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Observable structure of variability presents a window into the underlying processes of skill
acquisition, especially when the task affords a manifold of solutions to the desired task
result. This study examined skill acquisition by analyzing variability in both its distributional
and temporal structure. Using a virtual throwing task, data distributions were analyzed by
the Tolerance, Noise, Covariation-method (TNC); the temporal structure was quantified by
autocorrelation and detrended fluctuation analysis (DFA). We tested four hypotheses: (1)
Tolerance and Covariation, not Noise, are major factors underlying long-term performance
improvement. (2) Trial-to-trial dynamics in execution space exhibits preferred directions.
(3) The direction-dependent organization of variability becomes more pronounced with
practice. (4) The anisotropy is in directions orthogonal and parallel to the solution manifold.
Results from 13 subjects practicing for 6 days revealed that performance improvement
correlated with increasing Tolerance and Covariation; Noise remained relatively constant.
Temporal fluctuations and their directional modulation were identified by a novel rotation
method that was a priori ignorant about orthogonality. Results showed a modulation
of time-dependent characteristics that became enhanced with practice. However, this
directionality was not coincident with orthogonal and parallel directions of the solution
manifold. A state-space model with two sources of noise replicated not only the observed
temporal structure but also its deviations from orthogonality. Simulations suggested that
practice-induced changes were associated with an increase in the feedback gain and a
subtle weighting of the two noise sources. The directionality in the structure of variability
depended on the scaling of the coordinates, a result that highlights that analysis of
variability sensitively depends on the chosen coordinates.
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INTRODUCTION
The past decade has seen a number of studies on motor control
and learning that used variability as a window into the under-
lying processes of skill acquisition. This approach is particularly
promising when the task is redundant and affords a manifold of
solutions that achieve the desired task result. Such mathematically
infinite set of equivalent solutions may be advantageous as the
complex sensorimotor system abounds with noise arising at all
levels, ranging from variations in ion channel kinetics to ampli-
tudes of action potentials (Faisal et al., 2008). As long as these
variations remain within the space of equivalent solutions, the
task goal can be achieved.

As early as 1933, Stimpel reported in a throwing task that
the release variables showed covariation, such that the throwing
precision was better than expected from the individual variables’
variability (Stimpel, 1933). More recently, several lines of research
have presented support that the sensorimotor system exploits the
redundancy of the task by channeling variability into the direc-
tions that have no detrimental effect on the task goal (Scholz

and Schöner, 1999; Müller and Sternad, 2004, 2009; Todorov,
2004; Cusumano and Cesari, 2006; Cohen and Sternad, 2009;
Sternad et al., 2011). For example, using the well-established
mathematical concept of null space, the Uncontrolled Manifold
(UCM) approach showed that variations in direction parallel to
the solution manifold, that are deemed irrelevant to task achieve-
ment and, hence, “uncontrolled,” were larger than variability in
direction orthogonal to the manifold (Scholz and Schöner, 1999).
Hence, the ratio of variances in the two directions expresses the
motor system’s sensitivity to the solution manifold. A related
mathematical approach by Cusumano and Cesari showed similar
results (Cusumano and Cesari, 2006). The same concept has been
part of the stochastic optimal feedback control framework, where
only errors in directions irrelevant for task achievement are penal-
ized by the cost function (Todorov and Jordan, 2002; Todorov,
2004).

Sternad and colleagues developed mathematically different
tools in their Tolerance, Noise, Covariation approach (TNC) eval-
uating variability in terms of its cost to the result, rather than by
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its covariance in the space spanned by execution variables (Müller
and Sternad, 2004, 2009; Cohen and Sternad, 2009). Tolerance
evaluates sensitivity to noise in result space, Covariation eval-
uates the covariation between execution variables, and Noise
quantifies the stochastic portion. Parsing the variability into the
three components showed that all three contributed to per-
formance improvement, albeit in different degrees: Tolerance
improved fastest, while Covariation and Noise had significantly
longer time scales (Cohen and Sternad, 2009). Note that unlike
the covariance-based approaches, the TNC-analysis differenti-
ates between changes in the overall magnitude of variability
or noise and the extent of anisotropy or covariation. It also
evaluates changes in the mean, which are outside the scope of
covariance-based approaches. The current study complements
the TNC-approach by an analysis of directionality in the temporal
fluctuations of the data.

Some recent studies added further support to the hypothesis
that the CNS channels its excess noise into “do-not-care” direc-
tions by examining the temporal structure of data. Projecting
individual data in execution space into the directions parallel and
orthogonal to the manifold, Dingwell and colleagues showed that
the sequential structure in the data showed correlations, i.e., per-
sistence and anti-persistence that differed in the two directions. In
their study on treadmill walking, the execution space was defined
by stride length and duration with constant (treadmill) speed
defining the solution manifold (Dingwell et al., 2010). As hypoth-
esized, the stride-to-stride fluctuations showed anti-persistence
orthogonal to the manifold, a finding that was interpreted as
error corrections. In a virtual reaching task the same group cor-
roborated the directional differences, but showed persistence in
both directions (Dingwell et al., 2012). A recent study on bipedal
standing demonstrated higher temporal correlations of postu-
ral variability in task-equivalent directions (Verrel et al., 2012).
Lastly, van Beers and colleagues reported that in a simple reach-
ing task lag-1 autocorrelations were positive in the task-irrelevant
direction, while they were zero in the task-relevant direction (van
Beers et al., 2013).

While these studies provided evidence that humans are sensi-
tive to task-relevant directions, several others examined whether
this sensitivity is a result of practice. However, surprisingly, the
results were not as consistent as expected. For example, Latash
(2010) reviews results on UCM-based studies and reports that
changes in anisotropy with practice were brought about by a
decrease of variability in the orthogonal direction, increase in
the parallel direction, or both. Dingwell’s temporal analysis of
directionality in reaching could not identify changes across two
days of practice. As possible causes for these inconsistencies
the researchers invoke insufficient duration of practice, or task-
related differences, even though task complexity is not a very
satisfying explanation. To address the issue of practice dura-
tion, the present study will examine performance in the skittles
task over 6 days of practice, encompassing familiarization to
perfection.

One further possibility for these evident differences in the
results may be found in methodological issues that ultimately lead
to a conceptual problem. Common to the analyses of data dis-
tributions and their fluctuations over time is that the analyses

are performed in the space of execution variables. For example,
analysis of multi-joint coordination with respect to a single target
of the endpoint is analyzed in the space of joint angles; variabil-
ity in gait speed is analyzed in the space of stride amplitude and
duration; throwing accuracy is analyzed in the space spanned by
position and velocity at ball release. The underlying assumption
is that this space is the space in which the CNS “makes deci-
sions.” This is a daring assumption, as scientists do not yet know
the coordinates of the CNS. Sternad and colleagues recently high-
lighted that the analysis of variability with respect to a null space is
highly sensitive to the coordinates that the analysis is conducted in
(Sternad et al., 2010). For example, for the UCM-based identifi-
cation of anisotropy in joint space, the results depend on whether
joint angles are defined in relative or absolute coordinates. As it
remains unresolved which coordinates the CNS “cares about,” an
analysis that depends sensitively on a choice of coordinates may
be misguided. Further, if the execution space does not have a
metric, orthogonality is not defined. Hence, if directions are not
pre-defined, the analysis of directionality is tenuous. This study
presents a novel method that identifies the direction of maxi-
mal structure of variability in a given space, without an a priori
assumption about what is orthogonal to the solution manifold.
We will further show by example how rescaling of coordinates can
change the results.

In overview, this study will examine skill learning by analy-
sis of variability in both its distributional and temporal struc-
ture. We test four hypotheses: (1) Tolerance and Covariation,
not Noise, are the major factors underlying long-term perfor-
mance improvement. (2) Trial-to-trial dynamics in execution
space has preferred directions with respect to the solution man-
ifold. (3) This direction-dependent organization becomes more
pronounced with practice. (4) The anisotropy in the distribu-
tional and temporal structure is in directions orthogonal and
parallel to the solution manifold. For the identification of pre-
ferred directions in execution space, we will introduce a novel
method that is a priori independent of orthogonality.

METHOD
PARTICIPANTS
Thirteen healthy participants (10 males and 3 females, 23–48
years) performed the experimental task after having been given
informed consent in accordance with the Institutional Review
Board of the Pennsylvania State University. They were right-
handed according to the Edinburgh inventory for handedness
(Oldfield, 1971). None of the participants had any disorders or
injuries in their right limb motor function and they had normal
or corrected vision.

EXPERIMENTAL SETUP
The experimental task emulated the ball game skittles or teth-
erball where players throw a ball that is suspended on a string
from a vertical post to hit a target skittle on the other side of the
post (Figure 1A). The experimental set-up rendered this task in a
virtual environment where the participant performed a real fore-
arm movement and initiated the release of a ball by releasing the
index finger from a contact switch; the ball only existed virtually
(Figure 1B). The ball’s trajectory traversed a virtual workspace
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FIGURE 1 | (A) Real skittles task. (B) The virtual skittle task: participants
operated a manipulandum in the horizontal plane that is shown online as a
rotating paddle on the visual display. Ball release is triggered by releasing a
switch with the index finger. (C) Visual display showing the paddle, the ball

trajectory, the center post, and the target. The task result was defined as the
distance between the trajectory and the target skittle, shown after execution
in a zoom window. (D) The target color turned red when the distance error
was below 1.2 cm.

that was projected for the participant onto a back-projection
screen showing a top-down view (Figure 1C). The participant
stood ∼0.6 m in front of the projection screen (width: 2.50 m,
height: 1.80 m). The real-time display showed both the move-
ments of the manipulandum and the ball traversing the center
post toward the target. The participant was instructed to hit the
center of the target. The error was defined as the shortest distance
between the ball trajectory and the center of the target. At the end
of a trial the ball’s trajectory close to the target was shown in an
enlarged window for 1 s after the throw to display the accuracy of
the throw (Figures 1C,D). The post in the center of the workspace
was represented by a circle of 16 cm diameter. The circular target
had a radius of 1.5 cm and was located 50 cm above and 20 cm to
the right of the center post. The participant’s forearm movement
was represented by a solid bar of 12 cm length that was fixed at

one end, 50 cm below the center of the post. A circle of 1.5 cm
radius representing the ball was “held” and “released” at the free
end of the virtual arm by pressing the finger on the contact switch.
The display was generated in Visual C++ and projected via an
LCD projector (TLP 680U, Toshiba) onto the back-projection
screen. The visuomotor delay between the movement and the
online display was measured to be 22 ± 0.5 ms.

Participants placed their right forearm on a horizontal manip-
ulandum padded with foam; the participant’s forearm was fixed
to it with Velcro straps. The height of the manipulandum was
adjusted to be comfortable for each participant so that his/her
upper arm was at ∼45◦ and the forearm was horizontal. The
rotating end of the manipulandum was fixed to a vertical support
with its axis of rotation directly underneath the elbow joint. The
angular position of the manipulandum was recorded via a 3-turn
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potentiometer attached to the axis of rotation and was recorded
at a sampling frequency of 700 Hz and displayed in real time on
the screen (75 Hz update rate).

At the free end of the manipulandum a wooden ball, the
size of a tennis ball, was attached. The participant grasped the
ball with his/her right hand. A force transducer was attached
to the ball located underneath the index finger. To simulate the
throw of the ball, the participant moved the arm in an outward
horizontal motion and released the ball by extending the index
finger, thereby decreasing the force on the sensor. The arm move-
ment resembled that of a Frisbee toss. Both the movements of
the arm and the simulated trajectory of the ball were displayed
on the screen. The ball’s trajectory, as determined by the sim-
ulated physics of the task, traversed an elliptic path around the
center post as determined by the model equations (see Cohen
and Sternad, 2012 for details). This trajectory was not immedi-
ately intuitive to participants, and they had to learn the mapping
between the real arm movements and the ball’s trajectories in the
projected workspace. Hence, the task was novel, even for those
participants that had experience and skill in throwing.

The ball trajectories were simulated online based on the mea-
sured angle and derived velocity at the moment of release. To get
the best possible online reading of release velocity and reduce con-
tamination from measurement noise, the last 10 samples of the
angular position before the moment of release were fitted with
a straight line. This regression slope was used as estimate of the
angular velocity at the release moment. This calculation added
minimal delay to the display (in the order of 1 μs). To evaluate
the error, the minimum distance between the trajectory and the
center of the target was calculated.

The elliptic trajectories of the ball were generated by a two-
dimensional model in which the ball was attached to two orthogo-
nal massless springs at the origin of the coordinate system (x = 0;
y = 0 in the middle of the post), generating a restoring force pro-
portional to the distance between the ball and the center post. Due
to the restoring forces, the ball was accelerated around the center
post. At time t, the equations for the position of the ball in x- and
y-directions were:

x (t) = Ax sin (ωt + ϕx) e− 1
τ (1)

y (t) = Ay sin
(
ωt + ϕy

)
e− 1

τ (2)

The amplitudes Ax and Ay and the phases ϕx and ϕy of the sinu-
soidal motions of the two springs were calculated from the ball’s
x–y position and velocity at release, which were converted into
angle and velocity with respect to the center post. The motions
were lightly damped to approximate realistic behavior, with the
parameter τ describing the rate of decay for the trajectory (for
more detail, see Müller and Sternad, 2004).

EXPERIMENTAL PROTOCOL
For this study participants stood with their shoulder axis at
a right angle to the screen, the right shoulder close to the
screen. The experimenter instructed participants to throw the
ball in clockwise direction performing a forearm rotation as in
a Frisbee backhand (see exemplary ball trajectory in Figure 1C).

The position of the subject was chosen to make the forearm
movement as comfortable as possible to avoid any biomechanical
constraints. Aside from the zoomed image of target and trajec-
tory, no explicit quantitative feedback was given. However, if the
trajectory passed within 1.2 cm of the center of the target, the tar-
get color changed from yellow to red to give a reward signal for
successful performance (Figure 1D). The experimenter encour-
aged participants to achieve as many of these hits as possible. Note
that the error distance was always positive, similar to a darts board
where the bull’s eye is surrounded by iso-error circles.

Participants performed 180 throws per day. After each set of
60 throws, participants were allowed to take a short break. The
sequence of throws was sufficiently engaging and the partici-
pants reported neither physically nor psychologically fatigued.
Each participant performed 180 throws on each of the 6 days. The
intervals between collection days were one or two days.

ANALYSIS OF DATA DISTRIBUTIONS: TOLERANCE, COVARIATION,
AND NOISE
With the goal to quantify how skill changes with practice, the
TNC analysis was applied that parses variability into three com-
ponents. The three components are expressed as costs, quanti-
fying how much of the observed performance error could be
improved by a change of Tolerance, Noise, and Covariation (for
details see Cohen and Sternad, 2009). Tolerance or T-Cost eval-
uates how much performance could be improved if the same
data distribution were in a more error-tolerant location in execu-
tion space. It is calculated by shifting the data in execution space
to determine the best location with smallest performance error.
Noise or N-Cost is a measure of how random scatter around the
mean execution affects performance. It is calculated by shrink-
ing the amplitude of the dispersion toward its mean to determine
the scatter that produces minimum error. Covariation or C-Cost
quantifies to what degree covariation among execution variables
takes advantage of the orientation of the solution manifold. It is
calculated by recombining the observed data in execution space
and evaluating any improvement in the average results.

ANALYSIS OF DIRECTIONALITY IN EXECUTION SPACE
Figure 2A shows the data distributions of 3 days plotted in exe-
cution space spanned by angular position and velocity of the
paddle; the color shades code the magnitude of error for all
position-velocity combinations if the ball were released at this
position-velocity combination. The set of zero-error solutions
defines the solution manifold, which is a one-dimensional set
shown in white. The black areas indicate position-velocity com-
binations, i.e., ball releases, where the ball would hit the center
post. The blue symbols are the 180 throws per day showing a small
decrease in scatter with practice, concentrating increasingly more
on the light-colored area, where errors are small or 0; on day 6 a
more elliptic distribution in alignment with the solution manifold
is visible. For the time series analysis the data of the six practice
days were first pooled into three blocks to ensure a sufficient num-
ber of data: Block 1: day 1 and 2, Block 2: day 3 and 4, Block
3: day 5 and 6. Figure 2B shows the associated time series of the
execution variables (position and velocity) and the result variable
(error) across the entire 6 days (or three blocks) with 1080 throws.
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FIGURE 2 | (A) Data of one participant represented in execution space. The
horizontal and vertical axis shows position and velocity, respectively, and the
color encodes the error. The data distribution changes across days by

decreasing the amplitude of scatter and its distribution/covariation with
respect to the solution manifold. (B) Typical time series of angular position,
velocity, and error across the 6 experimental days.

The time series analyses on the directionality of changes from
trial to trial were conducted in execution space spanned by angu-
lar position and velocity. However, due to the different units of
position and velocity, distance, and orthogonality are not defined
in this space (Sternad et al., 2010). A commonly used procedure
to overcome this problem is to normalize the units by dividing the
variables by their standard deviations:

x1 (i) = (p (i) − p)/σp (3)

x2 (i) = (v (i) − v)/σv (4)

where x1(i) and x2(i) denote normalized position and velocity,
i is the trial number, p(i) and v(i) position and velocity, p and v
are means of one block, and σp and σv are standard deviations
of position and velocity of the same block. Note that this proce-
dure assumes that covariance can be used to define a metric and
that the metric only has diagonal entries. This normalization was
performed for each participant and each block separately.

To assess whether the trial-to-trial changes had a directional
preference, the data of one block were projected onto a line
through the center of the data set:

xθ (i) = x1 (i) cosθ + x2 (i) sinθ (5)

where xθ(i) denotes the new variables after projection onto the
line. The angle θ of this line was defined as 0 when parallel
to the x-axis or position direction; θ = 0.5π rad when paral-
lel to the y-axis or velocity direction (Figure 3A). The direction
parallel to the solution manifold was defined as θpar for each
individual; the direction orthogonal to the solution manifold
was defined as θort. The center of the data was defined by the
median of the position and the median of the velocity data for
each block of each individual (the median was chosen to avoid
any bias from outliers). This line was then rotated through 0
< θ < π rad, in 100 steps of 0.01∗π rad. At each rotation angle,
the data were projected onto the line (Equation 5) and the time
series of the projected data was evaluated as described next. Note
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FIGURE 3 | (A) Execution space and illustration of the rotation axis used to
analyze temporal fluctuations in different directions. The execution space
was normalized by the individual subject’s standard deviations. The green
line shows the solution manifold (SM); the black lines show the directions
parallel to the x- and y-axes; the red lines show the rotation axes parallel to
and orthogonal to the solution manifold, respectively. The one-dimensional
time series xθ(i) is obtained by projecting the variables onto the rotation
axis as expressed in the equation. (B) The time series at the top shows
xθ(i) for the rotation angle θ with the maximum autocorrelation value, the
bottom time series shows xθ(i) for the rotation angle θ with the smallest
autocorrelation.

that this point of rotation was close, but not exactly on the
solution manifold, especially early in practice. (The average dis-
tance from the solution manifold measured in terms of error
was 1.21 ± 1.0 cm.)

ANALYSES OF TIME SERIES
We evaluated the temporal structure of xθ(i) for each rotation
angle θ of the line through the center of the data set. At each
angle both autocorrelation and detrended fluctuation analysis
(DFA) were computed. From the autocorrelation analysis, only
the lag-1 coefficient (abbreviated as AC1) was reported. To assess
temporal structure beyond lag-1 the DFA was evaluated. DFA is a
modification of the root-mean square analysis of a random walk

(Feder, 1988) but is less sensitive to non-stationarities and noise
in the data.

For the DFA analysis, the time series was first cumulatively
summed to obtain an integrated time series; this integrated series
was linearly detrended within a given window n. The root mean
square value of the detrended time series F(n) was calculated
for different window sizes n. Plotting F(n) over n on a log-log
scale the scaling index SCI was obtained from the slope of the
linear regression of logF(n) over log(n). This scaling index quan-
tifies the long-range correlations of the time series. If SCI =
0.5, the time series has no time correlation as in white noise.
If 0.5 < SCI < 1.0, the time series is categorized as a station-
ary signal with fractal noise (Eke et al., 2002). In this case, he
increasing and decreasing tendency of the time series persists.
Using sets of 60 trials the slope was calculated for window sizes
between 6 and 20 trials. Although this size of the samples is
relatively short compared to other applications of the DFA anal-
ysis, we opted for this size to avoid discontinuities that may
arise from subjects taking short breaks. We calculated both AC1
and SCI in the time series of angular position, velocity, and
error. Figure 3B shows two time series of the projected data for
the two directions θ that showed the minimum and maximum
values of the autocorrelation analysis (which was very close to
the minimum and maximum of the DFA). The difference in
fluctuation profile is visible by eye. For comparison, autocor-
relation and DFA analyses were also performed on surrogate
data. These surrogate data were produced by randomly shuf-
fling the time series. These analyses were conducted 20 times
to obtain mean results and standard deviations similar to the
data.

STATISTICAL ANALYSES
The changes in error and T-Cost, C-Cost, and N-Cost across prac-
tice were fitted by exponential functions to assess the different
time scales of change. Pearson correlations between TNC-Costs
and error revealed contributions of the costs to error. The direc-
tionality analysis of AC1 and SCI, specifically its maximum and
minimum values, θmax and θmin, were analyzed with t-tests and
Smirnov-Grubbs tests to compare them against directions of the
solution manifold and the angle and velocity direction. Two-way
repeated-measures ANOVAs were used to assess changes with
practice. The significance level was set to 0.05. Analyses were
conducted with SPSS v16.

RESULTS
PERFORMANCE IMPROVEMENT
Before analyzing variability as a function of practice we first
assessed whether participants indeed showed the expected perfor-
mance improvement. The average error, or distance to the target,
in sets of 60 trials was plotted to establish that participants showed
the expected learning. The individual error profiles of the 13 sub-
jects were fitted by exponential functions and are summarized in
Figure 4A (to avoid clutter, data points are not shown). While 3
participants performed with small error from the beginning of
practice and showed no improvement (P2, P6, P12, shown by
red lines), 10 individuals showed a visible decrease in error; the
R2-values of their exponential fits were between 0.26 and 0.95.
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FIGURE 4 | (A) Performance errors for all 13 participants across 18 sets of
60 trials each. The blue and red lines represent the exponential fits for all 13
individuals. Red lines indicate the three subjects that did not show any
improvement across practice. The insert shows the average error across
all 13 subjects; the error bars denote standard errors across participants.
(B) Participant averages of T-Cost, C-Cost, and N-Cost across all 18 sets in
the 6 days of experiments.

The inset of Figure 4A shows the average decrease of error of all
13 participants across the 18 sets. From an initial 9.19 cm in the
first set, the average error declined exponentially to 2.98 cm in
the final set; the R2 of the exponential fit was 0.96, the time con-
stant was 1.07. Subsequent analyses were conducted with both
inclusion and exclusion of the three individuals who showed no
improvement, but the statistical results were not affected.

TOLERANCE, COVARIATION, AND NOISE
Figure 2A showed an exemplary participant’s data distributions
in execution space on Days 2, 4, and 6. As could be seen, the rel-
atively isotropic data distributions on Day 2 and Day 4 showed
a visible change on Day 6, where the data started to cluster
along the solution manifold. Interestingly, the data showed little
decrease in the overall amplitude of dispersion. This observation

Table 1 | Results of correlations between error and T-Cost, C-Cost,

and N-Cost (Pearson correlation coefficients r).

Participant T-Cost C-Cost N-Cost

r Sig r Sig r Sig

1 0.979 *** 0.923 *** 0.368

2 0.734 *** 0.773 *** 0.808 ***

3 0.774 *** 0.778 *** 0.148

4 0.914 *** 0.981 *** −0.041

5 0.961 *** 0.177 −0.157

6 0.639 ** 0.481 * 0.524 *

7 0.966 *** 0.205 −0.138

8 0.915 *** 0.747 *** −0.118

9 0.729 *** 0.479 * 0.267

10 0.591 ** −0.061 0.248

11 0.934 *** 0.930 *** 0.370

12 0.831 *** 0.313 0.630 **

13 0.904 *** 0.591 * 0.565 *

Mean 0.836 0.563 0.267

SD 0.130 0.330 0.316

Participants 2, 6, and 12 are the ones that did not show any improvements in the

error measure (Figure 4).
*p < 0.05; **p < 0.01; ***p < 0.001.

was quantified by T-Cost, C-Cost, and N-Cost. Figure 4B shows
the three costs averaged over all participants across the 18 practice
sets. T-Cost shows a rapid decline and reaches a plateau at set 3,
which corresponds to the end of day 1. C-Cost also shows a visible
decline which lasts over the first 6 sets, leading to a plateau there-
after. N-Cost did not show any obvious improvement. To directly
test whether error was reduced via changing C-Cost, Pearson cor-
relations were performed between error and T-Cost, C-Cost, and
N-Cost for each participant. Table 1 summarizes these results:
as expected, both T-Cost and C-Cost showed significant positive
correlations with error in most participants. While causal conclu-
sions cannot be made, these results nevertheless strongly suggest
that Tolerance and Covariation in the execution variables lead to
the observed reduction in error. In contrast, N-Cost only showed
4 significant positive correlations. Three of these correlations were
seen in the 3 participants that showed low error scores right from
the beginning (P2, P6, P12). This suggests that small changes in
N-Cost may still account for some of the changes across the trial
sets in the three very good subjects. In sum, these results were
consistent with Hypothesis 1.

AUTOCORRELATION AND SCALING INDEX
Exemplary time series at the minimum and maximum value of
AC1 were already presented in Figure 3B to visualize that the
structure of their fluctuations was different. Figure 5 summarizes
the results of AC1 and SCI as a function of direction θ. Note that
θ = 0 rad was defined as parallel with the x- or position-axis and
θ = π/2 rad was parallel with the y-axis or velocity in execution
space. Hence, the orthogonal and parallel direction, indicated by
the green vertical lines, differed for each subject as they centered
their data at slightly different locations with respect to the solu-
tion manifold. The six panels show the average AC1 and SCI
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FIGURE 5 | Lag-1 autocorrelations AC1 of x(i) and scaling index SCI of

the detrended fluctuation analysis as a function of rotation angle across

the three blocks. The solid red lines show the average modulation of AC1
and SCI across all participants and the shaded areas represent one standard

deviation around this mean. The triangles denote the minimum and maximum
value of AC1 and SCI; the vertical green lines are the direction of the solution
manifold with its variations across participants, denoted by the dashed lines.
The horizontal blue lines are the results of the surrogate analyses.

over all participants for each direction θ across the three blocks;
the shaded areas around the solid red line indicate one standard
deviation across all participants.

While AC1 was predominantly positive, the values also showed
a clear modulation with θ, especially in Blocks 2 and 3. Similarly,
SCI was consistently between 0.5 and 1.0 and showed an equiv-
alent modulation with θ. The directions at which AC1 and SCI
reached their minima and maxima, θmin and θmax, are indicated
by triangles. The blue lines show the results for the time-shuffled
surrogate data with each value representing an average from 20
repeated shuffles. As expected, these results did not show any
modulation across θ and were close to 0 and 0.5, respectively.
Hence, the data showed persistence in all directions but of varying
degree, as stated in Hypothesis 2.

Figure 6 summarizes the changes of the AC1 and SCI minima
and maxima across the three blocks showing the means across
participants and their standard deviations. Both extrema of AC1
at θmax and θmin were subjected to a 3 (block) × 2 (variable)
repeated-measures ANOVA. It rendered a significant interaction,
F(2, 24) = 4.69, p = 0.019, and both main effects were significant:
block, F(2, 24) = 7.43, p = 0.003, and variable, F(1,12) = 264.96,
p < 0.001. Post-hoc tests showed that AC1 at θmin decreased
significantly from Block 1 to Block 2 and to Block 3 (p <

0.05). These observations were consistent with Hypothesis 3. In
contrast, AC1 at θmax did not show significant changes across
blocks. The same ANOVA for SCI showed equivalent results:
the interaction was significant, F(2, 24) = 7.85, p = 0.002, as were

the main effects for block, F(2, 24) = 8.89, p = 0.001, and vari-
able, F(1, 12) = 202.23, p < 0.001. The values of θmin changed
significantly from Block 1 to Block 2 and to Block 3 (p < 0.05),
while θmax did not show any significant differences among blocks.

In Hypothesis 4 we stated that long-range correlations should
be maximal in the direction parallel to the solution manifold and
minimal in the direction orthogonal to the solution manifold.
Returning to Figure 5 shows SMpar and SMort averaged across
all participants depicted by the green vertical lines; the thin lines
indicate one standard deviation across all participants. To test
Hypothesis 4 the angles of SMpar and θmin and of SMpar and θmax

were computed for each subject and compared by pairwise t-tests.
The results were only partially consistent with this hypothesis: the
minima were close to SMort, while the maxima significantly dif-
fered from SMpar. The average angle differences between SMort

and θmin across all subjects and all three blocks were: 0.24 ± 0.39
rad for AC1 and 0.23 ± 0.42 rad for SCI. The average differences
between SMpar and θmax across all three blocks were 0.55 ± 0.45
rad for AC1 and 0.36 ± 0.65 rad for SCI. These differences were
statistically significant from zero (p < 0.01) and did not show
any changes across blocks. These results were not consistent with
Hypothesis 4.

To further assess whether the observed extrema indicated sen-
sitivity to the solution manifold as hypothesized, or whether they
were merely coincident with the measured variables angular posi-
tion and velocity, Smirnov-Grubbs tests evaluated whether θmin

and θmax differed from the position or velocity direction, 0 or
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FIGURE 6 | Average results of the autocorrelation AC1 and scaling

index SCI at maxima and minima directions across the three blocks.

π/2 rad, respectively. Results showed that for both AC1 and for
SCI θmin was not significantly different from π/2 rad (velocity) in
Block 1, but differed in Block 2 and Block 3 (p < 0.01). The auto-
correlations at θmax were not significantly different from AC1 in
the position direction or 0 rad in all blocks (p > 0.05). In sum,
the direction of maximum persistence was observed in the angle
direction.

MODELING
The observed results showed significant changes in the structure
of variability, both in distributions and in their temporal fluctu-
ations. However, several aspects in the time series analyses also
deviated from the expectations formulated in Hypotheses 2 and
4: the autocorrelations were overall positive (counter Hypothesis
2), and the maxima and minima in the temporal structure devi-
ated from the parallel and orthogonal directions defined by the
solution manifold (counter Hypothesis 4). A simplified model
of skittles was used to shed light on these unexpected observa-
tions and suggest possible mechanisms that account for them. The
model will not only reproduce the positive autocorrelations and
its changes with practice, it will also show how a rescaling of the
execution coordinates may sensitively skew the results, highlight-
ing that reliance of the analysis on a pre-defined orthogonality in
execution space may be misguided.

The model was kept as simple as possible, yet captured the
essential component of the skittles task—redundancy. The sim-
plification made the task similar to a line-reaching task: There

FIGURE 7 | The model task: two execution variables (x1, x2) and one

result variable e are defined in execution space. Error e is defined by
minimum distance between x and xTarget in execution space.

were two execution variables x1 and x2 (like position of an end-
point in the plane) and there was one result variable, the error
e, or distance from reaching the line (Figure 7). The task was to
change execution (x1, x2) to be on the line, defined by x1 – x2 = 0.
The error e or result variable was defined as the minimum dis-
tance between the execution (x1, x2) to the solution manifold.
Note that this error definition simplifies the skittles task as it
excludes the dynamics of the ball trajectory. In skittles, the ball
dynamics creates an approximately parabolic increase of the error
orthogonal to the solution manifold; the linearization in this sim-
plified model is acceptable for a sufficiently small neighborhood.
Importantly, the model has redundancy, mapping two execution
variables into one result variable, analogous to the skittles task.

To simuate trial-by-trial learning and the increasing anisotropy
in the data distributions with practice, the main assumption
was that the execution variables x(i) = [x1, x2]T were updated
based on the previous states. The error was defined as e(i) =
x(i)–xTarget, where x(i) was the output state and xTarget was the
target state defined in the workspace. The target state defined the
point closest to x(i) on the line or solution manifold:

xTarget =
[

x1 + x2

2
,

x1 + x2

2

]T

(6)

Consequently, the error was defined as:

e (i) = x(i) − xTarget =
[

x1 − x2

2
,

x2 − x1

2

]T

(7)

The motor command u(i + 1) was obtained by subtracting the
error signal e(i) from the previous ith motor command u(i). The
error was weighted by the feedback gain B. Two sources of addi-
tive noise were included: rE was added to the motor command
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u(i) at the execution level; at the planning level rP was added to
obtain the updated command u(i + 1) (van Beers, 2009). Both
noise sources were independently drawn from a Gaussian distri-
bution with 0 mean and unit amplitude η(i). The coefficient ω

defined the relative magnitude of the two noise sources rP and rE.
The model is summarized as follows:

x(i) = u(i) + rE(i)

e (i) = x(i) − xTarget

u(i + 1) = u(i) − Be(i) + rP(i + 1) (8)

rP(i) = ωη1(i)

rE(i) = (1 − ω)η2(i)

In forward simulations, 50 values for the feedback gain B
(between 0 and 0.5), and 20 values for the relative noise mag-
nitude ω (between 0 and 1) were tested. For each of the 1000
parameter combinations we simulated 100 runs with different
initial values for the noise sources rE and rP; the initial value
for u(0) was always (0, 0). For each simulation output, auto-
correlations AC1 were calculated for all direction angles, using
the same procedure as for the experimental data. Given that
the autocorrelation analysis and the DFA rendered consistent
results in the experimental data, the analyses were confined to the
autocorrelations.

SIMULATION RESULTS
Exemplary data distributions and time series in the principal
directions for three different parameter combinations are pre-
sented in Figure 8. The first simulation result with B = 0 and
ω = 0 illustrates the case where planning noise rP was 0 and there
was no error fed back to the update of u(i). Not surprisingly,
the distribution in x1–x2-execution space was isotropic and the
time profiles over 1000 iterations of the error signal in both par-
allel and orthogonal directions were random, as indicated by the
AC1 values close to 0. The second row illustrates how the pres-
ence of the second noise source changed the distribution and the
temporal structure of the noise: the distribution became larger
and the autocorrelations in the two directions became positive.
Note that the feedback gain B was still 0. The third row illustrates
the case where both noise sources (ω = 0.10) and error feed-
back (B = 0.20) were present: the distribution shows covariation
and the autocorrelations parallel to the solution manifold were
positive, while they were close to 0 in the orthogonal direction.
Despite these significant differences in distribution and temporal
structure in the three parameterizations, the overall magnitude of
the variability was similar.

Figure 9 summarizes the simulation results for selected
parameter combinations in the same format as the data summary
in Figure 5. Setting ω = 0.10 as in Figure 8, Figure 9A illustrates
the values of AC1 across all direction angles θ for three dif-
ferent feedback gains B. The parallel and orthogonal directions
with respect to the solution manifold were symmetric at 0.25π

and 0.75π rad. The simulations revealed that the magnitude of

FIGURE 8 | Exemplary simulation results for three different parameter combinations (1000 iterations). Distribution of data in execution space and time
series of error in two directions in execution space.
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FIGURE 9 | Simulation results for autocorrelation AC1 as a function of direction angle. (A) B = 0.20 and ω = 0, 0.05, 1.0. (B) ω = 0.1 and B = 0, 0.05,
0.40. The values depict average results from 100 simulation runs for each direction angle.

B selectively affected AC1 in SMort: zero feedback gain led to
positive AC1 values in directions SMpar and SMort; for increas-
ing feedback gains the modulation of AC1 at SMort became more
pronounced and AC1 became slightly negative. This is intuitive
and reflects the increasing influence of corrections that minimize
the error. Figure 9B depicts the effect of the relative noise ampli-
tudes ω on AC1, keeping B fixed at 0.20. The modulation of AC1
at SMpar showed a decrease of AC1 for smaller ω. Hence, the
experimentally observed modulations across direction angles and
the signs of AC1 reflect the relative magnitude of the noise and
feedback parameters.

A different summary of the AC1 results for all B and ω param-
eter combinations is shown in Figure 10A, results at SMpar are
shown in the left panel, at SMort in the right panel. The magnitude
of AC1 is represented by color, with red showing positive val-
ues and blue showing negative values. At SMpar AC1 was mainly
affected by the noise ratio ω; at SMort AC1 was affected by both
variables ω and B. As is to be expected, the larger the feedback
gain B, the more negative the autocorrelations in the orthog-
onal direction. For small feedback gains, the noise ratio has a
significant effect on AC1, which disappears at higher values of B.

Figure 10B shows the magnitude of AC1 at SMpar and SMort

for a constant ω = 0.08. The specific ω-value was chosen because
it generated similar AC1 results as seen in the experimental data.
When AC1 was plotted as a function of feedback B, the fig-
ure shows that AC1 at SMort decreased, while AC1 at SMpar

maintained almost the same value throughout. This pattern was
qualitatively and quantitatively similar to the change of AC1 at
θmax and θmin in the experimental results (Figure 6). It sug-
gests that changes in performance were mainly brought about by
changes in the feedback gain.

One important observation is that, different from the exper-
imental results, the minima and maxima of AC1 in Figure 9
were exactly at 0.25π and 0.75π rad. This is to be expected for
the linear manifold that is defined at 0.25π rad (45◦) in execu-
tion space. Furthermore, the simple model assumed an execution
space with two variables of the same units such that the space had
a metric and orthogonality was defined. This contrasts with the

FIGURE 10 | (A) Simulation results for lag-1 autocorrelation AC1 at θpar

and θort as a function of feedback gain B and relative noise ratio ω.
Color bar (right) represents the autocorrelation values. (B) Simulation
result for lag-1 autocorrelation (AC1) at θpar and θort as a function of B
with ω = 0.08 that shows a similar pattern as the experimental results
as a function of practice.

experimental case where the two execution variables had differ-
ent units and normalization was applied to allow for a distance
measure and definition of angle. However, this normalization is
necessarily a crutch as we do not know the true metric of the
variables inside the nervous system.

To illustrate how a scaling of the variables may thwart orthog-
onality and thereby the minima and maxima of the temporal
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structure, we performed model simulations with different types
of rescaling of the execution variables. To emulate the case where
the state variables may be rescaled “inside the CNS”, we conducted
simulations where x(t) was rescaled at each iteration. Specifically,
we included a rescaling of x1: x′

1(i) = α(u1(i) + rE), where α

is the scaling factor. Setting the system parameters to B = 0.10
and ω = 0.08, we performed the simulations with α = 2 and
α = 0.5. In a first set of simulations the solution manifold was not
changed. This case emulated the interpretation that the solution
manifold was defined in external physical space, where the units
are given. In a second set of simulations, the solution manifold
was adapted to the rescaling of variables.

Figure 11 summarizes the results: the panels on the left show
the data from 1000 runs in execution space together with the
linear solution manifold (black line). The panels on the right
display AC1 of the time series as a function of direction, in the
same format as the experimental and model data in Figures 5, 9,
respectively. The red line represents the mean of 1000 runs for
each of the 100 directions, the green vertical lines denote the par-
allel and orthogonal directions of the solution manifold. Panels
(A) and (B) show the simulation results with SM: x1 = x2, α =
0.5; panels (C) and (D) shows results with SM: x1 = x2, α = 2;
panels (E) and (F) show the case of SM: x1 = 2x2 and α = 2.
Note that in Figure 11D, the parallel and orthogonal directions
of the solution manifold were unchanged, while they were shifted
in Figure 11F. The minima and maxima of AC1 are highlighted
by the triangles as in the experimental results in Figure 5.

The results for both rescalings exhibited a modulation similar
to what was shown in Figure 9: however, the maxima and min-
ima were no longer at SMpar and SMort. Comparing these results
with the experimental data in Figure 5 shows that the skewing in
the scaling where α = 2 was very similar to the data. The maxi-
mum is to the left of SMpar and the minimum is close to SMort.
This skewing was relatively unaffected by the concomitant scaling
of the solution manifold. Additional simulations were run where
we rescaled all data after the simulations were completed showed
similarly skewed modulations. These modeling results suggest
that the experimental deviations from the hypothesized pattern
can be ascribed to such scaling in the variables at one stage of the
processing. However, as the model is a simplification of the actual
system dynamics, we do not venture to equate this model exercise
with the actual variable scaling in the central nervous system.

DISCUSSION
The hypothesis that humans are sensitive to the direction of the
solution manifold has found support in several lines of research
that examined variability with respect to task-relevant and irrel-
evant dimensions. Using the skill of goal-directed throwing, our
experimental and modeling work presents new results that reveal
how practice changes both the distributional and temporal struc-
ture of data. Further, our new analysis method highlights an
important issue: variability analysis is sensitive to the coordinates.
As we do not know the coordinates that the CNS operates in,
results may be skewed.

We summarize our results with respect to the four hypothe-
ses: (1) Tolerance and Covariation increased with practice, and
T-Cost and C-Cost correlated with the decreasing error; Noise,

FIGURE 11 | Model analysis with one of the two execution variables

scaled. The left panels show the data distributions of 1000 simulation runs
plotted in execution space. The black line denotes the solution manifold.
The right panels summarize the results of the autocorrelation analysis
plotted as a function of direction. The red lines with the shaded bands
represent the mean and standard deviations across 1000 simulations for
each of the 100 directions; the green vertical lines denote the parallel and
orthogonal direction of the solution manifold. Panels (A) and (B) show the
simulation results with SM: x1 = x2, α = 0.5; panels (C) and (D) shows
results with SM: x1 = x2, α = 2; panels (E) and (F) show the case of SM:
x1 = 2x2 and α = 2. In all cases, the minima and maxima of the
autocorrelations, marked by triangles, have shifted away from the
orthogonal and parallel directions of the solution manifold. The simulations
in panel (D) show very similar results to the experimental data in Figure 5.

estimated as N-Cost, remained constant. (2) The temporal
dynamics of the trial-by-trial data exhibited preferred directions;
the structure showed mostly persistence, as quantified by positive
autocorrelations and a scaling index greater than 0.5. (3) Six days
of practice not only led to improvement in overt performance,
but also to an increasing directionality in the temporal structure
in execution variable. Model results suggest that this change can
be ascribed to increases in the feedback gain. (4) The directions
with maximum and minimum structure in the fluctuations were
not coincident with the directions orthogonal and parallel to the
solution manifold. Simulations of a simplified model of the skit-
tles task helped to interpret these findings. Similar deviation were
obtained when applying a simple linear rescaling to one of the
state variables.
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TOLERANCE, COVARIATION, AND NOISE
The decomposition of variability into Tolerance, Covariation, and
Noise revealed that the main contribution to practice-induced
decrease of error stemmed from Tolerance and Covariation, as
estimated by T-Cost and C-Cost. Noise or N-Cost remained con-
stant throughout the 6 days. These differential results for the
three components highlighted that practice-induced decreases in
variability, commonly quantified by decreasing standard devi-
ations of error or other performance variables, should not be
immediately equated with a reduction of stochastic processes.
While the present data suggested that stochastic processes were
not affected by practice, previous results on 15 practice sessions
gave evidence that reduction in noise processes may just have
a very slow time scale (Cohen and Sternad, 2009). As in pre-
vious studies, Tolerance was a significant factor contributing to
error reduction and dropped early in practice. T-Cost quantifies
how the data mean, or location in execution space changed with
practice. To account for this change in the mean, the direction-
ality analysis was centered for each individual and each block.
Covariation had a slower time scale but also significantly con-
tributed to performance improvement. The different time scales
of the three components probably reflect the multiple time scales
of plastic changes in the nervous system (Kiebel et al., 2008). Note
that this parsing of variability into Tolerance, Covariation, and
Noise is unique to the TNC-approach. Analyses that focus on the
anisotropy using covariance-based methods with respect to mean
performance cannot parse the overall decrease in noise, nor detect
a possible bias (Latash et al., 2002; Latash, 2008). The fact that
Covariation became more pronounced provided the basis for the
analysis of temporal fluctuations in different directions.

DIRECTIONALITY AND PERSISTENCE IN TEMPORAL DYNAMICS
The trial-to-trial dynamics in the directional execution variables
showed a clear modulation of structure in different directions,
supporting the overall hypothesis that humans are sensitive to
the orientation of the solution manifold. This result is consis-
tent with Dingwell’s and van Beers’ results, although the studies
differ in the kind of structure seen in orthogonal and parallel
directions. Initially, negative correlations were expected orthog-
onal to the solution manifold, compared to persistence in the
goal-irrelevant direction, as was reported by Dingwell and col-
leagues in their study on treadmill walking (Dingwell et al., 2010).
In contrast, our study revealed positive autocorrelations in both
orthogonal and parallel directions, similar to what van Beers et al.
(2013) report for three different tasks. One possible reason for
Dingwell’s results could be that successive strides are not indepen-
dent, and the temporal sequence of strides can induce negative
autocorrelations. For example, any small measurement error in
temporally adjacent variables, such as overestimating one stride
length, has the inverse effect on the next stride and underesti-
mates the next stride. Similarly, inertial “carry-over” effects can
also enhance this observation. See also the “clock-motor” model
on rhythmic timing by Wing and Kristofferson where the effect
of noise creates negative lag-1 autocorrelations into the sequence
of inter-response intervals. As the authors point out, these nega-
tive autocorrelations are simply due to the temporal adjacency of
intervals in the presence of a noisy “clock,” not corrective feedback
processes (Wing and Kristofferson, 1973a,b).

As the model simulations made explicit, the effect of two added
noise sources could lead to positive autocorrelation obscuring
the effect of possible corrections. Negative autocorrelations only
emerged when the feedback gain became relatively large. One
other potential account for the persistence in the data is that
subjects did not have direct error information. One challenge in
the skittles task is that the visible error is non-linearly mapped
onto the execution variables position and velocity at ball release.
Hence, subjects may try a “blind” gradient descent to find the best
release parameters. Previous studies suggested that when knowl-
edge of results was withheld or when visual information was
occluded, the temporal structure of the task output was not white
noise but had persistent characteristics (Blackwell and Newell,
1996; Baddeley et al., 2003; Miyazaki et al., 2004). The fact that
in our study the scaling index and the autocorrelations showed a
consistent pattern gives evidence that there were both short-range
and long-range correlations, the latter reflecting system-inherent
“memory processes” (Hausdorff et al., 1995). However, without
further modeling, the exact nature of these processes remains
elusive.

PRACTICE-INDUCED CHANGES IN TEMPORAL DYNAMICS
Our study is the first to show that the directional structure in
trial-to-trial dynamics changed with practice. The recent study by
Dingwell et al. (2012) on learning a virtual reaching task with two
different solution manifolds, defined by the product and ratio of
reach time and distance, reported a learning effect across 2 days
only in the overt error and variance, not in the directionality of
temporal structure. This may be due to the fact that the GEM
analysis was only performed across 2 days, excluding the initial
practice period. Using the rotation analysis, our study showed
that the directional modulation in both autocorrelation and scal-
ing index became more pronounced with practice. The initial
lack of modulation reflects that subjects did not yet know the
directionality of execution space. This is not surprising, as in the
skittles task the solution manifold is not visible to the performer
but is defined by the mediating dynamics of the ball trajectory.
Without knowledge of the orientation of the solution manifold,
exploration is needed that may occur in a gradient-descent-like
fashion that leads to the persistent structure, as mentioned above.
After this exploratory stage, trial-to-trial dynamics became more
directionally sensitive and the structure in the orthogonal direc-
tion changed from initially positive autocorrelations to white
noise and eventually very small negative values.

This result could be replicated with the simple model by a suit-
ably chosen noise ratio and feedback gain. Given that the noise
component in the experimental data was constant throughout the
6 days, the noise ratio was fixed to 0.08; assuming further an ini-
tially small or zero feedback gain, an increase in the gain to ∼0.20
reproduced the experimental modulation of temporal dynamics.
Both the decrease in AC1 in the orthogonal direction and the rel-
ative invariance in the parallel direction could be replicated in the
model results.

DIRECTIONALITY OF TEMPORAL STRUCTURE AND SENSITIVITY TO
COORDINATES
One important caveat for many approaches that analyze structure
of variability is that these analyses are fundamentally sensitive
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to the chosen coordinates (Müller et al., 2007; Smeets and Louw,
2007; Sternad et al., 2010; Campolo et al., 2013). As demonstrated
in our earlier study, variability analyses that rely on the covari-
ance matrix are highly sensitive to the definition of the variables
that span the space. This caveat holds for the large array of well-
established methods, ranging from principal component analysis
to isomap and others. While the mathematical tools are not ques-
tioned, when applying these methods to analyze hidden variables
used by the nervous system, potential pitfalls arise. How easily the
results can be thwarted was highlighted at the example of a UCM
analysis of a multi-joint pointing task (Sternad et al., 2010). This
study illustrated that results from two different, but equally valid
mathematical definitions of joint angles—which are related by a
simple linear transformation—differed: a synergy was indicated
by anisotropy in one joint space, while not in the other. As shown
in our study, the TNC-analysis is also not immune to this prob-
lem, but the sensitivity of the three components is less severe, due
to the fact that structure of variability is evaluated in result space
defined by the task (Campolo et al., 2013).

A second limitation of a covariance-based decomposition of
variance in execution space is that they can only be applied in
a space that has a defined metric, and thereby, orthogonality. The
execution space in the skittles task is defined by angle and velocity,
which have different units and, hence, no metric. This is simi-
lar to the GEM-analysis of walking, where the space was spanned
by stride length and period. A straightforward remedy is to nor-
malize the variables by their variance, as was done by Dingwell
and colleagues and also in our skittles analysis. However, this cor-
rection by no means guarantees the right metric from which to
define orthogonality. The fundamental issue is that the analyses
rely on the assumption that the chosen execution variables span
the space that is relevant for the nervous system. Until we know
the coordinates used by the nervous system, this remains a tenu-
ous assumption (Lacquaniti and Maioli, 1994; Fasse et al., 2000).

Clearly, there is no easy remedy. For the analysis of our experi-
mental data we first normalized the coordinates by their variance
before conducting time series analyses. We then introduced a
rotation analysis that did not a priori depend on the definition
of orthogonality but scouted the data for the direction with struc-
ture that may be relevant for the controller. The results showed
that the direction of maximum persistence was not exactly paral-
lel to the solution manifold and also did not significantly differ
from the angle direction. The direction of minimum structure
was coincident with the orthogonal direction and did differ from
velocity, although only after some practice. These deviations from
the straightforward expectations may be accounted for by the fact
that the variables measured in external coordinates do not have to
map onto the variables used by the nervous system.

To demonstrate such possible distortions, we used the sim-
ple model and introduced a linear rescaling of one of the state
variables to skew the directions of maximum and minimum tem-
poral correlations. Importantly, such rescaling can take place
at many stages of the system: It can be applied at each iter-
ation loop inside the system, it can happen independent of a
concomitant rescaling of the solution manifold, it can include
or exclude the noise, or it may only be applied on the data
distributions. We modeled some select possibilities. The results
showed that a linear rescaling of one variable indeed produced a
skewing of the directionality of the data. Interestingly, this rescal-
ing closely replicated the observed distortions in the pattern of
modulation in the experimental data. While we did not intend
to quantitatively model the experimental data, the results illus-
trate that the observed deviations in the directionality of the
temporal structure may be caused by such internal rescaling.
We venture the speculation that such results may provide clues
about the relative scaling of the coordinates inside the nervous
system.

CONCLUSIONS
In summary, this experimental and modeling work demonstrated
that the acquisition of a complex motor skill with a redun-
dant task space is associated with an increasing anisotropy in
data distributions and a corresponding increase in directional-
ity in their temporal structure. The experimental results showed
that the Tolerance, Covariation, and Noise of the data distribu-
tions changed with different time scales. The time-dependent
characteristics in execution variables give further support that
trial-to-trial dynamics is structured in directions specific to the
solution manifold. A new analysis method highlighted that an a
priori assumption of orthogonality in execution space may thwart
the results. Model simulations suggested that the performance
improvement is largely accounted for by changes in one essential
system parameter—feedback gain. Further, analysis of the model
highlighted how a rescaling of the variables can thwart the direc-
tionality of the maximum temporal correlations. These results
may encourage future studies on variability to be less reliant on
predefined directions. Rather, the search for directionality could
help to reveal the coordinates important to the central nervous
system.
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