AUTHOR=Kantorová Ema , Žiak Peter , Koyšová Mária , Kurča Egon , Michalik Jozef , Hladká Mária , Zeleňák Kamil
TITLE=Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation
JOURNAL=Frontiers in Human Neuroscience
VOLUME=8
YEAR=2014
URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2014.00010
DOI=10.3389/fnhum.2014.00010
ISSN=1662-5161
ABSTRACT=
Background: The aim of our study was to assess the role of laser polarimetry and visual evoked potentials (VEP) as potential biomarkers of disease progression in multiple sclerosis (MS).
Participants: A total of 41 patients with MS (82 eyes) and 22 age-related healthy volunteers (44 eyes) completed the study. MS patients were divided into two groups, one (ON) with a history of optic neuritis (17 patients, 34 eyes) and another group (NON) without it (24 patients, 48 eyes). The MS patients and controls underwent laser polarimetry (GDx) examination of the retinal nerve fiber layer (RNFL). In the MS group, we also examined: Kurtzke “expanded disability status scale” (EDSS), the duration of the disorder, VEP – latency and amplitude, and conventional brain magnetic resonance imaging (MRI). Our results were statistically analyzed using ANOVA, Mann–Whitney, and Spearman correlation analyses.
Results: In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON-patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r = −0.15) and strongly with brain new MRI lesions (r = −0.8). In NON-patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6) and amplitudes (r = −0.3, r = −4.2) was found. EDSS also correlated with brain atrophy in this group (r = 0.5). Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinization and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON-patients.
Conclusion: In our study, we found that both methods (VEP and GDx) can be used for the detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinization and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring disease progression in MS patients, independent of the ON history.