AUTHOR=Murd Carolina , Kreegipuu Kairi , Kuldkepp Nele , Raidvee Aire , Tamm Maria , Allik Jüri TITLE=Visual evoked potentials to change in coloration of a moving bar JOURNAL=Frontiers in Human Neuroscience VOLUME=8 YEAR=2014 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2014.00019 DOI=10.3389/fnhum.2014.00019 ISSN=1662-5161 ABSTRACT=

In our previous study we found that it takes less time to detect coloration change in a moving object compared to coloration change in a stationary one (Kreegipuu etal., 2006). Here, we replicated the experiment, but in addition to reaction times (RTs) we measured visual evoked potentials (VEPs), to see whether this effect of motion is revealed at the cortical level of information processing. We asked our subjects to detect changes in coloration of stationary (0°/s) and moving bars (4.4 and 17.6°/s). Psychophysical results replicate the findings from the previous study showing decreased RTs to coloration changes with increase of velocity of the color changing stimulus. The effect of velocity on VEPs was opposite to the one found on RTs. Except for component N1, the amplitudes of VEPs elicited by the coloration change of faster moving objects were reduced than those elicited by the coloration change of slower moving or stationary objects. The only significant effect of velocity on latency of peaks was found for P2 in frontal region. The results are discussed in the light of change-to-change interval and the two methods reflecting different processing mechanisms.