs). There was
an exceptionally strong monotonic relationship between ERP
signal fit and SNRLB (rs = 0.973, p < 0.0001, R2 = 0.947),
where increasing values of R2 were associated with increasing
estimates of SNRLB (Figure 5). This strong correlation indicates

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Parks et al. SNR-CIs for ERP Subject Exclusion

FIGURE 2 | Method of generating synthetic ERP subjects. For each subject, 800 EEG segments (−200 to 800 ms) are generated. These segments consist of
an artificially generated canonical waveform (top left) consisting of an 8 Hz one-dimensional Gabor summed with a Gaussian according to the formula:
[sin(85t+5)× N (0.16, 0.042)] + N (0.5, 0.1) This canonical waveform was then summed with an equivalent length of 1/f noise. The noise level of each synthetic
subject was manipulated by scaling the amplitude of 1/f noise via a noise multiplier factor that varied between 5 and 35 times.

that SNRLB can serve as a proxy measure of ERP signal
quality.

Next, we examined how well SNRLB could classify subject
waveforms according to signal quality. More specifically, we
defined a threshold level of signal fit (R2) and examined the
performance of SNRLB in correctly classifying synthetic subject
waveforms as ‘‘passing’’ (≥R2 threshold) or ‘‘failing’’ (<R2

threshold). To determine an appropriate threshold value for this
R2 threshold we reasoned that, at a minimum, for an ERP to
be considered of sufficient quality, it must achieve a better fit
to the true underlying signal than waveforms at the statistical
boundary of signal and noise. As noted above, an SNRLB value
of zero can be considered such a boundary. As such, we define
the minimum ‘‘passing’’ quality ERP waveforms as those that
achieve significantly better statistical fits to the underlying signal
than waveforms with SNRLB of zero. To determine a threshold
R2 value, we generated a sample (5000 simulated subjects) with
a mean SNRLB of zero. We identified an appropriate range of
noise to achieve such a sample by generating small samples of
100 subjects at 10 levels of the 1/f noise multiplier, identifying
the approximate zero crossing, reducing the scale and repeating

the process until a sufficient level of accuracy (±0.05 dB) was
achieved. This process yielded to a noise range of 36.0 ± 0.25 dB
(normally distributed). We then generated 5000 subjects within
this range of 1/f noise. For each of these synthetic subjects,
we computed SNRLB (N = 800, S = 200, 9999 bootstraps) and
mean values of R2 (the mean fit of the subject’s bootstrap
ERPs to the underlying waveform). This yielded a distribution
of both SNRLB and R2 for the 5000 synthetic subjects. The
mean of the SNRLB distribution was 0.001 dB with a 90%
CI of [−1.244, 1.224], yielding a distribution of 5000 subjects
with a mean SNRLB approximating zero. The R2 distribution
had a mean of 0.3111 and a 90% CI of [0.2063, 0.4172]. The
upper bound of this R2 distribution (0.4172) then provides a
threshold R2 value to determine ‘‘passing’’ and ‘‘failing’’ levels of
ERP signal quality. We then categorized each subject from the
previous sample of 10,000 (noise levels between 5.0 and 35.0) as
passing or failing based upon 90% CI of each synthetic subject’s
bootstrap R2 distribution. Subjects were classified as passing if
the lower bound of their R2 CI exceeded the threshold value
of 0.4172 (4078 subjects) and were categorized as failing if it
did not (5282 subjects). The accuracy of SNRLB at classifying
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FIGURE 3 | Pooled SD (A) and 90% CIs (B) of SNRLB error for the tested
bootstrap values in 100 synthetic ERP subjects. The grayed region in (B)
indicates those bootstrap values below the targeted 90% CI error ± 0.1 dB.

subjects as having passing or failing quality was evaluated at
401 criterion ranging between −20 dB and +20 dB (0.1 dB
increments). The ROC curve and overall classification accuracy
is plotted in Figure 6. Area under the ROC curve was 0.990,
indicating exceptional accuracy at classifying subjects according
to signal quality (Figure 6A). Mean classification accuracy was
best (>90%) at criterion levels between 2.3 and 3.9 dB, with peak
classification accuracy of 94.82% at 3.0 dB (Figure 6B). These
simulations suggest that SNRLB can serve as an efficient classifier
of signal quality and that an SNRLB criterion value of 3.0 dB

should serve as aminimum threshold for the inclusion of subjects
in ERP experiments.

To further demonstrate the relationship between SNRLB and
ERP waveform quality, synthetic subject waveforms are plotted
in Figure 7. These waveforms represent the resampled ERP at
the median bootstrap SNR value. Out of the 10,000 subjects in
the generated sample, those shown are the first four to surpass
SNRLB thresholds of 0, 1, 2, 3, 4, 5, 6, 8, 10, and 12 dB. These plots
provide visual confirmation that ERP signal quality improves
with increasing values of SNRLB. These plots further illustrate
that waveforms with values of SNRLB at or below 3.0 dB would
generally be considered excessively noisy when visually inspected
by ERP investigators.

The simulations described here demonstrate a strong
relationship between SNRLB and ERP signal quality (as indexed
by statistical fit) and clearly demonstrate the efficacy of SNRLB
in classifying ERP waveforms according to signal quality.
Simulations further suggest an SNRLB value of 3.0 dB to serve as a
minimum threshold of signal quality, establishing a standardized
metric and guideline for subject exclusion in ERP studies.

MANIPULATING SNRLB IN INDIVIDUAL
SUBJECT ERPS

The above Monte Carlo simulations indicate that SNRLB can
serve as a quantifiable criterion for subject exclusion and
effective metric of ERP signal quality. To further demonstrate
the utility of using SNRLB and the appropriateness of establishing
a minimum threshold value of 3.0 dB, we provide a qualitative
demonstration of the relationship between SNRLB and visual ERP
signal quality in a real ERP dataset. To this end, we manipulated
the SNR of individual subject waveforms in a small ERP dataset
to qualitatively evaluate the appearance and pattern of ERP
waveforms with increasing values of SNRLB. We provide such a
demonstration by manipulating levels of noise within individual
subjects in two ways. First, we combined EEG segments time-
locked to a stimulus onset with segments drawn from arbitrary
time periods in the ongoing EEG. Second, we simplymanipulated
the number of trials, S, used to derive bootstrap ERPs.

We collected EEG from four subjects as they completed
1000 trials of a visual oddball paradigm. Three of these four
subjects are authors on this paper (MG, SL, and MY). The
fourth subject was naïve as to the purposes of this study.
Every 1000–1500 ms, a sinusoidal grating flashed for 200 ms.
The orientation of the flashed grating was probabilistically
determined, being vertical with a probability of 0.8 and
horizontal with a probability of 0.2. Subjects counted the number
of horizontal gratings (oddball). EEG was recorded from 64
scalp-record channels using a BrainAmp DC configured with
the ActiCap active electrode system (Brain Products, Munich,
Germany). At acquisition, data were recorded in reference
to electrode FCz and sampled at 1000 Hz (DC to 250 Hz).
Data were analyzed offline using BrainVision Analyzer (Brain
Products, Munich, Germany). EEG data were re-referenced to
the average of the left and right mastoids, ocular corrected
(Gratton et al., 1983), band-pass filtered 0.1–30 Hz (zero phase-
shift Butterworth, 24 dB/octave), and segmented−200 to 800 ms
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FIGURE 4 | Classification of the presence and absence of ERP waveforms by SNRLB. The receiver operating characteristic (ROC) curve for classification of
signal present vs. signal absent synthetic subjects is plotted in (A) and the mean classification accuracy of SNRLB at criterion levels from −20 to +20 dB is
plotted in (B).

relative to stimulus onset. We also derived segments of EEG
from arbitrary inter-stimulus time points, to obtain a set of
EEG segments that contained no underlying ERP signal (‘‘noise’’
segments). All EEG segments were then baseline corrected
according to the prestimulus interval and rejected as artifacts
if voltage exceeded ±150 µV. Remaining segments were then
pooled across electrodes O1/2, P7/8, PO7/8, PO3/4, P1/2, and
PO3/4.

First, we manipulated SNRLB within each of the four
subjects by summating varying proportions of signal present
EEG segments with signal-absent segments. That is, for all
segments available for a subject, signal-absent segments would
be added in varying proportions to signal-present segments.
For example, a level of 0.5 indicates that 50% of the available
segments were summed with arbitrary EEG segments, whereas
a level of 1.0 indicates that all signal-present segments were
summed with arbitrary segments. Using this approach we
iterated the proportion of arbitrary EEG segments (increments
of 0.05) and computed bootstrap estimates of SNRLB (S = 200,
9999 bootstraps). We then determined those values at which
SNRLB first surpassed thresholds of 0, 1, 2, 3, 4, 5, and
6 dB2. Representative bootstrap waveforms were extracted at the
median SNR value (Figure 8).

We also manipulated SNR in these four subjects using a
second method of simply varying the number of EEG segments
used to derive bootstrap ERPs. That is, we iterated the value

2A criterion of 6.0 dB was the upper limit achievable across these four subjects
given the chosen parameters.

of S in the bootstrap SNR procedure (Figure 1B) from 2 to
525. We then determined the values of S at which SNRLB first
surpassed thresholds between 0 and 10 dB3 (1.0 dB increments).
After determining the values of S at which these SNR lower
bound criteria were achieved, representative bootstrap ERP
waveforms were extracted at median SNR values. Figure 9 plots
representative ERP waveforms in each of the four subjects as the
specified SNR lower bound criteria were met.

As with simulated waveforms, manipulation of SNR in real
EEG datasets from individual subjects also demonstrates a
clear relationship between SNRLB and ERP signal quality. As
SNRLB surpasses the suggested minimum threshold of 3.0 dB,
ERPs begin to increasingly conform to clearer and more stable
waveform patterns (Figures 8, 9).

SNRLB APPLICATION: EXCLUDING
SUBJECTS IN AN ERP DATASET

As a final qualitative illustration of the utility of SNRLB as ametric
of subject exclusion in ERP datasets, we applied the SNR-CI
method to an existing ERP dataset to demonstrate the quality of
ERP subject waveforms that fail to pass the recommended SNRLB
criterion of 3.0 dB.

We applied SNR-CIs to an ERP dataset derived from an
experiment investigating the impact of visual category learning
on visual evoked potentials (VEPs). EEG data were collected

3A criterion of 10.0 dB was the upper limit achievable across these four
subjects given the chosen parameters.
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FIGURE 5 | Scatterplot of the relationship between SNRLB and the
statistical fit (R2) of a synthetic subject to the underlying ERP
waveform.

from 33 subjects recruited from the University of Arkansas
undergraduate population. All procedures were approved by
the University of Arkansas Institutional Review Board. EEG
data were recorded using a 64-channel BrainAmp ActiCap
active electrode system (Brain Products, Munich, Germany).
EEG were recorded in reference to electrode FCz, digitized
at 1000 Hz, and filtered online from DC to 250 Hz.
Offline, data were referenced to the average of all scalp-
recorded electrodes, band-pass filtered between 0.1 and 30
Hz (zero phase-shift Butterworth, 24 dB/octave), corrected
for ocular artifacts (Gratton et al., 1983), and epoched into
700 ms segments (−200 to 500 ms). EEG segments were
linear detrended, baseline corrected, and artifact rejected with
a criterion of ±150 µV. Remaining EEG segments were
pooled across posterior electrodes O1, Oz, O2, P7, P8, PO7,
and PO8.

The number of segments used to form bootstrap ERPs, S, was
112 prior to artifact rejection but was determined individually for
each subject as the total number of segments surviving artifact
rejection procedures, N, divided by the number of conditions
(sixteen). SNRLB was then computed for each subject using
9999 bootstraps (Figure 1). Representative ERP waveforms were
derived for each subject by taking the bootstrap ERP (out of
the 9999) at the median SNR value. Representative bootstrap
ERPs from all 33 subjects are given in Figure 10. The lower
bound of SNR-CIs for the 33 subjects ranged from −0.37

to 12.68 dB (M = 6.17 dB, Mdn = 6.96 dB, SD = 3.50 dB,
IQR = 5.32 dB) with 7 of the 33 subjects failing to meet
the recommended SNRLB criterion of 3.0 dB. Inspection of
representative waveforms indicates that those seven subjects
failing to meet an SNRLB criterion of 3.0 dB either failed to show
a clear pattern of VEP components (S29) or had waveforms with
some semblance of VEP components but were overwhelmed by
noise (S27, S28, S30, S31, S32, S33). Removal of these seven
subjects yielded an SNRLB range from 3.31 to 12.68 dB (M = 7.56
dB,Mdn = 7.33, SD = 2.55 dB, IQR = 3.83 dB). These remaining
26 subjects (with SNRLB exceeding 3.0 dB) had clearly delineated
VEP components that were plainly discernable from baseline
noise.

With current approaches to subject exclusion in ERP studies,
it is unlikely the same seven subjects would all have been
rejected from this dataset. Several of the rejected subjects exhibit
relatively high amplitude P1 and N1 components of the visual
evoked potential (S28, S30, S31, and S32). These subjects’
waveforms may conform to the pattern of a VEP well enough
for an investigator to choose to include these subjects in the
sample. However, when the presence of these components is
considered in the context of their baseline noise (as indexed
by SNRLB), these subjects’ waveforms should be considered
unsuitable for inclusion in group-level statistics. The use of
SNRLB eliminates the selection biases of the investigator and
provides an objective numeric criterion of subject waveform
quality.

DISCUSSION

An investigator’s decision to exclude ERP subjects from group-
level analyses is most often determined by mere visual inspection
of ERP waveforms. Thus, this critical quality control step
of ERP experiments is qualitative, subjective, and lacks any
clear standards or well-defined criteria. The issues of subject
exclusion are pervasive in the ERP literature and there is
great need for the establishment of a quantitative, objective,
and standardized method for subject exclusion. Here, we
provide such a method: a simple statistical measure that
quantifies the quality of an ERP waveform as the statistical
separation of the evoked signal from baseline noise, the
SNR-CI. SNR-CIs are computed at the individual subject
level using a bootstrap procedure to resample mean ERP
waveforms, generate a large distribution of ERP SNR values,
and determine the 90% CI of this distribution (Figure 1).
The lower bound of this SNR-CI, the SNRLB, provides a
minimum statistical boundary of the signal quality of an
individual subject waveform, which can be evaluated against
a desired SNR criterion to determine whether or not to
include the subject’s data in a final sample. In addition to
providing an objective criterion for subject exclusion, SNRLB
can also provide a useful metric capturing the quality of
individual subjects in an ERP dataset. Reporting the range,
mean, and standard deviation of SNRLB can provide a subject-
level summary of the quality of an ERP sample, improving
data transparency and increasing reader confidence in reported
results.
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FIGURE 6 | Classification of the quality of ERP waveforms by SNRLB. The ROC curve for classification of passing vs. failing quality subjects is plotted in (A)
and the mean classification accuracy at criterion levels from −20 to +20 dB is plotted in (B).

We took three approaches to demonstrate the efficacy and
utility of employing SNRLB as a subject exclusion criterion
and metric of ERP signal quality. First, we used Monte Carlo
simulations on synthetic ERP subjects. We embedded a known
ERP waveform in varying levels of noise to demonstrate that
SNRLB could accurately classify the presence of signal averaged
ERPs as well as the quality of a signal averaged waveform
(assessed by statistical fit to the underlying waveform). In
both cases, SNRLB exhibited exceptionally high accuracy in
classifying subject waveforms over broad ranges of background
noise. Moreover, these simulations demonstrated a strong
monotonic relationship between SNRLB and statistical fit (R2)
to the true underlying waveform: increasing values of SNRLB
were associated with increasingly better fit to the underlying
signal (rs = 0.973). Second, using both simulated and real
ERP data, we provided qualitative visual demonstration of the
relationship between varying levels of SNRLB and the form
and pattern of resultant ERP waveforms in individual subjects.
These demonstrations further illustrate a clear relationship
between SNRLB and ERP quality: increasing values of SNRLB
were associated with decreasing levels of noise. In a final
demonstration of the utility of SNRLB, we applied the method to
an existing ERP dataset to illustrate the poor quality of subject
waveforms that failed to meet a recommended SNRLB criterion of
3.0 dB. Waveforms of such rejected subjects showed an absence
of typical ERP components or substantial levels of baseline noise.
Together, simulations and qualitative demonstrations strongly
support SNRLB as a means of establishing subject exclusion
criteria and as an indicator and metric of ERP waveform quality.

There are a number of practical issues in regards to the
application of SNRLB to an empirical ERP dataset that merit
further discussion:
1. Criterion value for subject exclusion. Our Monte Carlo

simulations suggest that an SNRLB value of 3.0 dB should
serve as an effective minimum criterion for the inclusion of
a subject in an ERP sample. This value is intended simply
as a heuristic for subject exclusion and cannot account for
every situation or context. In some cases, an investigator
may wish to establish a higher criterion value for greater
assurance of the reliability of the subject waveforms included
in a sample. Other cases may warrant a somewhat lower
criterion of SNRLB, as in studies drawing samples from special
populations (e.g., patients) or where forming ERPs from a
large number of trials is not possible. A criterion of SNRLB
should never be lower than 0 dB, as this establishes an absolute
statistical minimum for the presence of an evoked response.
Conversely, investigators should be cautioned not to set an
unnecessarily high SNRLB criterion. An SNRLB criterion for
subject exclusion is intended to eliminate subjects that fail to
show a reliable level of signal strength. It is not intended to
select only those subjects with extraordinarily high SNR, as
doing so can artificially clip the natural variability of SNR in
an ERP sample.

2. Electrode pooling. Computations of SNRLB on real datasets
in this paper involved pooling relevant electrode positions
into a single electrode, representative of the ERP (selected
according to scalp distributions). In the application of
SNRLB to an experimental ERP dataset, the electrodes pooled
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FIGURE 7 | Representative waveforms of synthetic subjects achieving increasing criteria of SNRLB.The waveforms of the first four subjects to achieve or
surpass a given criterion level are plotted in black. The true underlying waveform is plotted in gray.

for the computation of SNRLB should be the same as
those used for statistical analyses. If it is impractical or
illogical to pool electrodes of interest (e.g., a component

reverses polarity between electrodes of interest), then pooling
should occur following computation of SNR during each
bootstrap. That is, average SNR at each electrode is used
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FIGURE 8 | Representative waveforms at increasing criteria of SNRLB. SNR was manipulated by mixing EEG segments time-locked to a stimulus with
segments derived from arbitrary time points.

to compute SNRLB as opposed to the SNR of an average
electrode.

3. Number of segments used to compute SNRLB. A third issue
in the application SNRLB to an ERP dataset relates to the
number of segments sampled, S, for signal averaging each
bootstrap ERP (Figure 1B). Determination of this value is

critical to the accuracy of the resultant SNRLB estimates. A
value of S that is too low will underestimate SNRLB and
a value too high will overestimate SNRLB. The value of S
selected for each subject should be equivalent to the number
of segments that will be used to form condition averages
after artifact rejection. For an experiment with an equal
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FIGURE 9 | Representative waveforms at increasing criteria of SNRLB. SNR in each subject was manipulated by controlling the number of segments, S, used
to form signal averages during the bootstrap SNR-CI computation.

number of trials in all conditions, we recommend that the
value of S be determined as the mean number of trials per
condition that survive artifact rejection (i.e., N divided by
the number of conditions; see Figure 1). However, many

ERP experimental designs involve conditions with significant
imbalances in the number of trials. In these designs, we
recommend that the value of S be determined as the mean
number of trials from those conditions with the fewest
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FIGURE 10 | Representative waveforms and SNRLB values for 33 subjects in an existing ERP dataset. The seven subjects (highlighted in gray) that fail to
meet an SNRLB criterion of 3.0 dB exhibit highly noisy ERP waveforms.

number trials. Thus, SNRLB should be determined based on
the experimental manipulations with the fewest trials for
signal averaging.

4. Baseline correction requirement. The calculation of SNR
(Figure 1C) requires that the ERP is baseline corrected
according to the prestimulus interval. That is, the prestimulus
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interval is set to have a mean of zero. If the design
of an experiment does not permit ERPs to be baseline
corrected or if an evoked signal is also expected in the
baseline interval, special considerations must be taken
establish an alternative time period to serve as a baseline
interval.

5. SNRLB reporting. In addition to serving as a criterion
for subject exclusion, summary statistics of SNRLB also
provide important information regarding the subject-level
quality of an ERP sample. We recommend reporting the
mean, median, standard deviation, inter-quartile range,
minimum, and maximum of a sample’s SNRLB. Reporting
these statistics of SNRLB in ERP papers can convey a
significant degree of information regarding the overall
quality of the individual subjects going into a sample
and should be reported for the sample both before and
after subject exclusion. Regardless of the choice to perform
subject exclusion or the outcome of subject exclusion
procedures, such summary statistics of SNRLB should still
be reported so that the reader can ascertain the reliability
of the ERPs used in statistical analyses and grand average
waveforms.

6. Limitations. SNRLB provides an objective metric of ERP
quality on the basis of signal vs. noise but does not provide
any information regarding undesirable or anomalous patterns
in the ERP. SNRLB is not sensitive to polarity or qualitative
patterns, only to the strength of a post-stimulus evoked
response. There are some circumstances in which a subject
waveform may yield a sufficiently high value of SNRLB but
may still be undesirable for inclusion in an ERP sample due
to an anomalous ERP pattern. For example, a subject could
have an SNRLB of 10 dB but also show an atypical polarity
reversal of a canonical ERP component (e.g., an inverted
visual P1). In this case, the investigator may still wish to
exclude this subject as an outlier. Thus, SNRLB only provides
an objective and quantitative metric for subject exclusion on
the basis of SNR but cannot flag subjects with anomalous ERP
waveforms.

Though our SNRLB measure provides a quantitative and
objective method approach to subject exclusion, there are several
alternative views and approaches for dealing with poor quality
subject waveforms that should also be noted. A first alternative is
to simply not perform subject exclusion on the basis of waveform
quality, instead including all subjects in group-level analyses so
long as there was no experimental error during the acquisition of
the subject’s dataset (e.g., high electrode impedance). However,
including evoked responses that fail to overcome baseline levels
of noise will have a deleterious effect on experimental results as
this is equivalent to a measurement error. An evoked response is,
by definition, an increase in post-event signal strength relative to
a pre-stimulus baseline. If a post-event signal is no stronger than
its baseline then no evoked response is objectively present and a
hypothesis cannot truly be evaluated. There are many factors that
can cause evoked response to fail to emerge above the noise, some
external (e.g., high electrode impedance) and some internal (e.g.,
subject fatigue). Many of these factors cannot be easily observed,

measured, or quantified, but nonetheless negatively impact the
ERP signal. Unless other precautions are taken, the inclusion
of subjects with poor SNR can have a significant negative
impact on hypothesis testing. The SNRLB measure provides a
statistical boundary that can be used to determine when a true
evoked response has been measured in a subject. A second
alternative approach to subject exclusion is to employ robust
statistics (Wilcox, 2012) rather than strictly identifying and
removing subjects with poor quality waveforms (as with SNRLB
criteria). The application of robust statistical methods (Wilcox
and Keselman, 2003; Keselman et al., 2008; Wilcox, 2012) to
group-level ERP analyses can mitigate the impact of outlier
subjects’ ERPs on the outcome of a hypothesis test (Rousselet
and Pernet, 2011), and are regularly used in the ERP literature
(e.g., Dien et al., 2006; Franklin et al., 2007; Rousselet et al., 2008;
Clawson et al., 2013; Desjardins and Segalowitz, 2013). Though it
is advantageous to exclude subject waveforms that fail to exhibit
clear evoked responses, robust statistics form a viable alternative
(or complementary approach) to subject exclusion procedures.
Several software packages are freely available for performing
robust statistics on ERP datasets (Maris and Oostenveld, 2007;
Dien, 2010; Litvak et al., 2011; Pernet et al., 2011). A final
alternative to setting an absolute rejection threshold based on
SNRLB is to instead derive a measure of SNR from each subject’s
grand average waveform and apply a standard outlier rejection
procedure to identify those subjects with unusually low SNR.
For example, an iterative outlier rejection procedure could be
run on the SNR of an ERP sample, rejecting subjects having
an SNR more than two standard deviations below the group
mean. Though such an approach is a valid method of identifying
outlier subjects with poor signal quality, deriving a measure of
SNR from a grand average waveform overinflates the condition
level SNR. In this case, we would suggest deriving a mean
SNR from a bootstrap of all EEG segments using a value of
S equivalent to the mean number of segments per condition
(Figure 1).

In summary, we describe a quantitative measure of
ERP signal quality based on the bootstrap computation
of SNR-CIs in individual subjects. The lower bound of
these SNR-CIs, the SNRLB, provides a standardized and
objective criterion to exclude poor-quality subjects from
ERP samples. SNRLB can also be reported in ERP papers
as a summary statistic to convey the quality of individual
subject waveforms of the ERP experiment. Though we only
describe the computation and application of bootstrap SNR-
CIs as they relate to ERP studies, the approach may also
be readily applied to any event-related physiological data
(e.g., evoked magnetic field, local field potential, motor-
evoked potential, startle response, post-auricular reflex, and
skin conductance response). SNR-CIs may also be further
adapted to extend to evoked frequency-domain signals
such as event-related synchronization/desynchronization
and steady-state evoked potentials. The code for
computing estimates of SNRLB is freely available for
download at http://www.uark.edu/ua/parkslab/SNRLB and
https://figshare.com/s/f6da4150953b0f9cc3bd.
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