AUTHOR=Yao Wan X., Ranganathan Vinoth K., Allexandre Didier , Siemionow Vlodek , Yue Guang H. TITLE=Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength JOURNAL=Frontiers in Human Neuroscience VOLUME=7 YEAR=2013 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00561 DOI=10.3389/fnhum.2013.00561 ISSN=1662-5161 ABSTRACT=
The purpose of this study was to compare the effect of training using internal imagery (IMI; also known as kinesthetic imagery or first person imagery) with that of external imagery (EMI; also known as third-person visual imagery) of strong muscle contractions on voluntary muscle strengthening. Eighteen young, healthy subjects were randomly assigned to one of three groups (6 in each group): internal motor imagery (IMI), external motor imagery (EMI), or a no-practice control (CTRL) group. Training lasted for 6 weeks (~15 min/day, 5 days/week). The participants' right arm elbow-flexion strength, muscle electrical activity, and movement-related cortical potential (MRCP) were evaluated before and after training. Only the IMI group showed significant strength gained (10.8%) while the EMI (4.8%) and CTRL (−3.3%) groups did not. Only the IMI group showed a significant elevation in MRCP on scalp locations over both the primary motor (M1) and supplementary motor cortices (EMI group over M1 only) and this increase was significantly greater than that of EMI and CTRL groups. These results suggest that training by IMI of forceful muscle contractions was effective in improving voluntary muscle strength without physical exercise. We suggest that the IMI training likely strengthened brain-to-muscle (BTM) command that may have improved motor unit recruitment and activation, and led to greater muscle output. Training by IMI of forceful muscle contractions may change the activity level of cortical motor control network, which may translate into greater descending command to the target muscle and increase its strength.