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Individuals with autism spectrum disorder (ASD) show impaired social interaction and
communication, which may be related to their difficulties in speech production. To
investigate the mechanisms of atypical speech production in this population, we
examined feedback control by delaying the auditory feedback of their own speech,
which degraded speech fluency. We also examined feedforward control by adding loud
pink noise to the auditory feedback, which led to increased vocal effort in producing
speech. The results of Japanese speakers show that, compared with neurotypical
(NT) individuals, high-functioning adults with ASD (including Asperger’s disorder, autistic
disorder, and pervasive developmental disorder not otherwise specified) were more
affected by delayed auditory feedback but less affected by external noise. These findings
indicate that, in contrast to NT individuals, those with ASD relied more on feedback
control than on feedforward control in speech production, which is consistent with the
hypothesis that this population exhibits attenuated Bayesian priors.

Keywords: autism, delayed auditory feedback, lombard effect, audio-motor coordination, feedback control,
feedforward control, speech production

Introduction

Autism spectrum disorder (ASD) has been defined in DSM-5 as a group of conditions in which the
core symptoms are: (1) impairments in social interaction and communication and (2) restricted
and repetitive behaviors. Although there is heterogeneity in the speech production of individuals
with ASD, a certain percentage exhibit more speech errors in their childhood than neurotypical
(NT) individuals, and some of these speech errors do not improve with age (Cleland et al.,
2010; Oller et al., 2010; Shriberg et al., 2011). Studies show that these speech errors observed
in individuals with ASD are not caused by oral motor dysfunction or dysfunctional speech
planning/programming, such as spatiotemporal vowel errors, uncommon phoneme distortions, or
slow speech rate (Shriberg et al., 2011). On the other hand, based on the consistent findings of large
variation in the loudness/pitch of their speech (Shriberg et al., 2011), we hypothesized that their
speech production might rely heavily on auditory feedback, so tiny variations in the loudness/pitch
of their speech due to unexpected distortion might be amplified by overshooting adjustments.
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Speech production is a complicated process, which involves
the motor system, the auditory system, the somatosensory
system, and their coordination. Speech production relies on
feedback control and feedforward control (Hickok, 2012).
Feedback control relies on monitored somatosensory and
auditory feedback. If there is a mismatch between perceived and
predicted sensory consequences, the error-correction mechanism
changes the motor commands based on the mismatch. For
example, when the auditory feedback of our own voice is
artificially pitch-shifted, the auditory-motor system compensates
for these perturbations by modulating the motor commands,
which results in the pitch-shifting of our own voice (Burnett
et al., 1998; Chang et al., 2013), and the compensation of the
auditory-motor system for delayed auditory feedback (DAF)
results in increased phonation time and phonation errors (Yates,
1963). On the other hand, feedforward control relies on the
previously learned correlation between motor commands and
their outcomes (i.e., sensory-motor neural mappings). Because
feedforward control allows the motor system to make plans for
future movements, it is crucial for fluent speech. For example,
it is hypothesized that stuttering involves excessive reliance
on auditory feedback control due to poor feedforward control
(Civier et al., 2010). Feedforward control is also important
for adaptation in an adverse environment because it evaluates
the disturbances beforehand and changes the motor plan to
deal with the environmental changes. For example, when
there is loud background noise, we would observe increased
intensity and phonation duration in speaker’s speech production
(Junqua, 1996; Zollinger and Brumm, 2011). The modulation
of speech production in a noisy environment, known as the
Lombard effect, was discovered in 1909 by an otolaryngologist,
Etienne Lombard. The Lombard effect is suggested to make
communication in a noisy environment effective (Zollinger and
Brumm, 2011).

Since the deficits in social interaction and communication
observed in individuals with ASD might be partially explained
by an increased number of speech errors, it is important to
investigate the mechanisms of these speech errors. Here we
investigated auditory-motor coordination in speech production
in Japanese-speaking individuals with ASD. Specifically, we
examined the way in which they rely on feedback control by
observing how they react to DAF and the way in which they rely
on feedforward control by observing how they react to increased
background noise. Some researchers argue that individuals with
ASD have attenuated Bayesian priors, so they tend to perceive
the world more accurately than NT individuals, while perception
in NT individuals is modulated by prior experience (Pellicano
and Burr, 2012). In other words, compared to NT individuals,
individuals with ASD might put less weight on the information
gained from their prior experience. Here we extended this
argument from perception to sensory-motor interaction: If
individuals with ASD put less weight on their prior information,
they might rely less on feedforward control andmore on feedback
control.

Previous visuo-motor studies have suggested that individuals
with ASD rely more on feedback control than on feedforward
control (Schmitz et al., 2003; Martel et al., 2014). In addition,

a previous study using pitch-shifted auditory feedback also
found that a subgroup of individuals with ASD have larger
responses to perturbed auditory feedback (Russo et al., 2008),
which indicates that some individuals with ASD rely more
on feedback control than on feedforward control in speech
production. Another previous study found no difference between
the ASD group and the control group for DAF and the Lombard
effect (Nober and Simmons, 1981), but they only tested a small
number of participants. Here we tested a larger number of
participants. In addition to the voiced DAF experiment, we asked
the participants to produce whispered speech in a separate DAF
experiment. Therefore, we could examine the effect of speaking
modes on responses to DAF. Moreover, because the corollary
discharges from the motor controller influence how the motor
system calculates the errors in movement and influence how we
perceive the agent giving the motor commands (i.e., self-agency
attribution), we collected the participants’ evaluation of the self-
agency attribution of DAF to examine the influence of corollary
discharges.

Materials and Methods

Participants
Fourteen participants with ASD and 15 NT participants joined
this study, but three participants with ASD did not finish the
experiment because they could not tolerate the background
noise used in the experiments, one NT participant was excluded
because of severe hearing loss (defined as pure-tone hearing
thresholds above 40 dB HL at more than one audiometric
frequency), and another NT participant was excluded because
his autistic traits (AQ, measured by Autism-Spectrum Quotient
Questionnaire) were too high (his AQ score = 34, and the cut-off
point of AQ for ASD is 33 for the Japanese version of Autism-
Spectrum Quotient Questionnaire). Finally, the results from 11
participants with ASD and 13 NT participants were included in
the analysis of the voiced DAF experiment, the Lombard effect
experiment, and subjective report for DAF. For the whispered
DAF experiment, two NT participants had extreme difficulty
in producing whispered speech when loud background noise
was present (i.e., they could only produce voiced speech under
noise), so only results from 11 participants with ASD and 11 NT
participants were included in the analysis of the whispered DAF
experiment.

These 11 participants with ASD and 13 NT participants
were matched by age and intelligence quotient (IQ). Verbal IQ
(VIQ) and performance IQ (PIQ) were measured by WAIS-III
or WAIS-R (Wechsler, 1981; Shinagawa et al., 1990; Fujita et al.,
2006). The Autism Diagnostic Observation Schedule (ADOS)
was used to evaluate the severity of symptoms in participants with
ASD. The cut-off point of ADOS for ASD is 7, and only half of our
participants with ASD had scores above the cut-off point despite
that all of them were diagnosed as ASD by medical doctors.
The distribution of ADOS scores in the ASD group (N = 10
because one ASD participant was not evaluated for ADOS) did
not show significant difference from the cut-off point of ADOS
[two-tailed t-test showed that t(9) = 1.07, p = 0.31]. We split
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the ASD group into two groups based on the cut-off point in
ADOS, but there was no significant between-group difference
in their responses in the following experiments. As a result, we
still put all their results together in the analyses described in the
Results section. Table 1 provides detailed information about the
participants. The participants with ASD were recruited through
a self-help group for people with developmental disabilities, and
their ASD diagnosis was provided by hospitals based onDSM-IV-
TR (APA, 2000) (four were diagnosed with Asperger’s disorder,
one was diagnosed with autistic disorder, and six were diagnosed
with pervasive developmental disorder not otherwise specified).

Written informed consent was obtained from all participants
before we conducted the experiments. All procedures were
conducted in accordance with the Declaration of Helsinki and
approved by the ethics committee of NTT Communication
Science Laboratories. All of the participants were naive to
the purposes of the study. The participants were paid for
their time. The participants all had normal hearing, defined
as pure-tone hearing thresholds of 20 dB HL or less at
audiometric frequencies between 1 and 4 kHz, except for one
female participant with ASD (her hearing levels were 30 dB
for one ear at 1 kHz and for both ears at 2 kHz). The
data from this participant were still included because her
hearing loss was mild and the exclusion of her data did not
change the results of the statistical analysis (see Supplemental
Materials).

Voiced DAF Experiment
On each trial, participants were instructed to read ‘ma-mi-mu-
me-mo’ naturally and without pausing into a microphone in less
than 5 s. In each session, there were five delay conditions (delays
of 0.05, 50, 100, 200, and 400 ms), and five trials for each delay
condition, giving a total of 25 trials. The order of these delay
conditions was randomized in each session. In total there were
four sessions.

To mask their original auditory feedback, 68.8-dB SPL pink
noise was sent to their headphones continuously. The recorded
speech was delayed and amplified by 10 dB before being sent to
the headphones. The phonemes of the recorded speech signals
were labeled individually in Praat based on the spectrogram and
heard sounds (Boersma and Weenink, 2014) by two technicians
who did not know the purpose of the experiment and the details
of the recorded materials. The phoneme contents and their
start and end points were labeled, and the labeled data were

then processed in MATLAB (R2010b; The MathWorks Inc.) to
compute the syllable number (by combining two phonemes) and
phonation duration. There should be five syllables (‘ma,’ ‘mi,’ ‘mu,’
‘me,’ ‘mo’) if the participants made no mistakes.

Whispered DAF Experiment
After the voiced DAF experiment, participants took a short
break. Before the whispered DAF experiment started, participants
practiced how to whisper with or without noise delivered by
the headphones. They were told that there should be no vocal
fold vibrations when they whispered. They then practiced voiced
speech and whispered speech while touching their necks to feel
for vocal fold vibrations.

The whispered DAF experiment had the same experiment set-
up and procedures as the voiced DAF experiment except that
participants were instructed to whisper ‘ma-mi-mu-me-mo’ into
the microphone. To mask their original auditory feedback, 58.5-
dB SPL pink noise was sent to their headphones continuously.
Because it was extremely difficult to segregate the phonemes
in the whispered speech signals, after the start and end points
of the speech signals in each trial were labeled in Praat, the
phoneme contents were labeled as a group instead of being
labeled individually. The labeled data were then processed in
MATLAB as the data collected in the voiced DAF experiment.

Lombard Effect Experiment
In this experiment, the participants were instructed to read out
the number presented on the computer screen as soon as possible.
In each session, there were 14 numbers (randomly chosen from
2, 3, and 4, which are pronounced ‘ni,’ ‘san,’ and ‘yon’ in Japanese)
presented on the computer screen one after another, one second
apart. The participants finished four sessions under the quiet
condition and four sessions under the noise condition, and the
order of the quiet and noise sessions was randomized. In the
noise sessions, 69-dB SPL pink noise was sent continuously to
the headphones. The recorded speech signals were analyzed with
MATLAB: the speech signals were segregated from the silence
periods using the root mean square amplitude of the waveforms
as the criterion, and then their individual duration and sound
pressure level were computed.

Subjective Report for DAF
For each delay condition (voiced with five different delays,
in a randomized order), the participants read a randomly

TABLE 1 | Mean-group matching data for the autism spectrum disorder (ASD) and neurotypical (NT) participants.

Mean ± Standard Deviation (range) ASD NT t-test

Gender (female : male) 9:2 8:5 –

Age 40.45 ± 11.47 (18–54) 39.15 ± 9.77 (20–52) p = 0.38

Full intelligence quotient (IQ) 111.09 ± 12.41 (91–124) 107.38 ± 12.16 (90–128) p = 0.49

Performance IQ (PIQ) 103.82 ± 17.02 (71–126) 102.54 ± 12.89 (80–122) p = 0.78

Verbal IQ (VIQ) 115.18 ± 14.78 (92–136) 110.08 ± 12.24 (96–137) p = 0.44

Autism-Spectrum Quotient Questionnaire (AQ; Baron-Cohen et al., 2001) 34.8 ± 9.21† (19–43) 17.69 ± 5.3 (9–27) p = 0.0001

Autism Diagnostic Observation Schedule (ADOS; Lord et al., 2000) 8.8 ± 5.31† (2–16) – –

†Lacked the data from one participant.
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chosen short sentence and evaluated three self agency-related
descriptions using a 7-point scale (from strongly disagree to
strongly agree): It seemed as though the sound I heard was (1)
made by me (2) made by someone else (3) made by me but
altered.

Apparatus
All auditory experiments were conducted in a sound-insulated
booth. These experiments were controlled by a computer. The
participants’ speech was collected with a microphone (Rode NT2-
A). A mixer (Soundcraft EPM6) was used to send the collected
speech to a noise filter (BehringerMultigate Pro XR4400), and the
filtered speech was mixed with pink noise (generated by an ST-
NG1 white and pink noise generator). The filtered speech signals
were sent to an audio interface (Roland EDIROL) and a computer
for recording. In the DAF experiment, the filtered speech signals
were also sent to a TDT RP2.1 and a TDT PA5 (Tucker-Davis
Technologies Inc.) to adjust the delay before being mixed with
pink noise. The processed speech signals (with delay or not) were
then sent to the participants through headphones (Sennheiser
HDA200) that had a passive attenuation (for environmental
sounds) of more than 20 dB in the spectral region above 500 Hz.

Results

The ANOVA analyses were conducted with SPSS v.19 (IBM,
USA), and other statistical analyses were conducted with
MATLAB. All the conducted t-tests were two-tailed tests.

Voiced DAF Experiment
When there was no perceived delay (i.e., for the 0.05-ms delay
condition), the phonation duration was significantly longer in
the ASD group (mean = 0.99, 95% CI = [0.87, 1.1]) than in the
control group (mean= 0.85, 95% CI= [0.78, 0.92]) [t(22) = 2.29,
p = 0.03]. On the other hand, when there was no perceived delay,
there was no significant between-group difference in syllable
number [t(22) = 0.92, p = 0.37]. These findings indicate that
when there was no perceived delay, although individuals with
ASD had longer speech production, they did not make more
syllable number errors. Since the phonation duration for a 0.05-
ms delay was significantly longer in the ASD group than in the
control group, the duration ratio (the phonation duration with
a certain delay divided by the phonation duration with a 0.05-
ms delay) was used instead of the raw duration data in further
analysis.

Figures 1A,C shows that the syllable number and the duration
ratio increased in both groups and peaked at 200-ms delay. In
addition, the responses to DAF were larger in the ASD group (the
black dash lines) than in the control group (the gray solid lines).

To investigate the effect of the group and delay in different
speech production modes, two mixed-design ANOVAs were
conducted with factors Group and Delay for the syllable number
and the duration ratio. In the ANOVA analysis, the between-
subject factor Group had two levels: the ASD group and the
control group; the within-subject factor Delay, which refers to
the different delays used in the DAF experiments, had either

four levels for the analysis of duration ratio or five levels for
the analysis of syllable number. Delay was a significant factor
[F(2.44,53.62) = 16.31, p < 0.001 for the syllable number,
F(1.99,43.66) = 21.84, p < 0.001 for the duration ratio], and
Group was also a significant factor [F(1,22) = 6.03, p = 0.02 for
the syllable number, and F(1,22) = 8.44, p= 0.01 for the duration
ratio]. Across different delays, the syllable number was larger in
the ASD group (mean = 5.2, 95% CI = [5.12, 5.27]) than in the
control group (mean = 5.08, 95% CI = [5.01, 5.14]), and the
duration ratio was larger in the ASD group (mean = 1.23, 95%
CI = [1.17, 1.28]) than in the control group (mean = 1.12, 95%
CI = [1.06, 1.17]). Similarly, a significant interaction between
Delay and Group was observed [F(2.44,53.62) = 4.67, p = 0.01
for the syllable number, and F(1.99,43.66) = 3.5, p = 0.04 for the
duration ratio]. The ANOVA results support that the responses
to DAF were larger in the ASD group than in the control group.

To investigate the influence of bone conduction and air
conduction for auditory feedback, the pairwise linear correlation
between the speech sound pressure level and the effect of DAF
was calculated. The recorded peak sound pressure level (59–85 dB
SPL) was found to be correlated with the syllable number and
duration ratio at 200-ms delay in the ASD group (syllable
number: r = 0.68, p = 0.02; duration ratio: r = 0.74, p = 0.01)
but not in the control group (syllable number: r = 0.19, p = 0.54;
duration ratio: r = –0.29, p = 0.33).

Whispered DAF Experiment
For the 0.05-ms delay condition, there was no significant
difference in phonation duration [t(20) = 0.75, p = 0.46] or in
syllable number [t(20) = 1.28, p = 0.21]. However, to make the
data analysis comparable between the voiced DAF experiment
and whispered DAF experiment, the duration ratio was still used
in the following analysis.

Similar to the voiced DAF experiment, Figures 1B,D shows
the syllable number and the duration ratio increased in both
group and peaked at 200-ms delay, but there was not much
difference between responses to DAF in the ASD group (the black
dash lines) and in the control group (the gray solid lines).

To investigate the effect of the group and delay in different
speech production modes, two similar ANOVAs were conducted
with factors Group and Delay for the syllable number and
the duration ratio for the voiced and whispered experiments.
Delay was a significant factor [F(1.45,28.91) = 13.27, p < 0.001
for the syllable number, and F(1.19,23.88) = 12.88, p = 0.001
for the duration ratio], but Group was not a significant
factor [F(1,20) = 0.52, p = 0.48 for the syllable number,
and F(1,20) = 0.22, p = 0.64 for the duration ratio]. The
interaction between Delay and Group was not significant
[F(1.45,28.91) = 1.43, p = 0.25 for the syllable number,
and F(1.19,23.88) = 1.26, p = 0.28 for the duration ratio].
Furthermore, the recorded peak sound pressure level (42–60 dB
SPL) was not correlated with the syllable number or the duration
ratio at 200-ms delay.

Lombard Effect Experiment
As the result of some speech errors, there were only 13 instead of
14 spoken numbers in 2% of the sessions. The phonation duration
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FIGURE 1 | The effect of the delay of auditory feedback on syllable number (above) and duration ratio (below) in two groups in the voiced delayed
auditory feedback (DAF) experiment (A,C) and in the whispered DAF experiment (B,D). While the delay increased up to 200 ms, the syllable number and the
duration ratio increased in both groups, indicated as mean ± standard error. For the voiced DAF experiment, the syllable number and the duration ratio increased
more in the ASD group (black dashed lines) than in the control group (gray solid lines), but there was no such difference for the whispered DAF experiment.

and the sound pressure level (calculated as dB SPL) were used to
evaluate the Lombard effect. For each participant, the phonation
duration and the sound pressure level of the spoken words were
averaged across repetitions and then averaged across different
words (Figure 2).

To investigate the effect of the group and noise condition,
two mixed-design ANOVAs were conducted with factors Group
and Condition for the duration and the sound pressure level of
their speech. For both phonation duration and sound pressure
level, Condition was a significant factor [F(1,22) = 119.3 and
105.49, p < 0.001, respectively], and the interaction between
Group and Condition was significant [F(1,22) = 100.9 and 89.26,
p < 0.001, respectively]. Group was a significant factor for the
sound pressure level [F(1,22) = 5.59, p = 0.03] but not for the
phonation duration [F(1,22) = 0.023, p = 0.64].

The Lombard effect is defined as the difference between
the phonation duration/sound pressure levels in the quiet and
noise conditions. The follow-up t-tests showed that when loud
background noise was added to the auditory feedback, both
the ASD group and the control group exhibited a significantly
increased phonation duration (ASD group: mean of increased
duration = 65 ms, 95% CI = [47 ms, 83 ms], t(10) = 7.8,
p < 0.001; NT group: mean of increased duration = 105 ms,
95% CI = [84 ms, 125 ms], t(12) = 10.96, p < 0.001) and sound
pressure level (ASD group: mean of increased sound pressure
level = 4.58 dB, 95% CI = [2.79 dB, 6.37 dB], t(10) = 5.7,
p < 0.001; NT group: mean of increased sound pressure

level = 6.68 dB, 95% CI = [5.26 dB, 8.08 dB], t(12) = 10.31,
p < 0.001).

Although both the ASD group and the control group exhibited
a significant Lombard effect, the Lombard effect measured by
phonation duration was significantly longer in the control group
than in the ASD group [t(22) = 3.07, p = 0.01]. Although the
between-group difference in the Lombard effect measured by the
sound pressure level was borderline significant [t(22) = 2.05,
p = 0.05], it became significant [t(20) = 3.19, p = 0.01] after
the removal of the outliers (one ASD participant and one NT
participant whose Lombard effect measured by sound pressure
level was larger than the cross-subject average Lombard effect
measured by sound pressure level plus two standard deviations
in each group).

Subjective Report for DAF
The evaluation for the three questions in all the participants
showed consistent trends, namely that as the delay of auditory
feedback increased, they felt that the auditory feedback was less
like their own sound (Q1), and was more like other people’s
sounds (Q2) and their own sound but altered (Q3).

Three two-way mixed-design ANOVAs, with factors Group
and Delay, were conducted along with an evaluation of each
description in the questionnaire. These ANOVAs revealed that
Delay has a significant effect for all descriptions [F(4,88) = 5.69,
5.14, and 5.98, p < 0.001, p = 0.001, and p < 0.001 for Q1, Q2,
and Q3, respectively], but the effect of Group [F(1,22)= 0.1, 0.15,
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FIGURE 2 | The phonation duration and the sound pressure level
measured for the quiet and noisy conditions in the two groups. When
the participants’ own speech was sent back to them with background noise,
both their phonation duration (A) and sound pressure level (B) increased,
indicated as mean ± standard error. The Lombard effect, which was the
increase in phonation duration and sound pressure level for the noisy
condition (the rightmost bars), was significantly smaller in the ASD group
(black bars) than in the control group (gray bars).

and 0.45, p = 0.76, 0.7, and 0.45 for Q1, Q2, and Q3, respectively]
and the interaction between Delay and Group [F(4,88) = 1.45,
1.77, and 0.19, p = 0.226, 0.14, and 0.94 for Q1, Q2, and Q3,
respectively] were not significant.

Discussion

This study investigated auditory-motor coordination in
individuals with ASD by examining feedback control and
feedforward control in their speech production. In the voiced
DAF experiment, the auditory feedback was delayed to test
feedback control, and the ASD group produced significantly
more syllabic numbers and had longer phonation duration than
the control group in the voiced DAF experiment. In the Lombard
effect experiment, loud noise was mixed with the auditory
feedback to test feedforward control, and the ASD group showed
less change in speech duration and sound pressure level than
the control group. These results support the hypothesis that
speech production in individuals with ASD relies more on error
corrective feedback control than on environment responsive
feedforward control.

When considering the increased responses to DAF in the
ASD group, we first investigated the possibility that individuals

with ASD over-evaluated the mismatch between the perceived
and predicted sensory consequences due to imprecise corollary
discharges from the motor controller (Goldberg et al., 1997).
Because the corollary discharges carry information about sensory
consequences that can be compared with perceived sensory
consequences and produce a sense of self-agency (Gallagher,
2000), we evaluated self-agency attribution for DAF. The
subjective reports for DAF show that participants with ASD
and NT participants had a similar evaluation of the sense of
self-agency. Our findings are consistent with a previous study
that found similar self-generated tickling perception in the ASD
and control groups, which also rejects the imprecise corollary
discharges in individuals with ASD (Blakemore et al., 2006).

The whispered DAF experiment was designed to investigate
whether different speaking modes changed the effect of DAF.
A previous study showed that bilingual speakers speak faster and
stutter less under DAF when they are speaking a more rather than
a less familiar language (MacKay, 1970). Similar to speaking the
second language, whispering is a less familiar speaking mode.
While ASD individuals relied on feedback control for both
voicing and whispering modes, NT individuals might rely less on
feedback control in the voicing mode because of familiarity and
rely more on feedback control in the whispering mode because of
unfamiliarity.

Although it is tempting to think that the between-group
difference for the voiced DAF experiment and the disappearance
of the between-group difference for the whispered DAF
experiment were due to the absence of bone-conducted auditory
feedback for the whispered DAF experiment, it might not be the
case. First, the air- and bone-conducted auditory feedback for the
voiced DAF experiment was assumed to be blocked and disrupted
by the loud noise sent to the headphones with a closed-form
design. Second, the finding that there was a significant positive
correlation between the recorded sound pressure level and the
effect of DAF with a 200-ms delay in the ASD group for the
voiced DAF experiment showed that an increased sound pressure
level did not help the participants with ASD avoid the disturbing
effect caused by DAF. Instead, the participants who were severely
influenced by DAF generated the loudest speech production.

The reduced Lombard effect observed in individuals with ASD
is consistent with our hypothesis that, compared with the control
group, their speech production relied less on feedforward control
so their motor plan changed less in the presence of environmental
noise. In other words, individuals with ASD might have more
difficulty in adapting their motor output in a context-dependent
way. Nevertheless, there is another plausible explanation: if the
non-reflex component in the Lombard effect is absent or smaller
in individuals with ASD due to the absence of theory of mind
(Lombardo and Baron-Cohen, 2011), the overall Lombard effect
would be smaller in the ASD group. Although the Lombard effect
has a brainstem origin (Nonaka et al., 1997; Hage et al., 2006),
the finding that neural activities in the auditory cortex correlate
with the generation of the Lombard effect indicates cortical
involvement (Eliades and Wang, 2012). Behavioral studies also
show that the Lombard effect varies with speech content (Patel
and Schell, 2008) and in different contexts (communicative
or not) (Amazi and Garber, 1982; Garnier et al., 2010).
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Moreover, although it is difficult to suppress the Lombard effect
intentionally, it is possible to suppress it with training (Pick et al.,
1989). In short, the Lombard effect is not simply a reflex, and its
amplitude is modified based on the estimated difficulty listeners
face in understanding speech in a noisy environment. Therefore,
if individuals with ASD are not able to estimate the clarity of their
speech heard by others in a noisy environment, they will retain
the reflex component of the Lombard effect but their overall
Lombard effect will be smaller than that in the control group.

In summary, our observations suggest that speech production
in individuals with ASD relies more on feedback control than on
feedforward control. This finding is consistent with our extension
of the argument that individuals with ASD put less weight on
prior information (Pellicano and Burr, 2012). However, there is
limitation for our interpretation of the results. Because many
participants with ASD expressed their intolerance for loud noise,
we did not use very loud background noise (such as 90 dB SPL) in
the voiced DAF experiment. Therefore, while some participants
had very loud speech production, it was difficult to control the
air- and bone-conducted auditory feedback. Although we showed
that loud speech production did not help reduce the responses to
DAF in the ASD group, it could not be ruled out that these two
groups of participants utilized air- and bone-conducted auditory
feedback in a different way. In addition, future studies should
investigate which parts of the brain areas responsible for speech
production (Hashimoto and Sakai, 2003; Takaso et al., 2010;

Hickok et al., 2011) are affected in ASD and verify our finding
that speech production in individuals with ASD relies more on
feedback control than on feedforward control on a neural basis
(Parker Jones et al., 2011).
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