AUTHOR=Kerr Catherine E. , Agrawal Uday , Nayak Sandeep TITLE=The Effects of Tai Chi Practice on Intermuscular Beta Coherence and the Rubber Hand Illusion JOURNAL=Frontiers in Human Neuroscience VOLUME=10 YEAR=2016 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2016.00037 DOI=10.3389/fnhum.2016.00037 ISSN=1662-5161 ABSTRACT=

Tai Chi (TC) is a slow-motion contemplative exercise that is associated with improvements in sensorimotor measures, including decreased force variability, enhanced tactile acuity, and improved proprioception, especially in elderly populations. Here, we carried out two studies evaluating the effect of TC practice on measures associated with sensorimotor processing. In study 1, we evaluated TC’s effects on an oscillatory parameter associated with motor function, beta rhythm (15–30 Hz) coherence, focusing specifically on beta rhythm intermuscular coherence (IMC), which is tightly coupled to beta corticomuscular coherence (CMC). We utilized electromyography (EMG) to compare beta IMC in older TC practitioners with age-matched controls, as well as novices with advanced TC practitioners. Given previous findings of elevated, maladaptive beta coherence in older subjects, we hypothesized that increased TC practice would be associated with a monotonic decrease in beta IMC, but rather discovered that novice practitioners manifested higher beta IMC than both controls and advanced practitioners, forming an inverted U-shaped practice curve. This finding suggests that TC practice elicits complex changes in sensory and motor processes over the developmental lifespan of TC training. In study 2, we focused on somatosensory (e.g., tactile and proprioceptive) responses to the rubber hand illusion (RHI) in a middle-aged TC group, assessing whether responses to the illusion became dampened with greater cumulative practice. As hypothesized, TC practice was associated with decreased likelihood to misattribute tactile stimulation during the RHI to the rubber hand, although there was no effect of TC practice on measures of proprioception or on subjective reports of ownership. These studies provide preliminary evidence that TC practice both modulates beta network coherence in a non-linear fashion, perhaps as a result of the focus on not only efferent motor but also afferent sensory activity, and alters tactile sensations during the RHI. This work is the first to show the effects of TC on low level sensorimotor processing and integrated body awareness, and this multi-scale finding may help to provide a mechanistic explanation for the widespread sensorimotor benefits observed with TC practice in symptoms associated with aging and difficult illnesses such as Parkinson’s disease.