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Cognitive dysfunction is a feature of Parkinson’s Disease (PD). Some cognitive functions
are impaired by dopaminergic medications prescribed to address the movement
symptoms that typify PD. Learning appears to be the cognitive function most frequently
worsened by dopaminergic therapy. However, this result could reflect either impairments
in learning (i.e., acquisition of associations among stimuli, responses, and outcomes) or
deficits in performance based on learning (e.g., selecting responses). We sought to clarify
the specific effects of dopaminergic medication on (a) stimulus-response association
learning from outcome feedback and (b) response selection based on learning, in PD. We
tested 28 PD patients on and/or off dopaminergic medication along with 32 healthy, age-
and education-matched controls. In Session 1, participants learned to associate abstract
images with specific key-press responses through trial and error via outcome feedback.
In Session 2, participants provided specific responses to abstract images learned in
Session 1, without feedback, precluding new feedback-based learning. By separating
Sessions 1 and 2 by 24 h, we could distinguish the effect of dopaminergic medication
on (a) feedback-based learning and response selection processes in Session 1 as well
as on (b) response selection processes when feedback-based learning could not occur in
Session 2. Accuracy achieved at the end of Session 1 were comparable across groups.
PD patients on medication learned stimulus-response associations more poorly than PD
patients off medication and controls. Medication did not influence decision performance
in Session 2. We confirm that dopaminergic therapy impairs feedback-based learning in
PD, discounting an alternative explanation that warranted consideration.
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INTRODUCTION
Parkinson’s disease (PD) is a common movement disorder,
though cognitive abnormalities are now recognized. These non-
motor, cognitive symptoms are a leading cause of poor quality of
life in PD (Schrag et al., 2000; Barone et al., 2009). Dopaminergic
medications, such as L-3,4-dihydroxyphenylalanine (L-dopa) or
dopamine receptor agonists, prescribed to address motor symp-
toms of tremor, bradykinesia, and rigidity, seem to improve
some cognitive functions and to worsen others (Cools, 2006;
MacDonald and Monchi, 2011). The paradoxical effects of med-
ication on different aspects of cognition have been explained by
differences in endogenous dopamine concentrations in the brain
regions that underlie them.

In PD, movement abnormalities appear, and a diagnosis
is confirmed, when degeneration of dopamine-producing cells
of the substantia nigra (SN) is sufficient to seriously restrict

dopamine supply to its efferent, the dorsal striatum (DS) (Kish
et al., 1988). In contrast, dopamine-producing cells in the ventral
tegmental area (VTA) are relatively spared and dopamine supply
to the ventral striatum (VS), along with limbic and frontal cor-
tices, is better preserved (Haber and Fudge, 1997). The striatum
is the input structure for a collection of subcortical nuclei that
are broadly implicated in movement regulation and increasingly
in cognitive functions. The DS includes the bulk of the cau-
date nucleus and the putamen. The VS, comprising the nucleus
accumbens and the most ventral portions of caudate and puta-
men, is considered separately from the DS because these regions
have distinct dopaminergic afferents (Voorn et al., 2004; Wickens
et al., 2007), vascular supplies (Feekes and Cassell, 2006), and
functions (Cools, 2006; MacDonald and Monchi, 2011). As the
pathophysiology would predict, dopaminergic medications sub-
stantially improve DS-mediated motor and cognitive symptoms
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(Cools, 2006; MacDonald and Monchi, 2011; Colzato et al., 2012).
However, in PD, these medications appear to worsen cognitive
operations performed by VTA-innervated brain regions presum-
ably due to dopamine overdose of these dopamine-replete brain
regions (Gotham et al., 1988; Cools et al., 2001; Cools, 2006;
MacDonald and Monchi, 2011).

A survey of the literature suggests that learning, in various
forms, is the cognitive function most commonly worsened by
dopaminergic medication. Studies that have tested PD patients
on relative to off medication have reported impairments in prob-
abilistic associative (Torta et al., 2009; Jahanshahi et al., 2010),
sequence (Feigin et al., 2003; Ghilardi et al., 2007; Seo et al.,
2010; Tremblay et al., 2010), and stimulus-reward reversal learn-
ing (Swainson et al., 2000; Cools et al., 2002; Tomer et al., 2007;
Graef et al., 2010; MacDonald et al., 2013a), as well as explicit
abstract figure and list learning (MacDonald et al., 2013b),
stimulus-stimulus facilitation (MacDonald et al., 2011), and
learning from negative feedback (Frank et al., 2004). However,
investigations often fail to separately assess the acquisition of
associations among stimuli, responses, and outcomes, from pro-
cesses of response selection that rely on these learned associations
and that are used to measure new learning (McDonald and
White, 1993; Jessup and O’doherty, 2011). For example, typi-
cal stimulus-response learning paradigms proceed as follows: (a)
a stimulus is presented and participants decide among a set of
responses, (b) feedback about the accuracy of the response is pro-
vided, through which stimulus-response associations are learned.
Stimulus-response association learning is estimated by measuring
the accuracy of stimulus-specific response selection and enact-
ment. Impairment in either learning or in using learned associ-
ations to decide among responses could yield poor performance
in these standard learning paradigms.

Atallah et al. (2007) demonstrate this point quite elegantly.
An extensive literature existed linking DS to learning associa-
tions among stimuli, responses, and rewards (Yin and Knowlton,
2006; Ashby et al., 2007). However, noting the confound outlined
above, Atallah and colleagues sought to separate the acquisi-
tion of associations from performance based on this learning.
In a Y-maze task using odor cues, they observed impairment in
rats’ abilities to consistently select a rewarded vs. unrewarded
arm in animals receiving infusions of inhibitory gamma-amino
butyric acid (GABA) agonist to DS compared to a saline solu-
tion during the learning phase of the experiment. At first blush,
this seemed to suggest that animals receiving inhibitory infu-
sions to DS were learning associations between odor cues and
rewards more poorly. When both groups were later tested once the
infusions were stopped, however, both experimental and control
groups performed the selection task similarly. This demonstrated
that associations were learned equally well for both experimen-
tal and control (i.e., saline-infused) groups during Session 1
and suggested that inhibition of DS impaired the animal’s abil-
ity to use learned associations to perform selections reliably.
To complement this interesting finding, in another experiment,
they found that GABA infusions to DS at test phase resulted in
impaired selection performance compared to saline infusions to
DS, although both groups had previously shown identical learn-
ing of these odor-reward associations during the training phase.

Taken together, these results challenged the widely held notion
that DS mediates learning and instead suggested a more specific
role for DS in performance based on learning.

We note that the literature implicating dopaminergic medi-
cation in learning impairment in PD similarly warrants recon-
sideration. The specific aim of the present study was therefore
to investigate the effect of dopaminergic medication in PD on
stimulus-response learning versus response performance pro-
cesses. In Session 1, PD patients and healthy age- and education-
matched controls first learned to associate abstract images and
specific key-press responses through outcome feedback. Session 1
constituted a typical stimulus-response learning study in which
processes of stimulus-response association learning and response
selection performance were confounded. In Session 2, partic-
ipants were asked to make the specific key-press responses to
abstract images that they had learned in Session 1. However, no
feedback regarding the accuracy of responses was provided in
Session 2, precluding new feedback-based learning. Figures 1A,B
illustrate how trial structures in Sessions 1 and 2 differ from one
another in only one regard—the provision of outcome feedback.

Half of the PD patients completed Session 1 on medication,
whereas the other half learned stimulus-response associations
via feedback off medication. Similarly, half of the PD patients
performed Session 2 on and the other half off dopaminergic
medication. Because performance in Session 2 depended upon
learning in Session 1, and we expected that medication status
could influence learning in Session 1, we made two design choices
to mitigate carry-over effects. First, we implemented a learning
criterion in Session 1 to ensure that all participants achieved a
similar level of stimulus-response association strength, without
establishing overlearned relations. Second, we ensured that each
on and off group in Session 2 was composed of an equal number
of participants who had learned stimulus-response associations
in Session 1 on compared to off medication. Please see Figure 2
to understand the design of this experiment.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-three PD patients and 36 age- and education-matched
healthy controls participated in the experiment. All PD patients
were previously diagnosed by a licensed neurologist, had no
coexisting diagnosis of dementia or another neurological or psy-
chiatric disease, and met core assessment criteria for surgical
interventional therapy and the UK Brain Bank for the diagnosis of
idiopathic PD (Hughes et al., 1992). No PD patients were treated
with deep brain stimulation or other neurosurgeries. Control par-
ticipants were free of neurological and psychiatric illnesses. All PD
patients and no controls were treated with dopaminergic ther-
apy. This study was approved by the Health Sciences Research
Ethics Board of the University of Western Ontario and the Ethics
Review Board of the Sudbury Regional Hospital. All participants
provided informed written consent to the approved protocol
before beginning the experiment, according to the Declaration of
Helsinki (World Medical Association, 2013).

Participants abusing alcohol, prescription, or street drugs,
or taking cognitive-enhancing medications including Donepezil,
Galantamine, Rivastigmine, Memantine, or Methylphenidate
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FIGURE 1 | Example of a single trial in Sessions 1 and 2. (A) Session 1: PD
patients and aged-matched controls learned to associate 9 abstract images
with a key-press response. A trial proceeded as follows: (i) a cross appeared in
the center of a computer screen for 500 ms; (ii) a blank screen was presented
for 500 ms; (iii) an abstract image was presented in the center of the computer
screen until the participant entered his or her key-press response using the
“1,” “2,” or “3” numeric keys; (iv) the image disappeared before feedback,

either the word “Correct” or “Incorrect,” was presented for 1000 ms in the
center of the screen; (v) a blank screen was presented for 500 ms before the
next trial began. An abstract image was presented and participants provided
his or her key-press response before feedback was presented. (B) Session 2:
Stimulus-specific key-press responses for stimuli learned in Session 1 were
performed in the absence of feedback a day later. The parameters for each trial
in Session 2 were otherwise identical to those in Session 1.

FIGURE 2 | Medication status assignment of participants in Sessions 1

and 2. Half of participants completed stimulus-response learning on
medication and the other half performed stimulus-response learning off
medication in Session 1. Half of the participants in each of the ON and OFF
medication groups in Session 2 had learned stimulus-response associations
on medication in Session 1 and the other half had learned stimulus-response
relations off medication.

were excluded from participating. Five PD patients and four
control participants did not reach a pre-set learning criterion
(see Section Design and Procedure) in Session 1. They were not
invited to participate in Session 2 and therefore their data were
not included in our analyses. Consequently, we included 28 PD
patients (21 males) and 32 control participants (11 males) in our
analyses.

The motor sub-scale of the Unified Parkinson’s Disease Rating
Scale (UPDRS) was scored by a neurologist with sub-specialty
training in movement disorders (Penny A. MacDonald) to assess
the presence and severity of disease for all PD patients both
on and off dopaminergic medication. Control participants were
also screened to rule out undiagnosed neurological illness, PD
in particular. In addition, all participants completed a battery of
standardized cognitive and affective tests to rule out significant
cognitive impairments, depression, or anxiety.

Table 1 presents mean group demographics, as well as affective
and cognitive screening scores for all patients along with these
measures for their matched controls. UPDRS motor subscale
scores on and off usual dopaminergic medication, daily doses
of dopaminergic therapy in terms of L-dopa equivalents, and
mean duration of PD are also presented in Table 1. Calculation
of daily L-dopa equivalent dose for each patient was based
on the theoretical equivalence to L-dopa (Evans et al., 2004)
as follows: L-dopa dose + L-dopa × 1/3 if on entacapone +
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bromocriptine (mg) × 67 + ropinerole (mg) × 20 + pergolide
(mg) × 100 + apomorphine (mg) × 8. There were no signif-
icant demographic differences between PD patients and con-
trols (Table 1). Screening cognitive measures confirmed that no
participants suffered significant cognitive impairment (Table 1).

APPARATUS
The experiment was conducted on a 14.0′′ widescreen laptop
(Lenovo T420) running at a resolution of 1600 × 900 on the
Windows 7 operating system. The screen was placed at a distance
of approximately 50 cm in front of participants and angled for
optimal viewing.

STIMULI
The stimuli used during the experiment consisted of abstract
images that were computer-generated with GroBoto (Braid Art
Labs, Colorado Springs, USA). Nine abstract images were used
in the experiment (Figure 3).

DESIGN AND PROCEDURE
All patients with PD participated in two experimental sessions
conducted over consecutive days, as did their age- and education-
matched healthy controls. Half of the PD patients performed
Session 1 on and the other half off dopaminergic medication.
This assignment was random. Similarly, half of the PD patients
performed Session 2 on and the other half off dopaminergic med-
ication. For Session 2, half of the PD patients from the Session 1
ON condition were randomly assigned to the Session 2 ON con-
dition whereas the other half were randomly assigned to the
Session 2 OFF condition. Analogously, half of the PD patients
from the Session 1 OFF condition were randomly assigned

FIGURE 3 | Abstract images presented during Sessions 1 and 2. Images
were computer-generated with GroBoto (Braid Art Labs, Colorado Springs,
USA).

to the Session 2 ON condition whereas the other half were
randomly assigned to Session 2 OFF condition. This is illustrated
in Figure 2.

PD patients took their dopaminergic medication as prescribed
by their treating neurologist during ON testing sessions, but
abstained from taking L-dopa/carbidopa and entacapone for 12–
18 h, and dopamine agonists, such as pramipexole, ropinirole, or
pergolide, as well as amantadine, rasagiline, and selegiline for
16–24 h before beginning OFF testing sessions. Although con-
trol participants did not take dopaminergic medication during
any session, their data were analyzed to correspond to the med-
ication order of the PD patient to whom they were matched.
Matching was performed at time of testing, prior to data anal-
ysis. This controlled for possible order, fatigue, and practice
effects.

Before beginning Session 1, participants received 20 practice
trials with different images from those employed during the main
experimental sessions. In Session 1, participants performed a task
during which they learned to associate abstract images with one
of three key-press responses. On each trial, an abstract image
appeared and remained in the center of the computer screen until
the participant responded with a key press. Outcome feedback
(i.e., “Correct” or “Incorrect”) was provided after every response
and in this way, participants learned to associate each of the
abstract images with the appropriate key-press response through
trial and error.

All trials proceeded as follows: (i) a cross appeared in the center
of a computer screen for 500 ms; (ii) a blank screen occurred for
500 ms; (iii) an abstract image was presented until the participant
entered a key-press response, either “1,” “2,” or “3” keys; (iv) feed-
back, either “Correct” or “Incorrect,” was presented for 1000 ms;
(v) a blank screen for 500 ms separated trials (Figure 1A).

Trials were organized into blocks. Each block consisted of 18
trials, with each of the nine abstract images occurring twice in
random order. Three images were assigned to each of the “1,”
“2,” and “3” numeric keys at the top of the keyboard and partici-
pants pressed these keys with their index, middle, and ring fingers,
respectively. After each block, participants were provided with
a percentage score, summarizing their learning performance. A
minimum learning criterion of 74% on two successive blocks was
required to complete Session 1. This ensured that similar learning
was achieved by all participants and ensured that over-learning of
associations did not occur.

Session 2 occurred the day after Session 1, approximately 24 h
later for each participant. In Session 2, participants performed
two blocks of 18 trials, in which the same 9 images studied dur-
ing Session 1 were presented in random order, twice per block.
Participants decided among and selected the key-press response
that they had learned for each image in Session 1. No outcome
feedback was provided to preclude new feedback-based learning.
The parameters for each trial in Session 2 were otherwise identical
to those in Session 1 (Figure 1B).

We expected that dopaminergic medication might have an
effect on learning in Session 1. Performance in Session 2
depended on how well stimulus-response associations were
learned in Session 1. To diminish any carry-over effects from
Session 1, we (i) imposed a pre-set learning criterion of 74% in
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Session 1 and (ii) included an equal number of participants who
learned on and an equal number of participants who learned off
medication in Session 1, in each of the ON and OFF conditions in
Session 2 (Figure 2).

BEHAVIORAL MEASURES
Efficiency of encoding stimulus-response associations across
Session 1 was estimated by a mean improvement score that
describes the change in percent correct performance per
block across Session 1. This score was calculated as follows:
[Block1 + (Block2 − Block1) + (Block3 − Block2) + (Block4 −
Block3) + . . . (BlockN − BlockN − 1)] ÷ Number of Blocks (N).
In Session 2, decision making based on previously-learned asso-
ciations was measured with an adjusted-savings score, calculated
as follows: average accuracy in Session 2 ÷ accuracy in the last
block of Session 1. Anticipating that Group (PD patients vs.
Controls) and Medication status (ON vs. OFF) might affect learn-
ing, we implemented several measures to reduce the variability in
the degree to which stimulus-response associations were learned
by all (i.e., compelling all participants to reach a criterion of
74% and ensuring that the groups in Session 2 were entirely
balanced with respect to learning conditions in Session 1). In
the event that comparable stimulus-response learning was not
achieved by all groups, however, the use of an adjusted-savings
score was intended to correct for subtle variability among partic-
ipants in stimulus-response association learning. This allowed us
to examine how PD and dopaminergic medication affected recall
and enactment of previously-learned stimulus-specific responses
independently of how these factors affected stimulus-response
association learning per se. Higher improvement scores indi-
cated more efficient learning, and higher adjusted-savings scores
indicated superior retention of learned associations and decision-
making performance based on prior learning. Separate One-Way
analyses of variance (ANOVAs) were conducted on stimulus-
response association learning estimates and measures of response
selection performance between Groups (PD patients vs. Controls)
and across Medication status (ON vs. OFF).

RESULTS
Main findings for Sessions 1 and 2 are presented in Figures 4A,B,
respectively. Other behavioral data for Sessions 1 and 2 are
presented in Table 2.

SESSION 1: LEARNING STIMULUS-RESPONSE ASSOCIATIONS VIA
OUTCOME FEEDBACK
We performed a One-Way ANOVA on improvement scores, with
Group (PD patients vs. Control) as the between-subject factor,
for ON and OFF medication conditions separately. PD patients
learned significantly more poorly than matched control partic-
ipants in the ON session [F(1, 29) = 6.587, MSE = 0.011, p =
0.016], whereas PD patients and matched controls learned equally
well off medication [F(1, 27) = 0.659, MSE = 0.002, p = 0.424].
We performed another One-Way ANOVA on improvement scores
with Medication status (ON vs. OFF) as the between-subject
factor in PD patients and controls separately. Consistent with
findings from our first ANOVA, PD patients showed a statis-
tical trend toward poorer learning of stimulus-response asso-
ciations ON compared to OFF medication [F(1, 26) = 3.081,

FIGURE 4 | Main behavioral findings for Sessions 1 and 2. (A)

Session 1: PD patients on medication learned stimulus-response
associations more poorly than their matched controls and more poorly than
PD patients off medication. PD patients off medication learned equally well
as their matched controls. (B) Session 2: PD patients on medication
performed stimulus-response associations equally well to PD patients off
medication. In each medication condition, PD patients performed equally
well as their matched controls.

MSE = 0.006, p = 0.077]. No differences were found for controls
comparing pseudo-ON and pseudo-OFF medication sessions
[F(1, 30) = 0.207, MSE = 0.001, p = 0.652].

To rule out the possibility that PD patients and controls sim-
ply displayed differences in performance on the initial block
with similar learning efficiency, we performed One-Way ANOVAs
on the first block scores. PD patients did not differ from their
matched-control participants for either ON [F(1, 29) = 0.001,
MSE = 0.000, p = 0.978] or OFF [F(1, 27) = 0.101, MSE =
0.001, p = 0.753] medication conditions. Further, no differences
were found for PD patients comparing ON and OFF medica-
tion sessions [F(1, 26) = 0.292, MSE = 0.003, p = 0.594] and
controls comparing pseudo-ON and –OFF medication sessions
[F(1, 30) = 0.681, MSE = 0.010, p = 0.416].

Analogously, we performed a One-Way ANOVA on final
block scores to ensure that PD patients and controls reached
a comparable level of learning performance in Session 1. PD
patients did not differ from their matched-control participants
for either ON [F(1, 29) = 0.042, MSE = 0.000, p = 0.839] or
OFF [F(1, 27) = 0.487, MSE = 0.002, p = 0.491] medication
conditions. Further, no differences were found for PD patients
comparing ON and OFF medication sessions [F(1, 26) = 0.662,
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Table 2 | Behavioral results for Parkinson’s disease patients and

controls.

Session 1 Session 2

Initial score Final score Blocks to Absolute

criterion savings

PD

ON 0.352 (0.021) 0.822 (0.015) 20.1 (2.34) 0.676 (0.030)

OFF 0.372 (0.031) 0.842 (0.020) 18.3 (3.730) 0.662 (0.030)

CONTROL

ON 0.351 (0.030) 0.826 (0.014) 14.8 (3.173) 0.722 (0.018)

OFF 0.385 (0.094) 0.858 (0.012) 13.4 (2.137) 0.689 (0.030)

All values reported are means (SEM). Initial Score is the score achieved on the

first block of Session 1. Final Score is the score achieved in the final block of

Session 1. Blocks to Criterion is the total number of blocks needed to reach the

learning criterion in Session 1. Absolute Savings in Session 2 was calculated as

the average score in Session 2.

MSE = 0.003, p = 0.423] and controls comparing pseudo-ON
and -OFF medication sessions [F(1, 30) = 2.720, MSE = 0.008,
p = 0.110].

SESSION 2: PERFORMING STIMULUS-SPECIFIC RESPONSES
For performance in Session 2, we conducted a One-Way ANOVA
on adjusted-savings scores with Group (PD patients vs. Controls)
as the between-subject factor, for ON and OFF medication condi-
tions separately. PD patients OFF [F(1, 30) = 2.58, MSE = 0.011,
p = 0.120] and ON (F < 1) medication performed comparably
to controls. Similarly, no ON–OFF differences were found for PD
patients or controls (both F < 1).

Despite measures taken to mitigate the influence of learn-
ing in Session 1 on performance in Session 2, there remained
the possibility for carry-over effects between Sessions. We there-
fore performed a 2 × 2 ANOVA on adjusted-savings scores with
Group (PD patients vs. Control) and Medication (ON vs. OFF)
as the between-subject factors, covaried with Medication dur-
ing Session 1 (ON vs. OFF). There were no significant main
effects of either Group [F(1, 56) = 1.191, MSE = 0.015, p =
0.280] or Medication [F(1, 56) = 0.015, MSE = 0.000, p = 0.904]
conditions. Further, there was no significant interaction effect
[F(1, 56) = 1.002, MSE = 0.013, p = 0.321]. These results sug-
gest that the measures taken to reduce the influence of Session 1
learning on Session 2 performance were successful in ensuring
that despite any effect of group or medication in Session 1, all
participants achieved a similar, pre-asymptotic level of stimulus-
response association learning.

DISCUSSION
In Session 1, participants learned to associate stimuli and
responses through outcome feedback. Learning was evidenced
when participants correctly recalled the associations, selected,
and enacted stimulus-specific responses. In Session 2, feedback
was omitted, eliminating the possibility of further feedback-based
learning Participants expressed what they had previously learned
by enacting the stimulus-specific responses from Session 1 (see

Figures 1A,B). Off dopaminergic medication, PD patients per-
formed Sessions 1 and 2 normally compared to age-matched
controls. In contrast, PD patients on dopaminergic medication
learned stimulus-response relations in Session 1 more poorly than
controls. Bolstering this finding further, PD patients on dopamin-
ergic medication achieved the learning criterion in Session 1
less efficiently than PD patients off medication. In Session 2,
PD patients on and off dopaminergic therapy performed equiv-
alently. We interpret these results as evidence that PD patients
learn stimulus-response associations normally at baseline and
that dopaminergic medication impairs feedback-based learning
but not recall of these associations, or response selection and
enactment.

Stimulus-response learning paradigms often proceed in a sin-
gle session as follows: (a) a stimulus is presented and participants
decide among a set of responses, (b) feedback about the accuracy
of the response is provided, through which stimulus-response
associations are learned. Stimulus-response association learning
is indexed by the accuracy of recalling, selecting, and enacting
stimulus-specific responses. Impairment in either learning per se
or response selection/enactment based on what has been learned
could yield poor performance in this paradigm (Atallah et al.,
2007). These data do not suggest that dopaminergic therapy actu-
ally impairs performance of stimulus-specific response selection
processes, giving the appearance of deficient stimulus-response
association learning (Atallah et al., 2007). This confound was
addressed by employing a rigorous methodology in which we:
(1) tested performance in a session where feedback-based learn-
ing was possible relative to one in which it was not, (2) equated
trial structures in Sessions 1 and 2 so that they differed only in
terms of the provision of outcome feedback, (3) prevented over-
learning/ceiling performance by using a 74% accuracy criterion
in Session 1 and introduced a 24 h delay between Sessions 1 and
2 to produce comparable average performance in each session in
terms of accuracy (see Table 2), (4) mitigated carry-over effects
from Session 1 to Session 2 by equating the learning achieved by
all participants in Session 1 and including an equal number of PD
patients in the ON and OFF conditions in Session 2 from ON and
OFF conditions in Session 1 (see Figure 2), and (5) matched PD
patients to healthy age-matched controls, analyzing control data
to correspond to the ON–OFF order of their PD patient, elimi-
nating the possibility that our findings owed simply to complex
order effects.

These results support findings from previous studies in PD
that report a medication-associated impairment in various forms
of learning (Swainson et al., 2000; Cools et al., 2002; Feigin et al.,
2003; Frank et al., 2004; Ghilardi et al., 2007; Tomer et al., 2007;
Torta et al., 2009; Graef et al., 2010; Jahanshahi et al., 2010;
Seo et al., 2010; Tremblay et al., 2010; MacDonald et al., 2011
but see Shiner et al., 2012; Smittenaar et al., 2012). Whereas
motor symptoms and some cognitive functions are improved by
dopaminergic medication, other cognitive processes are actually
worsened (Cools, 2006; MacDonald and Monchi, 2011). These
differential effects of dopaminergic therapy on individual cogni-
tive functions likely owe to differences in endogenous dopamine
in the brain regions that mediate them (Gotham et al., 1988;
Cools et al., 2001; Cools, 2006; MacDonald and Monchi, 2011). At
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baseline, DS appears to be severely dopamine-depleted whereas
VTA-innervated brain regions, including VS, limbic, and pre-
frontal cortices are relatively dopamine replete. Dopaminergic
medication rectifies this dopamine deficit and ameliorates DS-
mediated motor and cognitive functions (Feigin et al., 2001; Cools
et al., 2003; Asanuma et al., 2006; Wu et al., 2009; MacDonald
et al., 2011; Colzato et al., 2012). This appears to be at the expense
of functions performed by VTA-innervated brain regions, which
are worsened by medication, especially at earlier stages of PD
(Cools, 2006; MacDonald and Monchi, 2011). Consistent with
the dopamine overdose hypothesis and the findings presented
here, learning has been ascribed to both VS (O’doherty, 2004;
Shohamy et al., 2004, 2006; Reiss et al., 2005; Cools et al., 2007;
Ghilardi et al., 2007; Seo et al., 2010; Tremblay et al., 2010;
MacDonald et al., 2011) and limbic cortical regions (McDonald
and White, 1993; Rodriguez, 2009). Indeed, in a recent study, we
found that VS activity correlated with feedback-based stimulus-
response learning in a procedure that was virtually identical to
the one presented here (Hiebert et al., 2014). Finally, and further
supporting our interpretation of our findings, even in healthy vol-
unteers, administration of dopaminergic therapy has been shown
to worsen learning (Mehta et al., 2001; Breitenstein et al., 2006).

Cognitive dysfunction is now an undisputed non-motor
symptom of PD that leads to significant impairment in qual-
ity of life (Schrag et al., 2000; Barone et al., 2009). Whereas
dopaminergic medication is primarily titrated in response to
motor symptoms, it is increasingly understood that some cogni-
tive impairments arise due to the effects of this therapy (Cools,
2006; MacDonald and Monchi, 2011). Clarifying the specific cog-
nitive functions that are helped versus those that are hindered by
dopaminergic medication can inform treatment in PD, allowing
clinicians to consider cognitive as well as motor complaints in
titrating therapy.
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