AUTHOR=Zhao Xiaojie , Song Sutao , Ye Qing , Guo Jia , Yao Li TITLE=Causal interaction following the alteration of target region activation during motor imagery training using real-time fMRI JOURNAL=Frontiers in Human Neuroscience VOLUME=7 YEAR=2013 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00866 DOI=10.3389/fnhum.2013.00866 ISSN=1662-5161 ABSTRACT=

Motor imagery training is an effective approach for motor skill learning and motor function rehabilitation. As a novel method of motor imagery training, real-time fMRI (rtfMRI) enables individuals to acquire self-control of localized brain activation, achieving desired changes in behavior. The regulation of target region activation by rtfMRI often alters the activation of related brain regions. However, the interaction between the target region and these related regions is unclear. The Granger causality model (GCM) is a data-driven method that can explore the causal interaction between brain regions. In this study, we employed rtfMRI to train subjects to regulate the activation of the ipsilateral dorsal premotor area (dPMA) during motor imagery training, and we calculated the causal interaction of the dPMA with other motor-related regions based on the GCM. The results demonstrated that as the activity of the dPMA changed during rtfMRI training, the interaction of the target region with other related regions became significantly altered, and behavioral performance was improved after training. The altered interaction primarily exhibited as an increased unidirectional interaction from the dPMA to the other regions. These findings support the dominant role of the dPMA in motor skill learning via rtfMRI training and may indicate how activation of the target region interacts with the activation of other related regions.