AUTHOR=Heath Matthew , Holmes Scott A., Mulla Ali , Binsted Gordon TITLE=Grasping time does not influence the early adherence of aperture shaping to Weber's law JOURNAL=Frontiers in Human Neuroscience VOLUME=6 YEAR=2012 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2012.00332 DOI=10.3389/fnhum.2012.00332 ISSN=1662-5161 ABSTRACT=

The “just noticeable difference” (JND) represents the minimum amount by which a stimulus must change to produce a noticeable variation in one's perceptual experience (i.e., Weber's law). Recent work has shown that within-participant standard deviations of grip aperture (i.e., JNDs) increase linearly with increasing object size during the early, but not the late, stages of goal-directed grasping. A visually based explanation for this finding is that the early and late stages of grasping are respectively mediated by relative and absolute visual information and therefore render a time-dependent adherence to Weber's law. Alternatively, a motor-based explanation contends that the larger aperture shaping impulses required for larger objects gives rise to a stochastic increase in the variability of motor output (i.e., impulse-variability hypothesis). To test the second explanation, we had participants grasp differently sized objects in grasping time criteria of 400 and 800 ms. Thus, the 400 ms condition required larger aperture shaping impulses than the 800 ms condition. In line with previous work, JNDs during early aperture shaping (i.e., at the time of peak aperture acceleration and peak aperture velocity) for both the 400 and 800 ms conditions scaled linearly with object size, whereas JNDs later in the response (i.e., at the time of peak grip aperture) did not. Moreover, the 400 and 800 ms conditions produced comparable slopes relating JNDs to object size. In other words, larger aperture shaping impulses did not give rise to a stochastic increase in aperture variability at each object size. As such, the theoretical tenets of the impulse-variability hypothesis do not provide a viable framework for the time-dependent scaling of JNDs to object size. Instead, we propose that a dynamic interplay between relative and absolute visual information gives rise to grasp trajectories that exhibit an early adherence and late violation to Weber's law.