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cortex ( fusiform gyrus; early visual areas extending into extrastri-
ate visual areas) and anterior cortex (inferior frontal gyrus) (see 
Henson, 2003; Schacter et al., 2007, for reviews).

These joint observations pose a basic puzzle for systems and 
cognitive neuroscience: How is it that widespread reductions in 
neural activity can support improvements in behavioral perform-
ance? One possibility is that processing speed is facilitated so that 
the neural response to a repeated object occurs earlier relative to 
when it was fi rst seen. Single-cell recording studies in monkeys, 
however, have demonstrated that the onset of fi ring-rate responses 
to repeated/familiar stimuli in prefrontal (e.g. Rainer and Miller, 
2000) and inferotemporal cortex (e.g. Li et al., 1993; Freedman 
et al., 2006; McMahon and Olson, 2007; Anderson et al., 2008) is 
not temporally shifted to earlier time points. Rather, activity is 
reduced throughout the duration of the fi ring-rate response after 
initial onset. Another possibility is that experience leads to “sharper”, 
more selective fi ring rate responses, conveying more information 
about stimulus identity at lower average rates, thereby increasing 
the effi ciency of the system (Desimone, 1996; Rainer and Miller, 
2000; Baker et al., 2002; Freedman et al., 2006; see Grill-Spector 
et al., 2006, for review). However, repetitions over time scales that 
are relevant for most priming studies in humans, such as within 
a single day’s recording session, have tended to show the largest 
fi ring rate decreases in cells that respond best to a given stimu-
lus, consistent with a proportional scaling-down of fi ring rates (Li 
et al., 1993; Miller et al., 1993; McMahon and Olson, 2007). One 

INTRODUCTION
Experience with objects that is gained through vision or other 
sensory modalities leads to long-lasting improvements in the 
speed and accuracy of object identifi cation, a behavioral phe-
nomenon referred to as “repetition priming” (Tulving and 
Schacter, 1990; Schacter and Buckner, 1998). Priming has played 
a critical role in our understanding of the brain organization 
of long-term memory in that it can be dissociated neuropsy-
chologically from more explicit forms of memory such as free 
recall or recognition, and it does not depend exclusively on the 
hippocampus and related medial temporal lobe structures (e.g. 
Warrington and Weiskrantz, 1974; Graf et al., 1984; see Squire, 
1992, for review). Instead, it appears to refl ect alterations to long-
term perceptual, conceptual, decision and/or response-related 
representations that are stored in the neocortex (e.g. McClelland 
et al., 1995; Dobbins et al., 2004; Wig et al., 2005, 2009; Horner 
and Henson, 2008; Race et al., 2009b; see Schacter et al., 2007, 
for review). Both electrode recordings in non-human primates 
(e.g. McMahon and Olson, 2007; Peissig et al., 2007) and func-
tional imaging studies in humans (e.g. van Turennout et al., 2000; 
Koutstaal et al., 2001; Vuilleumier et al., 2002) reveal a network 
of brain areas involved in repetition priming with object pic-
tures. Overwhelmingly, regions thought to be involved in prim-
ing display repetition suppression (RS), a reduction in fi ring 
rate or blood-oxygen level dependent (BOLD) response with 
repeated stimulus presentation, including regions in posterior 
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recent proposal that can resolve these observations is that reduced 
 activity refl ects greater temporal coordination and synchronization 
of neural responses, leading to more effi cient neural processing (e.g. 
Gotts, 2003; Ghuman et al., 2008).

Gotts (2003) used computational modeling to explore how 
reduced neural fi ring might produce a more effi cient system. 
By including biologically proportionate levels of excitatory and 
inhibitory inputs and short-term plasticity mechanisms within the 
computer simulations, stimulus repetition was found to lead to a 
proportional scaling of fi ring rates while simultaneously enhanc-
ing local neural synchrony (see also Bazhenov et al., 2005). This 
enhanced synchrony was in lower oscillation frequencies (e.g. 
0–15 Hz), was phase-locked to the onset of the stimulus (i.e. 
“evoked” synchrony), and produced a stronger, more reliable and 
synchronized input to downstream regions of the system. As fi r-
ing rate decreased in the model, neural synchrony increased in 
conjunction with performance and metabolic effi ciency improve-
ments (see Figure 1). This low-frequency coherent activity was 
also present in the model’s excitatory synaptic currents, permitting 
predictions in population-level imaging methods, such as BOLD 
fMRI, microelectrode recordings of local fi eld potentials (LFPs), 

and source-localized EEG/MEG, that are thought to refl ect local 
synaptic activity more than spiking activity, per se (e.g. Logothetis 
et al., 2001). The model was primarily aimed at addressing short-
term repetition effects lasting tens of seconds in single-cell record-
ing and fMRI-Adaptation experiments (e.g. Grill-Spector and 
Malach, 2001; Miller et al., 1993), but it nevertheless raised the 
possibility that more synchronized, coherent activity might be the 
means by which reduced activity can produce behavioral facilita-
tion in longer-term repetition priming paradigms (see Salinas and 
Sejnowski, 2000; Engel et al., 2001, for similar proposals). In line 
with this basic view, a recent MEG study (Ghuman et al., 2008) 
using source-localized data reported enhanced long-range cou-
pling (phase-locking) between prefrontal and temporal cortex for 
repeated compared to novel stimuli at 10–15 Hz. The onset latency 
of these increases in long-range phase-locking (∼200–250 ms post-
stimulus) also predicted the magnitude of repetition priming 
observed across subjects.

More effi cient and temporally coordinated activity is a prom-
ising idea in explaining how reduced activity can drive improved 
identifi cation performance. This idea generally predicts that fl uc-
tuations in neural activity over local populations of cells that are 
evoked by the stimulus onset should be larger for repeated stimuli, 
as well as more coherent and phase-locked across distant, yet ana-
tomically connected cortical regions that are involved in task per-
formance. EEG/ERP (event-related potential) studies of stimulus 
repetition and priming that measure voltages recorded from the 
surface of the scalp have occasionally found evidence in support 
of this general hypothesis, with larger amplitude ERPs observed to 
repeated or familiar stimuli as early as 150–170 ms post-stimulus 
(e.g. Schendan and Kutas, 2003; Scott et al., 2006; Peissig et al., 
2007). However, many studies have failed to fi nd effects this early, 
with the earliest differences between novel and repeated condi-
tions commonly being observed between 200–300 ms and extend-
ing out until 700–800 ms post-stimulus (e.g. Bentin and Peled, 
1990; Rugg et al., 1992, 1997; Paller and Gross, 1998; Swick, 1998; 
Olichney et al., 2000; Henson et al., 2003, 2004; Kiefer, 2005). The 
nature of these repetition effects has also not always been consistent 
with larger evoked responses to repeated stimuli, with a number 
of studies reporting decreases in amplitude or power with repeti-
tion (e.g. Fiebach et al., 2005; Gruber and Muller, 2005; Race et al., 
2009a). However, the spatial resolution of raw scalp EEG signals is 
quite coarse compared to microelectrode recordings and source-
 localized EEG/MEG signals. It is possible that poor spatial resolu-
tion and/or averaging data across individual subjects with different 
onset latencies or source locations is eliminating earlier effects. The 
contributions of deeper sources of activity shown by fMRI stud-
ies to be central to stimulus repetition and priming effects (e.g. 
fusiform gyrus) are also diffi cult to estimate in raw scalp record-
ings without source modeling. On these points, it is interesting 
to note that recent micro- and transcranial electrode recording 
studies in monkeys have shown strong and reliable enhancement 
of evoked responses for familiar stimuli, corresponding to larger 
low-frequency (∼5–15 Hz) activity fl uctuations (inferotemporal 
cortex: Anderson et al., 2008; occipital cortex: Peissig et al., 2007; 
for similar fi ndings in cat visual cortex, see von Stein et al., 2000). 
Additionally, and importantly, Anderson et al. (2008) showed that 
larger evoked responses in the local fi eld potential (LFP) occurred 

FIGURE 1 | Gotts (2003) model. (A) Architecture of the model. One thousand 
simulated input neurons projected to 250 excitatory and 50 inhibitory neurons, 
which were themselves probabilistically interconnected. Parameters were fi t 
to independent sources of in vitro physiological data for pyramidal cells and 
fast-spiking interneurons. (B) With short-term stimulus repetitions (each 
tetanus was 500 ms in duration), the model neurons showed decreases in 
fi ring rates while simultaneously showing increases in spike synchronization 
(coherence; green curve) at low oscillation frequencies (<15 Hz), as well as 
speeded response times and increased metabolic effi ciency (not shown).
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experiment: Novel Range = 2.1–1030.6 s; Novel Mean = 376.5 s; 
Novel SD = 280.6 s; Repeated Range = 76.2–1040.3 s; Repeated 
Mean = 652.7 s; Repeated SD = 263.0 s).

DATA ACQUISITION
Neuromagnetic data were recorded at 600 Hz with a bandwidth 
of 0–150 Hz using a CTF 275 MEG system (VSM MedTech Ltd., 
Canada) composed of a whole-head array of 275 radial 1st-order 
gradiometer/SQUID channels housed in a magnetically shielded 
room (Vacuumschmelze, Germany). Synthetic 3rd gradient balanc-
ing was used to remove background noise on-line. Fiducial coils 
were placed on the nasion, left preauricular, and right preauricular 
sites of each participant. These were energized before and after each 
run to localize each participant’s head with respect to the MEG sen-
sors. In a separate session, high-resolution T1-weighted anatomical 
images of each subject’s brain were obtained with a 3-Tesla whole-
body scanner (GE Signa, Milwaukee, WI). The MEG data were then 
co-registered with these scans during source localization.

MEG DATA ANALYSIS
Data were edited and fi ltered to remove environmental and physi-
ological artifacts. An evoked time-frequency analysis was fi rst per-
formed on the raw sensor data for each subject to confi rm that the 

simultaneously with standard RS in the spiking activity. The earli-
est increases in the evoked response occurred at approximately 
170-ms post-stimulus (the well-characterized N170: e.g. Jeffreys 
et al., 1992; Tanaka and Curran, 2001; Carmel and Bentin, 2002; 
Rossion et al., 2002).

To examine whether local, low-frequency increases in the mag-
nitude of the evoked response (i.e. evoked power) might underlie 
repetition priming in humans, we utilized magnetoencephalog-
raphy (MEG) with event-related source localization (ER-SAM; 
Cheyne et al., 2007). The prediction of the Gotts (2003) model 
and recent electrode recording studies in monkeys (Peissig et al., 
2007; Anderson et al., 2008) is that local stimulus-evoked power at 
low-frequencies should increase for repeated stimuli within brain 
regions previously identifi ed in fMRI studies as showing RS dur-
ing visual object priming (i.e. bilateral fusiform, striate/extrastri-
ate, and lateral prefrontal cortices; e.g. van Turennout et al., 2000; 
Koutstaal et al., 2001; Vuilleumier et al., 2002). The onset of the 
earliest of these evoked power changes in occipitotemporal brain 
regions (e.g. fusiform gyrus in humans) should also be observed at 
times that are comparable to those observed in monkeys (∼170-ms 
post-stimulus). Accordingly, our study looked at the time course 
of repetition-related changes in evoked power within these pre-
defi ned anatomical regions of interest in two specifi c low- frequency 
bands that have been identifi ed as relevant in prior studies of 
priming and stimulus repetition, as well as observed here in a 
time- frequency analysis of our average sensor data: (1) 5–15 Hz, 
theta/alpha (von Stein et al., 2000; Gotts, 2003; Duzel et al., 2005; 
Ghuman et al., 2008), and (2) 15–35 Hz, beta (Duzel et al., 2005; 
Race et al., 2009a).

MATERIALS AND METHODS
PROCEDURE
Seventeen right-handed normal volunteers (Mean Age = 28.82, 
range 22–37; 8 males) gave informed consent following NIH 
guidelines and participated in the MEG study. During scanning, 
subjects were shown gray-scale pictures of objects selected from 
12 categories (fruits, vegetables, animals, tools, utensils, weapons, 
instruments, toys, clothing, body parts, furniture, and vehicles) and 
were instructed to name each item covertly as quickly as possible 
and to press a button as soon as they identifi ed each item (Figure 2). 
Pictures were displayed for 300 ms, followed by a variable inter-
stimulus interval (1700–3200 ms) during which a fi xation cross 
was displayed on the screen. Ten objects with distinct names from 
each category were shown, with half of the items appearing once 
(List A = 60 items) and half the items appearing three times (List 
B = 60 items). Presentation of List A or B as novel or repeated 
was counterbalanced across subjects, and the items in the two lists 
were equated in name frequency. In addition, 60 phase-scrambled 
pictures of objects were shown. Novel pictures and fi rst presen-
tation of the to-be-repeated items were then collapsed for data 
analysis (“Novel”) as were the second and third presentation of 
repeated items (“Repeated”). This resulted in the comparison of 
120 Novel items with 120 Repeated items, providing greater power 
for our MEG source localization. Averaging across the two coun-
terbalanced item orders, the average duration between Novel and 
Repeated stimuli was 4.6 min, with largely overlapping presenta-
tion of the two trial types (from time = 0 at the beginning of the 

FIGURE 2 | Task and experimental design. (A) Subjects were instructed to 
name single objects covertly. Stimuli were presented for a duration of 300 ms, 
followed by a randomly chosen inter-stimulus interval (ISI) ranging from 1700 
to 3200 ms, resulting in a single-trial duration of 2000–3500 ms. Subjects 
were instructed to press a button as soon as they knew the name of the 
object, and response times were recorded. (B) Graphical depiction of the 
basic experimental design. Pictures in List A were always Novel (presented 
only once during the experimental run). Pictures in List B were presented a 
total of three times, with the fi rst presentation included as Novel, and the fi nal 
two presentations included as Repeated (BRepeat). Phase-scrambled versions of 
the stimuli randomly intervened between intact pictures, and Lists A and B 
were counterbalanced as Novel versus Repeated across subjects.
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Changes in 5–60 Hz power during the stimulus at each source 
location could then be evaluated with a mixed effects ANOVA, 
with time bin as the fi xed effects factor (fi ve levels) and subject as 
the random factor (N = 17). The main effect of time bin was then 
thresholded for each source location at an alpha level of p < 0.005 
(corrected for multiple comparisons using False Discovery Rate, 
Genovese et al., 2002, within the grey-matter mask: q < 0.004), 
and fi nally conjoining this mask with the a priori anatomical ROIs 
resampled to a spatial resolution of 7-mm isotropic.

Band-limited power analyses
Time-varying source power estimates for Novel and Repeated trials 
were calculated for the two frequency bands of interest (5–15 and 
15–35 Hz) in a manner very similar to that just described for esti-
mating stimulus-related changes in 5–60 Hz power. However, sepa-
rate covariance matrices were computed for Novel and Repeated 
trials (N = 120 trials each) and for the 5–15 and 15–35 Hz bands, 
resulting in four sets of beamformer weights (Novel 5–15 Hz, 
Repeated 5–15 Hz, Novel 15–35 Hz, and Repeated 15–35 Hz). 
Virtual time-series data were then similarly averaged in the time 
domain, with evoked source power for Novel and Repeated trials at 
5–15 and 15–35 Hz quantifi ed in fi ve separate time bins of 100 ms 
as the log

10
 ratio of power in each time bin relative to the 100-

ms pre-stimulus period. Group analyses were performed in AFNI 
(Cox, 1996) after re-scaling sources to the standard deviation and 
transforming subjects’ volumes into Talairach coordinates. Separate 
mixed-effects repeated measures ANOVAs were conducted in each 
frequency band (5–15 and 15–35 Hz) for each anatomical ROI, 
with Condition (Novel, Repeated) and Time Bin (0–100, 100–200, 
200–300, 300–400, 400–500 ms) serving as the fi xed effects factors 
and Subjects as the random factor. Each ANOVA permitted testing 
of the main effects and interactions of the fi xed factors, as well as a 
test of the grand mean across all conditions against zero (indicating 
increases or decreases in event-related power relative to the pres-
timulus period, collapsing across Condition and Time Bin). Data 
for individual subjects were averaged across sources within each 
ROI such that each subject contributed 2 (Condition) × 5 (Time 
Bin) power estimates per ROI and frequency band. A modifi ed 
Bonferroni correction (Keppel, 1991) was applied such that the 
number of ANOVAs conducted per ROI (2 frequency bands = 2 
tests) was accounted for (corrected to alpha = 0.05), but the choice 
of ROIs (fi ve total: striate/extrastriate, L/R fusiform, L/R prefrontal) 
was permitted without correction given that they were determined 
a priori based on BOLD fMRI studies. Given this allowance, we per-
formed an additional check on the likelihood that our results could 
be observed due to chance using more sensitive permutation tests 
(Maris and Oostenveld, 2007). Permutation tests use Monte Carlo 
simulation to calculate the chance probability of an event or com-
bination of events by randomly re-labeling data across conditions 
(such as Novel and Repeated) and re-performing the same family 
of statistical tests, keeping track of the number of random iterations 
in which a signifi cant result was observed. For the permutation tests 
conducted here, one iteration involved the random relabeling of the 
Novel and Repeated conditions for each subject and the recalcula-
tion of the mixed effects ANOVAs for each ROI × frequency band 
combination; this process was then repeated for a total of 10,000 
iterations. Finally, for those ROIs exhibiting  signifi cant effects, we 

two frequency bands of interest (5–15 and 15–35 Hz) were indeed 
relevant and appropriate for the current dataset. For each subject, 
time epochs of sensor data during which stimuli were presented 
were fi rst averaged across all trials in the time domain (Novel and 
Repeated trials from −200- to 500-ms post- stimulus; N = 240) 
and then processed using the Stockwell Transform (Stockwell 
et al., 1996). The initial and fi nal 100 ms of each stimulus epoch 
were ignored in order to eliminate edge artifacts in the Stockwell-
 transformed data. The resulting evoked time-frequency spec-
trograms were then normalized to the average of the −100–0 ms 
pre-stimulus period, log-transformed, and then averaged across 
sensors and subjects.

Event-related synthetic aperture magnetometry (ER-SAM, 
Cheyne et al., 2007) was then used to: (1) help identify anatomical 
regions of interest (ROIs), and (2) attribute sources to time-varying, 
band-limited power in the two frequency bands of interest (5–15 
and 15–35 Hz) for Novel versus Repeated trials.

ROI defi nition
Anatomical regions of interest were specifi ed a priori based on 
the location of stimulus-related activity and the existence of RS 
in previous BOLD fMRI studies of visual object identifi cation 
(e.g. Koutstaal et al., 2001; van Turennout et al., 2000; Vuilleumier 
et al., 2002). They consisted of the following anatomical masks 
generated for a standardized, grey-matter segmented brain (N27 
brain, AFNI software, Cox, 1996): bilateral striate/extrastriate 
cortex (Brodmann Areas 17 and 18), left and right fusiform gyri 
(anterior to the occipital notch, Talairach and Tournoux, 1988, 
at a Y-coordinate of −70; ventral to a Z-coordinate of 0), and 
left and right lateral prefrontal cortex (anterior to the precentral 
gyrus at a Y-coordinate of 0). These ROI masks based entirely on 
standardized anatomical coordinates were then combined with the 
MEG data to restrict the masks to those source locations within 
the cortical volume that also showed signifi cant changes (either 
increases or decreases) in evoked power during the stimulus events. 
All 240 stimulus epochs (−100–500 ms after picture onset, pool-
ing Novel and Repeated trials) were extracted for this purpose. 
A single covariance matrix was computed on these unaveraged 
epochs in one broad frequency band (band-pass fi ltered 5–60 Hz). 
Beamformer weights were calculated with a vector lead-fi eld cal-
culation (Sekihara et al., 2001) in 7 mm steps across the volume, 
using a multi-sphere head model derived from individual partici-
pants’ structural MRIs (based on brain shapes). Virtual time-series 
data were then averaged in the time domain, with evoked source 
power during the stimulus quantifi ed in fi ve non-overlapping time 
bins of 100 ms (0–100, 100–200, 200–300, 300–400, 400–500 ms) 
as the log

10
 ratio of power in each time bin relative to the 100-ms 

pre-stimulus period (see Cornwell et al., 2007, for another example 
of the formulation used here). By directly contrasting two time 
windows of virtual data, uncorrelated noise passed through the 
spatial fi lters is factored out of the resulting power ratios and does 
not need to be explicitly estimated. Group analyses were performed 
in AFNI (Cox, 1996) after normalizing each source volume by 
scaling to the standard deviation (reducing the infl uence of inter-
subject global power variability on local source power estimates) 
and then transforming individual subjects’ volumes into a com-
mon Talairach coordinate space (Talairach and Tournoux, 1988). 
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performed follow-up post-hoc tests of Condition for each time 
bin (corrected for fi ve test bins using permutation tests, 10,000 
iterations) to determine the earliest latency of the power differ-
ences due to repetition. Post-hoc tests were also used to determine 
which sources within each ROI contributed signifi cantly to the 
ROI-level effects.

RESULTS
BEHAVIORAL DATA
Paired t-tests performed on the reaction time (RT) data confi rmed 
that there were no signifi cant differences between the novel and 
fi rst presentation of the to-be-repeated items [Novel vs. First 
Presentation: paired t-test, t(16) = −0.99, P < 0.3] or between the 
second and third presentation of repeated items [Second vs. Third 
Presentation: t(16) = −1.76, P < 0.1], allowing us to combine con-
ditions. As expected, we found a signifi cant RT advantage for the 
Repeated compared to Novel stimuli [t(16) = −3.72, P = 0.002] 
(Mean Repeated RT = 519 ms, Mean Novel RT = 572 ms).

TIME-FREQUENCY ANALYSIS OF SENSOR DATA
Previous studies of priming, stimulus repetition and familiarity 
have highlighted the relevance of low oscillation frequencies in the 
ranges of theta/alpha (5–15 Hz: e.g. von Stein et al., 2000; Duzel 
et al., 2005; Ghuman et al., 2008) and beta (15–35 Hz: e.g. Duzel 
et al., 2005; Race et al., 2009a). Therefore, we fi rst confi rmed that 
these frequencies were present in our event-related MEG data by 
conducting an evoked time-frequency analysis of the sensor data 
using the Stockwell (S) transform (Stockwell et al., 1996). The MEG 
signals at each sensor were averaged in the time domain across all 
stimulus events (pooling Novel and Repeated trials), S-transformed, 
normalized to 100 ms of pre-stimulus power, converted to log base 
10, and then averaged across all sensors and subjects. Figure 3 shows 
the resulting average spectrogram. A large increase in evoked power 
was observed in both the 5–15 and 15–35 Hz frequency bands by 
approximately 100-ms post-stimulus, an increase that was more 
transient in the 15–35 Hz band and relatively sustained in the 
5–15 Hz band. While studies of “induced” power (non-phase-
locked) have shown a decoupling of theta and alpha frequencies 
in perception and memory contexts, event-related phase-locked 
components of power are more often coordinated between theta 
and alpha (see Klimesch et al., 2008, for review). Our evoked power 
measurements for these sensor-level data in the 5–15 Hz band also 
show joint increases in theta and alpha frequencies, indicating that 
banding the data is reasonable in this context.

ROI ANALYSES
Having confi rmed that evoked power is increased during the 
stimulus in both the 5–15 and 15–35 Hz frequency bands for 
the sensor-level data, we conducted separate ER-SAM analyses 
in these bands. The source power estimates in fi ve 100-ms time 
bins from stimulus onset were then submitted to Group-level 
ROI analyses using the a priori defi ned, grey-matter-segmented 
cortical masks in Talairach space for striate/extrastriate, left and 
right fusiform gyri, and left and right lateral prefrontal cortex (see 
Figure 4). Separate mixed-effects, repeated measures ANOVAs 
were conducted in each ROI for each frequency band, allowing 
simultaneous evaluation of four band-limited effects: (1) a test of 

the grand mean power (across Condition and Time Bin) against 
zero (i.e. pre-stimulus baseline), (2) a main effect of Time Bin 
(collapsed across Condition), (3) a main effect of Condition (col-
lapsed across Time Bin), and (4) an interaction of Condition with 
Time Bin. We fi rst report the results for the fi rst two effects, as 
they indicate basic evoked power changes relative to a prestimulus 
baseline for a given frequency band, as well as changes in evoked 
power over time during the stimulus. Signifi cant increases in 
evoked power relative to baseline were observed during the stimuli 
in all fi ve ROIs for the 5–15 Hz frequency band [F(1,16) > 15.7, 
P < .003, corrected by modifi ed Bonferroni, for all], as well as in 
the striate/extrastriate [F(1,16) = 29.58, P = 0.0001, corrected] 
and right fusiform ROIs [F(1,16) = 6.54, P = 0.05, corrected] for 
the 15–35 Hz frequency band. Changes in evoked power dur-
ing the stimulus (a main effect of Time Bin) were also observed 
in all fi ve ROIs for the 5–15 Hz band [F(4,64) > 3.59, P < 0.03, 
corrected, for all] and for the 15–35 Hz band [F(4,64) > 4.80, 
P < 0.004, corrected, for all]. These results provide strong evi-
dence of stimulus processing within these frequency bands for 
all fi ve ROIs.

We next examined the main effects of repetition Condition 
(Novel vs. Repeated) on evoked power and the interaction of 
Condition with Time Bin in each ROI. In the 5–15 Hz frequency 

FIGURE 3 | Time-frequency analysis of the evoked MEG response to 

stimuli in the sensor data. Following artifact removal, the MEG responses at 
each sensor to each trial (including both Novel and Repeated trials, from −200 
to 500 ms post-stimulus) were averaged in the time domain, yielding an 
evoked response to the stimulus onset. The trial-averaged data for individual 
sensors were then submitted to the Stockwell (S) transform (Stockwell et al., 
1996) to yield time-frequency spectra, and these spectra were then averaged 
across sensors and across subjects (the initial and fi nal 100 ms are ignored in 
order to eliminate edge artifacts in the transformed data). Shown in color is 
the log10 ratio of power in individual time/frequency bins divided by the 
average power from −100 to 0 ms at each corresponding frequency, with 
Frequency in Hz on the y-axis and Time in seconds relative to stimulus onset 
on the x-axis. The two frequency bands of interest (theta/alpha: 5–15 Hz; beta: 
15–35 Hz) are denoted by dashed lines in the interior of the spectrogram.
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band, we observed a signifi cant main effect of Condition in the 
right fusiform gyrus, with greater evoked power for Repeated 
stimuli [F(1,16) = 7.5, P = 0.03, corrected by modifi ed Bonferroni] 
(see Figure 5A). Post-hoc analyses revealed that power increases 
for Repeated stimuli were signifi cant in the 100–200 ms bin 
(P = 0.046, corrected for fi ve test bins using permutation tests), 
as well as in the 400–500 ms bin (P = 0.0065, corrected for fi ve 
bins), consistent with early evoked power increases for Repeated 
stimuli around 170 ms, as has been recently observed for electrical 
activity in monkey occipitotemporal and inferotemporal cortex 
(Peissig et al., 2007; Anderson et al., 2008). Note that correspond-
ing effects can also be observed in the evoked MEG responses 
of individual subjects (Figure 5B). Similar, but slightly later 
effects were observed in the striate/extrastriate ROI within the 
15–35 Hz band [F(1,16) = 6.1, P = 0.05, corrected by modifi ed 
Bonferroni], with signifi cant increases in evoked power during 
Repeated trials in the 200–300 ms (P = 0.043, corrected for fi ve 
bins) and 300–400 ms bins (P = 0.032, corrected for fi ve bins; 
see Figure 6). A follow-up 3-way Condition × Time Bin × ROI 
(right fusiform, striate/extrastriate) interaction failed to reach 
signifi cance. Additionally, a trend (P = 0.07, corrected by modi-
fi ed Bonferroni) for an interaction between Condition and Time 
Bin was observed in right lateral prefrontal cortex in the 5–15 Hz 
frequency band, with a trend for greater evoked power during 
Repeated trials in the 200–300 ms time bin (P = 0.073, corrected 
for fi ve bins; see Figure 7). It is important to point out that these 
statistics are conservative in the sense that all sources within an 
ROI were included in the average rather than just those reach-
ing signifi cance individually. Those sources that were signifi cant 
individually (P < 0.05, uncorrected) within each of the three ROIs 
are shown in blue in Figures 5–7, with the darkest shades of blue 
indicating the strongest effects (see colorbar in each fi gure for 
signifi cance levels).

Our modifi ed Bonferroni correction for multiple comparisons 
addressed two separate sets of ANOVAs (two frequency bands) 
within each ROI, but it permitted tests in fi ve ROIs without cor-
rection, as these were specifi ed a priori using previous fMRI studies 

(e.g. Keppel, 1991). We carried out an additional set of permuta-
tion tests (Maris and Oostenveld, 2007) in order to address the 
likelihood that the full set of tests that we conducted could have 
yielded our pattern of results by chance. On a given permutation, 
we randomly re-labeled the Novel and Repeated conditions for 
each subject and then re-conducted the same 10 mixed effects 
ANOVAs (5 ROIs × 2 frequency bands) as for the original data. 
We repeated this process for 10,000 permutations and evaluated 
the likelihood that our results could be observed due to chance as 
the proportion of iterations in which at least three individual ROIs 
yielded results at signifi cance levels matching those in the original 
data (allowing any combination of main effects of Condition or 
interactions of Condition × Time Bin). The likelihood of observ-
ing three (or more) ROIs with results matching our hypothesis 
(greater power for Repeated trials) and at equivalent signifi cance 
levels was determined to be P ≤ 0.0071 (71/10,000 permutations). 
Given that the actual results matched our hypothesis with no ROI 
showing opposite effects, this analysis provides strong evidence 
that our pattern of results is not due to alpha infl ation that results 
from testing multiple ROIs.

We had no specifi c predictions about changes in evoked power 
in the gamma frequency range (35–60 Hz) with stimulus repeti-
tion, and we are aware of no studies showing such changes (Gruber 
et al., 2004; Gruber and Muller, 2005, have reported effects in 
scalp EEG for induced, but not evoked gamma). However, evoked 
power increases in the gamma frequency range were apparent in 
the sensor-level data (see Figure 3), and we therefore carried out 
an additional set of unplanned comparisons for band- limited 
data in gamma frequencies (35–60 Hz). While we found signifi -
cant evoked power increases relative to a 100-ms prestimulus 
baseline in several ROIs [striate/extrastriate, left fusiform, right 
prefrontal: F(1,16) > 6.23, P < 0.025, uncorrected, for all], as 
well as signifi cant main effects of Time Bin [striate/extrastriate, 
left and right fusiform, left prefrontal: F(4,64) > 5.02, P < 0.001, 
uncorrected, for all], no main effects of repetition Condition 
or interactions of Condition with Time Bin were observed (all 
P’s > 0.19, uncorrected).

FIGURE 4 | Defi ning the anatomical ROI masks used in the band-limited, 

source-localized MEG analyses. (A) Source locations showing signifi cant 
changes in broadband power (5–60 Hz) during the fi rst 500 ms of stimulus 
processing (fi ve time bins of 100 ms, pooling Novel and Repeated trials) 
(p < 0.005, FDR corrected for multiple comparisons at q < 0.004; Genovese 
et al., 2002). (B) The signifi cant source locations in (A) were combined with 

anatomical regions that were determined a priori based on prior neuroimaging 
studies within a grey-matter-segmented version of the N27 brain (AFNI 
software, Cox, 1996). Separate ROI masks were made for striate/extrastriate 
(shown in blue), Left and Right Fusiform Gyrus (yellow and green, 
respectively), and Left and Right Lateral Prefrontal Cortex (red and 
orange, respectively).
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ROI ANALYSES: EFFECTS ON TOTAL POWER
In this study, we have evaluated the extent to which stimulus repeti-
tion leads to increases in low frequency evoked power. However, 
the selectivity of our observed changes to evoked, as opposed to 

induced or total power (non-phase-locked) cannot be inferred 
from these analyses alone. Accordingly, we conducted a separate 
set of ROI analyses in the same ROIs and frequency bands for local, 
non-phase-locked changes in power. For each subject, rather than 

FIGURE 5 | Increases in evoked low frequency power (5–15 Hz) for 

Repeated stimuli in right fusiform gyrus. (A) Evoked power increases were 
observed for Repeated compared to Novel trials in the band-limited (5–15 Hz), 
source-localized MEG data [blue compared to red curves in right panel]. Power is 
shown in 100-ms time bins, with the time label corresponding to the end of each 
100-ms period (e.g. 200 ms refers to the 100–200 ms bin). Post-hoc tests 
showed that the earliest signifi cant increases were in the 100–200 ms time bin, 
followed by a later increase in the 400–500 ms time bin. Curves were based on 
the entire right fusiform mask (shown in Figure 4). Sources within this mask 
that were signifi cant individually (uncorrected for multiple comparisons) are 
shown in the left panels in shades of blue, with darker shades of blue indicating 
stronger effects (see colorbar for related P-values). Sources within this mask 
that failed to show signifi cant effects individually are shown in yellow. Y- and 

Z-coordinates correspond to the Talairach and Tournoux (1988) atlas. (B) Evoked 
power increases can also be seen in individual subjects, calculated over trials. 
The event related fi eld (left panel) averaged across the Novel and Repeated trials 
is shown for a single subject at the peak source location for the group-level 
power differences in the right fusiform [+35,−42,−16; outlined in (A) with an 
orange square]. The response on each trial was low-pass fi ltered below 20 Hz 
and then baseline-corrected to the mean of the pre-stimulus period (−100–0 ms). 
Squaring the signal at each time sample for each trial then yielded a measure of 
instantaneous power (right panel). A Wilcoxon Rank Sum test revealed that the 
power, averaged over time samples per trial, was greater for Repeated than for 
Novel trials (z = 2.73, P = 0.007). nAm/T (nano Ampere meters per Tesla) is a 
measure of the amplitude of the estimated current dipole. Error bars indicate 
standard error of the mean.
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averaging the virtual time series at each source location in the time 
domain (across trials) prior to calculating power (i.e. ER-SAM, 
Cheyne et al., 2007), more standard non-phase-locked SAM analy-
ses (Sekihara et al., 2001) were carried out in which the power for 

each time bin per trial was calculated fi rst and then averaged across 
trials, producing a measure of “total” power (i.e. event-related, but 
not phase-locked to stimulus onset). Repetition-related changes 
were then evaluated in the 5–15 Hz (theta/alpha), 15–35 Hz (beta), 

FIGURE 6 | Increases in evoked low frequency power (15–35 Hz) for 

Repeated stimuli in striate/extrastriate cortex. Evoked power increases were 
observed for Repeated compared to Novel trials in the band-limited (15–35 Hz), 
source-localized MEG data (blue compared to red curves in right panel). Power is 
shown in 100-ms time bins, with the time label corresponding to the end of each 

100-ms period (e.g. 200 ms refers to the 100–200 ms bin). Post-hoc tests for 
individual 100-ms time bins showed that the earliest signifi cant increases were 
in the 200–300 ms time bin, followed by the 300–400 ms time bin. Curves were 
based on the entire striate/extrastriate mask (shown in Figure 4). Conventions 
are as in Figure 5A.

FIGURE 7 | Increases in evoked low frequency power (5–15 Hz) for 

Repeated stimuli in right lateral prefrontal cortex. A statistical trend 
was observed for a Condition × Time Bin interaction in right lateral 
prefrontal cortex (5–15 Hz) (blue and red curves in right panel correspond 
to Repeated and Novel conditions, respectively). Power is shown in 100-ms 
time bins, with the time label corresponding to the end of each 100-ms period 

(e.g. 200 ms refers to the 100–200 ms bin). Post-hoc tests for individual 
100-ms time bins showed a trend for increases in the 200–300 ms time 
bin. Curves were based on the entire right prefrontal mask (shown in 
Figure 4). Conventions are as in Figure 5A (blue sources indicate a 
signifi cant Condition × Time Bin interaction; see colorbar for 
related P-values).
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as well as the 35–60 Hz (gamma), frequency bands using the same 
mixed-effects ANOVA approach. We applied the same modifi ed 
Bonferroni correction for multiple comparisons that were applied 
during the ER-SAM ROI analyses in order to afford more direct 
comparisons across the evoked power and total power results.

In the 5–15 Hz frequency band, tests of the grand mean power 
(across Condition and Time Bin) against zero (i.e. pre-stimulus 
baseline) revealed signifi cant decreases in total power in stri-
ate/extrastriate, left and right fusiform ROIs [F(1,16) > 23.23, 
P < 0.0004, corrected, for all]. All fi ve ROIs showed a signifi cant 
main effect of Time Bin, with the pattern refl ecting a gradual 
decrease in total power across bins [F(4,64) > 4.20, P < 0.009, cor-
rected, for all]. However, there were no main effects of Condition 
or interactions of Condition with Time Bin. The results when col-
lapsing across repetition condition are consistent with a pattern 
of alpha “desynchronization” that is often observed to stimulus 
onset in induced power analyses (e.g. Klimesch et al., 2008). In the 
15–35 Hz frequency band, tests of the grand mean power against 
zero (i.e. pre-stimulus baseline) revealed signifi cant total power 
decreases (beta desynchronization) in all fi ve ROIs [F(1,16) > 19.17, 
P < 0.001, corrected, for all]. Similarly, signifi cant main effects of 
Time Bin were observed in all ROIs, refl ecting a gradual decrease 
in total power across bin [F(4,64) > 15.38, P < 2.0e−08, corrected, 
for all]. In addition, an interaction of Condition and Time Bin was 
observed in left lateral prefrontal cortex [F(4,64) = 3.68, P < 0.02, 
corrected]. However, interpretation of this interaction was com-
plicated by the fact that none of the individual time bins showed 
signifi cant differences (uncorrected) between Novel and Repeated 
conditions. Lastly, in the 35–60 Hz frequency band, signifi cant total 
power decreases (relative to pre-stimulus baseline) were observed 
in left and right lateral prefrontal cortex [F(1,16) > 12.15, P < 0.007, 
corrected, for both]. Signifi cant main effects of Time Bin were also 
observed in striate/extrastriate, and left and right lateral prefron-
tal cortex, refl ecting a gradual decrease in total power across bin 
[F(4,64) > 3.91, P < 0.02, corrected, for all]. There were no main 
effects of Condition or interactions of Condition with Time Bin 
for total power in gamma frequencies. In all, the analyses of total 
power failed to fi nd strong repetition-related effects in any of the 
three frequency bands, suggesting that the local changes in evoked 
power reported above are associated more specifi cally with phase-
locking to stimulus onset.

CORRELATIONS WITH BEHAVIOR
Comparisons of reaction times (RTs) at the group level showed 
signifi cantly faster RTs to Repeated than to Novel stimuli (see 
Behavioral Data). Given the concomitant increases in 5–15 and 
15–35 Hz evoked power for Repeated stimuli that we observed, also 
at the group level, we evaluated whether more specifi c correlations 
could be observed between evoked power and RT changes over 
subjects. Averaging over source locations that showed signifi cant 
Repeated versus Novel differences at the group level (shown in 
shades of blue in Figures 5–7), we calculated the average power 
difference for each subject in the striate/extrastriate, right fusiform, 
and right lateral prefrontal cortex ROIs. We then correlated these 
power changes with average RT changes (i.e. “priming” magnitude) 
across subjects. We failed to fi nd these more specifi c correlations 
by subject [5–15 Hz in right fusiform ROI: r(15) = 0.271, P < 0.3; 

15–35 Hz in the striate/extrastriate ROI: r(15) = 0.143, P < 0.6; 
5–15 Hz in 200–300 ms time bin of right lateral frontal ROI: 
r(15) = 0.144, P < 0.6]. The lack of fi ndings in this regard could 
be due to weak power (i.e. too few subjects), different localization 
of peak sources across subjects, or the true lack of strong evoked 
power-behavioral correlations.

DISCUSSION
As predicted by recent computer modeling (Gotts, 2003) and elec-
trode recording studies in animals (Peissig et al., 2007; Anderson 
et al., 2008), we observed increases in low-frequency evoked power 
for repeated stimuli in ventral temporal and occipital cortical areas, 
as well as in prefrontal cortex. These repetition-related power 
increases were not observed in non-phase-locked measures of total 
power, indicating that they depended more specifi cally on the phase 
relationship to stimulus onset. These effects were detected early in 
stimulus processing (100–200 ms post-stimulus) for sources attrib-
uted to the right fusiform gyrus, consistent with the timing of 
similar effects observed in microelectrode recordings of local fi eld 
potentials in monkey inferotemporal cortex (Anderson et al., 2008). 
This agreement speaks to the utility of source localizing approaches 
in MEG such as ER-SAM (e.g. Cheyne et al., 2007; Cornwell et al., 
2007). Similar effects have occasionally been observed in transcra-
nial and scalp-recorded EEG/ERP studies (e.g. Schendan and Kutas, 
2003; Scott et al., 2006; Peissig et al., 2007), but most studies have 
not found early increases in ERP amplitude at the time of the N170 
(e.g. Bentin and Peled, 1990; Rugg et al., 1997; Paller and Gross, 
1998; Swick, 1998; Henson et al., 2003; Kiefer, 2005; Race et al., 
2009a). The lack of such effects may have to do with the broad spa-
tial resolution of scalp EEG (i.e. averaging over local current sources 
that do show these effects with those that do not) and/or the absence 
of source modeling in previous studies. While the onset time of 
the repetition effects in our study did not interact signifi cantly by 
ROI, effects appeared to occur slightly later in occipital than in 
fusiform cortex, suggestive of possible feedback effects between 
temporal and occipital cortex. Later effects in occipital relative 
to temporal cortex would be consistent with the predictions of a 
recent Bayesian model of stimulus repetition and learning effects 
(Henson, 2003; Friston, 2005, 2008), in which suppressive feedback 
from higher-level cortical areas “predicts” and constrains activity 
in earlier sensory areas. Future studies with high spatiotemporal 
resolution should examine this relationship in greater detail, per-
haps in electrical recordings that do not require source modeling 
[i.e. microelectrode recordings of LFPs or intracranial EEG, e.g. 
Puce et al., 1999; Canolty et al., 2006].

Our methods in the current study were optimized to detect 
spatially localized changes in evoked power, which are distinct from 
methods used to estimate cross-area phase-locking and coherence. 
Nevertheless, our fi ndings regarding local power changes comple-
ment a recent source-localized MEG study (Ghuman et al., 2008) 
in which responses at task-related sites in prefrontal and temporal 
cortex were more strongly phase-locked (∼10–15 Hz) across areas 
for repeated stimuli. In that study, the latency of the enhancement in 
across-area phase-locking was between 200–250 ms post-stimulus 
and predicted the magnitude of repetition priming across subjects. 
In our study, we have demonstrated that local evoked power in 
similar frequencies and at similar latencies can also increase with 
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repetition. While we observed a correspondence between reac-
tion time changes and evoked power changes by condition at the 
group level (Repeated vs. Novel), we failed to fi nd more specifi c 
correlations of evoked power and behavioral changes by subject. 
This may be due to weak statistical power, spatial misalignment 
of peak effects in individuals, or the true lack of a strong evoked 
power–behavior relationship, with repetition-related changes in 
across-area phase-locking being more predictive of priming effects 
than local evoked power changes. Nevertheless, improved tempo-
ral coordination within and/or across task-related brain regions 
may be the mechanism by which reduced neural activity is able to 
elicit faster and more accurate behavioral identifi cation in a more 
effi cient manner. The exact form that improved temporal coordi-
nation takes at the single-cell level is still unclear. Our results are 
consistent both with improved precision in the times of individual 
spikes across populations of cells (as in the Gotts, 2003, model), as 
well as in coordinated fl uctuations in average fi ring rate.

The proposal of improved temporal coordination is notably 
similar to those developed in recent microelectrode recording stud-
ies in monkeys within the domains of attention, working memory, 
and visual search (Fries et al., 2001; Pesaran et al., 2002; Bichot 
et al., 2005; Buschman and Miller, 2007; Saalmann et al., 2007; 
Gregoriou et al., 2009). In such studies measuring spiking activity 
and LFPs simultaneously, improved performance has been associ-
ated with enhanced spike-LFP phase-locking (coherence) in the 
gamma frequency range both within (Fries et al., 2001; Pesaran 
et al., 2002; Bichot et al., 2005), as well as across connected brain 
regions (Gregoriou et al., 2009). Our results differ from these stud-
ies in that local increases in power are found in lower frequencies 
(theta/alpha and beta) and are phase-locked to the stimulus onset 
(i.e. evoked; compare to Bichot et al., 2005; Gregoriou et al., 2009). 
While the spatiotemporal integrative properties of cortical cells may 
not dictate identical facilitation for improved input coordination at 
all oscillation frequencies, computer simulations of single neurons 
have suggested that qualitatively similar effects can be observed at 
both high and low input frequencies (Salinas and Sejnowski, 2000). 
The exact mechanism by which effects such as those reported here 
can occur over such long delays (tens of minutes) is unknown (the 
Gotts, 2003, model focused on relatively short-term stimulus repeti-
tions over a few seconds). However, the mechanism undoubtedly 

involves LTP/LTD and perhaps spike- timing-dependent synaptic 
plasticity (e.g. Markram et al., 1997; Bi and Poo, 1998; Sjöstrom 
et al., 2001), which could potentially improve the temporal coor-
dination of active neural ensembles. Another possibility is that 
long-term synaptic plasticity, by strengthening and weakening the 
appropriate synaptic connections on the neural representation 
of the prime stimulus, more effectively “resets” the ongoing low-
 frequency oscillations when repeated at a later time, permitting a 
few well-coordinated spike volleys to wave through the cortex and 
drive a more effective response (e.g. see Makeig et al., 2002; Lakatos 
et al., 2007, 2008, for similar proposals in cross-modal integration 
and attention). Future work in microelectrode recordings with 
monkeys and in intracranial recordings taken from humans (e.g. 
Puce et al., 1999; Canolty et al., 2006) will be critical in evaluating 
these possibilities.

The experience-dependent effects in the current study were lat-
eralized to the right hemisphere. It has not escaped our attention 
that previous BOLD fMRI studies of picture naming have tended 
to show more left-lateralized responses (e.g. van Turennout et al., 
2000, 2003; Kan and Thompson-Schill, 2004; de Zubicaray et al., 
2006; Graves et al., 2007; Mechelli et al., 2007). The right later-
alization of effects in the current study may indicate that it is 
primarily the visual form aspects of object identifi cation, rather 
than verbal aspects of name retrieval, that were facilitated. On 
this point, it is important to note that identical repetitions of 
visual stimuli, as were used in our study, lead to RS in the right, 
as well as in the left hemisphere (e.g. Koutstaal et al., 2001; Wig 
et al., 2009). A recent visual object categorization experiment 
using fMRI has also found right-lateralized effects of experience 
in occipitotemporal and prefrontal cortex (Jiang et al., 2007). 
Studies that orthogonalize different system-level task components 
that contribute to priming effects (e.g. Horner and Henson, 2008; 
Race et al., 2009b; Wig et al., 2009) should ultimately be useful 
in clarifying this issue.
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