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Introduction:Data indicate an increase in the number of natural disasters in Brazil,

with a large share of these events occurring in the state of Minas Gerais. This study

examines precipitation-related natural disasters recorded between 1991 and 2016

in Minas Gerais by identifying municipality profiles (encompassing the number

of droughts, flash floods, and flooding events), their sensitivity to geophysical

and extreme climatic exposure, and their relation to sociodemographic and

infrastructure characteristics.

Methods: We combine climate data on seven extreme rainfall indices with

elevation data for each municipal seat. We obtained data on droughts, flash

floods, and floods from the Center for Engineering and Civil Defense Research

and Studies. Population and socio-sanitary characteristics were obtained from

the 2010 Brazilian Demographic Census. First, we modeled the climatic-geo-

socio-sanitary data using latent class analysis as a pure latent cluster model (LCM)

without covariates on seven extreme precipitation indices coupled with altitude

data. Subsequently, the LCM was used to identify precipitation-related disaster

clusters, including clusters from the 1S-LCM as an active covariate (2S-LCM).

Finally, we utilized sociodemographic and infrastructure variables simultaneously

with the clusters from the 2S-LCM on an LCM without active covariates (3S-LCM).

Results: Our results show an increase in precipitation-related disasters in

Minas Gerais, with municipalities located in the northern part of the state

being particularly a�ected. The state registered 5,553 natural disasters in this

period, with precipitation-related disasters representing 94.5% of all natural

disasters. The 1S-LCM identified four homoclimatic zones, encompassing

a low-altitude dry zone, a relatively low-altitude intermediately wet zone,

a relatively high-altitude intermediately wet zone, and a high-altitude wet

zone. The 2S-LCM produced four precipitation-related disaster classes,

denominated low risk, high risk of excess precipitation, intermediate risk

of precipitation deficit and excess, and high risk of precipitation deficit.
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Discussion: Cities with better infrastructure and sociodemographic profiles in

semi-arid regions are more resilient to droughts. In richer areas, floods are still

a concern where incomplete urbanization transitions may undermine resilience

to these events as they increase in intensity with the advance of climate change.
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climate changes, extreme climatic events, climatic impacts, vulnerability, resilience

1. Introduction

Global climate change and its consequences currently rank as
themost relevant topic of international debate, both in the scientific
community and among decision makers. Debates surrounding
climate change gained increasing prominence after the sequence
of reports produced by the highly prestigious Intergovernmental
Panel on Climate Change (IPCC) (IPCC, 2021). In the face of the
adverse unfolding effects of weather and climate, scientists, civil
society, and many governments around the world have increased
efforts to understand the nature of these changes to allow policy
makers and other stakeholders involved in climate policy to develop
more effective adaptation and mitigation interventions against
climate-induced damage (Magrin et al., 2014).

Climate change concerns anthropogenic changes in climatic
characteristics over time, which are closely associated with changes
in land use and occupation (IPCC, 2021). Global warming is
currently the most consequential feature of global climate change,
and it has been observed to increase the frequency and intensity
of extreme weather events (Marengo and Bernasconi, 2015; Donat
et al., 2016; Lyra et al., 2017; Fernandes and Rodrigues, 2018; Costa
et al., 2021). Empirical evidence demonstrates the relationship
between climate change and climate extremes, englobing a variety
of temporal and spatial patterns regarding rainfall and temperature
trends and intensity across various regions of the world. Changes
in temperature and extreme precipitation are well-documented in
China (Zheng et al., 2019; Guan et al., 2022), Mexico (Ruiz-Alvarez
et al., 2020), the United States (Lesinger and Tian, 2022), and
Iran (Fathian et al., 2022). While some regions have demonstrated
an increase in rainfall intensity, such as the Chinese province of
Xinjian (Du et al., 2019, 2022; Guan et al., 2022), others, such as
the semi-arid region of northeastern Brazil (the Sertão), have been
facing increasing water shortages (Marengo and Bernasconi, 2015;
Lyra et al., 2017; Costa et al., 2021).

Although extreme weather events are natural phenomena,
their transformation into disasters depends on a society’s risk
exposure, resilience, and adaptive capacity, the combination of
which defines its degree of vulnerability (Tominaga, 2015; Andrade
L. et al., 2021). For example, similar extreme weather events
observed in New Zealand, Japan, and the Netherlands have caused
fewer human losses than those in Thailand, the Philippines,
and the United States. National differences in extreme weather
event impacts are mediated by their intensity and a country’s
socioeconomic context (Marengo et al., 2010; Brondízio et al.,
2016; Bunker et al., 2016; Menezes et al., 2018; Rodrigues
et al., 2020). As highlighted by Sharma and Ravindranath (2019),
assessing vulnerability based on the classifications outlined by the

(IPCC, 2021) framework is more appropriate for tackling current
deficiencies and improving climate-robust adaptation measures.
Given that stakeholders (including governments) act differently
across countries to fight the consequences of climate-induced
disasters, the authors’ approach based on the concepts of selecting
hazard-relevant vulnerability indicators and assessing hazard-
specific vulnerability is likely to yield improved local interventions.
Consequently, we contend that the selective dimensionality of
vulnerability is an essential component in highlighting differing
degrees of vulnerability intensity in certain contexts or for
specific purposes.

In the Americas, the United States and Brazil are subject
to the largest number of extreme weather events, although the
type of events differ between the two countries. While the US
experiences recurrent tornadoes and hurricanes, the most common
events in Brazil are floods and dry spells/droughts. Brazil is also
more economically unequal and less prepared to face these types
of events than the U.S. due to fewer investments in climate-
robust infrastructure in recent years (Marengo et al., 2008; Cutter
and Finch, 2018). Spatially, the occurrence of climate-induced
disasters is more frequently observed in areas of greater social
vulnerability, therefore posing a serious problem to governments,
non-governmental agents, and local communities (Marengo et al.,
2011; Nobre and Marengo, 2017; Andrade L. et al., 2021).

Many studies have identified a gradual increase in temperature
and changes in rainfall patterns across multiple Brazilian regions,
accompanied by an increase in the frequency and intensity of
extreme weather events (Marengo and Bernasconi, 2015; Ávila
et al., 2016; Lyra et al., 2017; Oliveira et al., 2017; Zilli et al.,
2017; Fernandes and Rodrigues, 2018; Bezerra et al., 2019; Da Silva
et al., 2019; Avila-Diaz et al., 2020; Dunn et al., 2020; Rodrigues
et al., 2020, 2021; Costa et al., 2021). Moreover, most climate-
induced disasters in Brazil are associated with extreme rainfall
events (CEPED, 2013c; Rodrigues et al., 2020; Ribeiro et al., 2021;
Palharini et al., 2022), and the consequences of these events are
highly dependent on the vulnerability and response capacity of
affected areas.

The growth of Brazilian cities has been characterized by
unplanned urbanization, driven initially by rural-urban migration
flows, followed by urban-urban migration from smaller to major
cities. Incoming migrants have been pushed to the outskirts of
Brazilian megacities in search of cheaper land prices. In major
cities, such as Rio de Janeiro, São Paulo, and Belo Horizonte, these
marginalized settlements are often located in hilly areas at risk
of landslides, especially during the rainy season (Stevaux et al.,
2009). In 2011, an atypically heavy rainfall event caused landslides
in Rio de Janeiro, which affected around 300,000 individuals and
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resulted in more than 900 deaths (Barcellos and Cataldi, 2020).
The Itajaí River fluvial basin, located in the South Region of Brazil,
is another example of a hotspot for rainfall-related disasters. The
main cities in the basin (Blumenau, Itajaí, Rio do Sul, and Brusque)
rapidly expanded throughout the lower valley, which is the area
with the highest risk of flooding. In Blumenau, the largest and
most economically important municipality in the Itajaí River fluvial
basin, 7.6% of its population was affected by a flash flood event in
2008 (corresponding to 22,800 residents), claiming the lives of 24
people (Stevaux et al., 2009).

In addition to excessive rainfall, droughts are common across
Brazil, especially in semi-arid regions. However, recently, novel
areas have been experiencing water shortages due to climate
change. Prolonged periods of low precipitation are more worrying
in areas not accustomed to water scarcity, which typically possess
a lower mitigation capacity and limited or absent endogenous
adaptive processes. For example, the subtropical/tropical Southeast
Region of Brazil has been increasingly exposed to extreme
rainfall events resulting in both precipitation excesses and
deficits. From 2013 to 2015, the São Paulo Metropolitan Area
(SPMA) faced an unprecedented drought due to anomalously
low water supply inflows into the Cantareira reservoir system.
As a result, reservoir storage declined to critical operational
levels (de Freitas, 2020). Despite being the largest and most
economically important metropolitan area in the country, the
emergency measures taken did not prevent negative impacts on
industries, commercial establishments, and other public facilities
(Marengo and Bernasconi, 2015).

The southeastern state of Minas Gerais is a particularly
interesting case study within the Brazilian context due to
its diverse geomorphological characteristics, including a high
spatial climate/environmental gradient across the state, as well
as its social and economic asymmetries. This interplay between
physical and social attributes accentuates the damage caused
by extreme weather events, resulting in differential increases in
its population’s vulnerability. Minas Gerais is frequently affected
by rainfall-related disasters, specifically dry spells, floods, and
droughts. Following observed trends for Brazil as a whole, their
occurrence has intensified in recent years (Nunes et al., 2018).
The state is characterized by wide regional imbalances in terms
of demographics and economic development (Cutter, 1996; IBGE,
2010). Minas Gerais’ economic activity matrix, predominantly
based on agriculture, livestock, the metallurgical industry, and
tourism, also contributes to accentuating the state’s vulnerability to
disasters, as its primary industries are highly dependent on water
inputs (Alcántara-Ayala, 2002; Mata-Lima et al., 2013; Trinh et al.,
2021).

In recent years, concerns regarding the social and economic
losses arising from rainfall-related disasters have grown in
conjunction with an increasing number of rainfall-related disasters
in Brazil (Dunn et al., 2020). This finding is accentuated by
the fact that the majority of these events in the Southeast
Region have occurred in Minas Gerais and because these
events have become increasingly more common in densely
populated areas (Perez et al., 2020). In this context, this study
examines precipitation-related disasters recorded between 1991
and 2016 in the state of Minas Gerais, Brazil, by constructing

municipality profiles regarding the number of droughts, flash
floods, and flooding events, their sensitivity to geophysical and
climatic exposure, and their relation to sociodemographic and
infrastructure attributes.

2. Data and methods

2.1. Study area

The state of Minas Gerais is located in the Southeast
Region of Brazil, between latitudes 14◦13′57′′ and 22◦55′47′′ and

longitudes 39◦51′24′′ and 51◦02′56′′. As of 2021, it consisted of

853 municipalities, and possessed an area of 583,513.983 km2,
equivalent to more than half of the size of the Southeast Region of
Brazil (Figure 1). According to the Brazilian Institute of Geography
and Statistics (IBGE), the estimated population of Minas Gerais

was 21,411,923 in 2021, making it the second most populous
state in Brazil, behind only the state of São Paulo. Minas Gerais

encompasses three different biomes, comprised of the Caatinga
in the northern parts of the state, the Cerrado in the northwest,
parts of the center, and the far western reaches of the state (the

Triângulo Mineiro), and Atlantic Forest, which stretches from the
Northeastern to the Southern parts of Minas Gerais along the state’s
eastern border. Most of the state is located at mid-to-high altitudes,
with an average elevation of 763.86 meters above sea level. Its
highest point reaches 2,731 meters along the border with the state
of Rio de Janeiro.

According to the Köppen climate classification (Alvares et al.,
2013; Reboita et al., 2015) the main climate types identified
in Minas Gerais are Aw, tropical with a dry winter, which
is characteristic of the northern, western, and eastern portions
of the state, and Cwa and Cwb, humid subtropical zones,
typical of the central and southern parts of the state. Average
annual accumulated precipitation in Minas Gerais presents an
intense gradient, registering values below 700mm in the extreme
north of the state, while the southern part of Minas Gerais
records an average annual precipitation around 2,000mm. In
the north, there are meteorological and climatic aspects typical
of semi-arid climates in Brazil, where severe droughts and heat
waves have been identified (de Medeiros et al., 2020; Geirinhas
et al., 2021) and have been associated with the interannual
variability of the El Niño Southern Oscillation (ENSO) (Vásquez
et al., 2018). In the southern portion of Minas Gerais, in
addition to ENSO variability, there is also intraseasonal influence
modulated by the South American Monsoon System (Coelho et al.,
2022).

The Southeast Region of Brazil periodically suffers from severe
droughts, often causing water shortages (Coelho et al., 2016).
Simultaneously, this is a region where extreme precipitation events
frequently occur, with mid-latitude transient systems (cyclones
and cold fronts) and South Atlantic Convergence Zone (SACZ)
events being the two principal large-scale meteorological systems
associated with extreme rainfall events (Lima and Satyamurty,
2010), which have caused billions of US Dollars in damage inMinas
Gerais and that are likely associated with the effects of climate
change (Dalagnol et al., 2022).
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FIGURE 1

Study area—Minas Gerais, Brazil—Biomes, elevation, and main drainage networks. Source: Instituto Brasileiro de Geografia e Estatística – IBGE (2020).

2.2. Data

We obtained data from a variety of sources, combining
demographic, socioeconomic, geophysical, and climate data.
The climate data was developed by a partnership project
between the University of Texas (United States) and the
Federal University of Espírito Santo (Brazil) and is available at
utexas.box.com/Xavier-etal-IJOCDATA, via the method described
by (Xavier et al., 2015). This database provides information about
rainfall, wind, minimum and maximum temperatures, relative
humidity, and evapotranspiration variables, arranged in a regular
0.25◦ × 0.25◦ grid covering the entirety of Brazil. The original data
from Xavier et al. (2015) are based on 11,473 pluviometers and
1,256 meteorological stations. For Minas Gerais, the data utilized
2,377 pluviometers and 68 meteorological stations. We selected
one grid point for the precipitation variables from each one of
the 853 municipal seats that comprise the state based on the LAT-
LONG of the centroid of each municipal seat. Subsequently, we
utilized the climate information from that location to represent
the entire municipality’s microclimate. The logic behind using
municipal seats as sampling grid points is that they typically have
the highest population density and congregate most facilities and
services within them. Therefore, they are more likely to capture
the impacts of disasters due to extreme rainfall events, which are

more likely to result in greater damage and losses in more densely
populated areas.

Precipitation indices were calculated using the RClimdex
software, developed by Zhang and Yang (2004), and the method
proposed by Zhang et al. (2005a,b) andHaylock et al. (2006) applied
to local studies. We originally selected all 14 extreme rainfall
indices available from the Climdex project, encompassing: the
annual total wet-day precipitation; the mean wet-day precipitation;
days with ≥1mm of rainfall; the monthly 1-day precipitation
maximum; the monthly 5-day precipitation maximum; the simple
precipitation intensity index; the annual number of days with
≥10mm of rainfall; the annual number of days with ≥20mm
of rainfall; the annual number of days when rainfall ≥ a user-
defined threshold in millimeters; annual rainfall exceeding the 95th
percentile; the contribution of very wet days to total precipitation;
the contribution of extremely wet days to total precipitation; annual
rainfall exceeding the 99th percentile; the maximum number of
consecutive days with <1mm of rainfall; and, the maximum
number of consecutive days with >1mm of rainfall. However, a
careful trend and multivariate correlation pattern analysis indicates
that the annual total wet-day precipitation, the annual total
precipitation divided by the number of wet days in a year, the
mean precipitation on wet days, the number of days with≥1mm of
rainfall, the monthly 1-day precipitation maximum, annual rainfall
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exceeding the 99th percentile, the annual number of days with
≥20mm of rainfall, the maximum number of consecutive days
with <1mm of rainfall, and the maximum number of consecutive
days with >1mm of rainfall are conditionally sufficient for the
purpose of clusteringmunicipalities based on extreme rainfall event
patterns. Elevation data are available at http://iede.fjp.mg.gov.br/
downloads.html and display the elevation of each municipal seat
in meters above sea level (Alvares et al., 2013).

The data recorded concerning the occurrence of precipitation-
related disasters were derived from two different sources. From
1991 to 2002, these data were provided by the Brazilian Atlas of
Natural Disasters (BAND). BAND is a data project produced by
the Center for the Study of Natural Disaster Research (CEPED)
at the Federal University of Santa Catarina (UFSC), which makes
this information available to Brazilian states (CEPED, 2013b).
From 2003 to 2016 we used data from the time series produced
by the Integrated Disaster Information System (S2iD). This data
series contains information regarding records related to state of
emergency (SE) and state of public calamity (ECP) declarations
and is publicly available at https://s2id.mi.gov.br/paginas/series/.
Furthermore, this data series was captured at the municipal level,
encompassing the most frequent disasters from 1991 to 2016.
In this paper we consider droughts, flash floods, and floods, as
these are the types of disasters that are most sensitive to extreme
precipitation events.

To identify potential social factors behind municipal resilience
to precipitation-related disasters, we examined population and
socio-sanitary characteristics obtained from the 2010 Brazilian
Demographic Census, which was the last census conducted by the
Brazilian Institute of Geography and Statistics (CEPED, 2013b)
containing available data at the municipal level. For the purposes
of our analysis, we selected a range of indicators, encompassing
the municipal Human Development Index, the urban population
percentage, the percentage of households lacking adequate access
to clean water or basic sanitation, the percentage of households
lacking adequate access to garbage collection and disposal, and
the percentage of households with walls built using poor-quality
materials. These indicators were selected as they are highly
sensitive to extreme events and reflective of a municipality’s degree
of resilience (Menezes et al., 2018; Andrade L. et al., 2021).
Here, we seek to highlight two of the (IPCC, 2014)’s central
vulnerability dimensions, specifically, exposure and resilience, as
adaptive capacity requires a more demanding analysis in terms of
empirical indicators and appropriate longitudinal information.

The data used in this study are shown in Table 1.

2.3. Methods

2.3.1. The latent class model for clusters
The latent classes model for clusters (LCC) is a model-based

cluster technique (Vermunt and Magidson, 2002) that assumes a
multinomial latent variable x, with each category representing a
specific pattern or profile. In the model specification, there are
T indicators yit for each i sample element and R covariates zcovir ,
responsible for conditioning the occurrence of x. Indicators yit and
covariates zcovir can take on any distribution (continuous, nominal,

TABLE 1 Classes and descriptions of the study variables, comprising

disaster type, climaticrmat, social, and sanitary variables.

ID Indicator
name

Definitions Units

PRCPTOT Annual total
wet-day
precipitation

Annual total PRCP on wet days
(RR ≥ 1mm)

mm

SDII Simple daily
intensity index

Annual total precipitation divided
by the number of annual wet days
(defined as PRCP ≥ 1.0mm)

mm/day

RX1day Max 1-day
precipitation
amount

Monthly 1-day precipitation
maximum

mm

R99p Extremely wet
days

Annual total PRCP, when RR >

99th percentile
mm

R20 Heavy
precipitation days

Annual number of days when
PRCP ≥ 20mm

Days

CDD Consecutive dry
days

Maximum number of consecutive
days with RR < 1mm

Days

CWD Consecutive wet
days

Maximum number of consecutive
days with RR ≥ 1mm

Days

ELV Elevation relative
to sea level

Elevation in meters above sea level m

FD Floods Number of flood occurrences Number

FF Flash floods Number of flash flood occurrences Number

DR Droughts Number of drought occurrences Number

HDI Municipal human
development
index

Average achievement in key
dimensions of human
development: a long and healthy
life, being knowledgeable, and
having a decent standard of living

0–1

UP Urban population Percentage of population living in
urban areas

%

GC Garbage
collection

Percentage of households lacking
access to solid waste collection
and disposal

%

WS Water supply and
basic sanitation

Percentage of households lacking
adequate water supply or basic
sanitation access

%

WM Poor-quality walls Percentage of households with
walls built using poor-quality
materials

%

ordinal or counting). The probabilistic structure of the LCCmodel1

can include (or not) covariates.

1 Direct e�ects, which model residual covariance between indicators and

between indicators and covariates, even if conditioned in x, can be used.

According to Vermunt and Magidson (2002), bivariate residuals that are large

(above 5, for instance), suggests that the conditional covariance between

indicators or indicators and covariates are not explained by the latent variable,

x. Thus, these covariances must bemodeledcase of a LCCwithout covariates

explicitly. In our case, our models specifications did not require the use of

direct e�ects, as residuals were very low.
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In the case of a LCC without covariates, the yi density can be
described as:

f
(

yi
)

=

K
∑

x=1

P (x) f (yi|x) (1)

Where P (x) corresponds to the unconditional probability of
observing the latent variable (or each of its categories). Class-
specific conditional distributions, f (yi|x), can take distinct exact
shapes depending on the scale of the variables. The identification
of each class probabilities of occurrence is given by:

P (x) =
exp (ηx)

∑k
x=1 exp (ηx)

, with x = 1, · · · ,K (2)

In the case of a LCC with covariates, the yi density can be
described as:

f
(

yi
)

=

K
∑

x=1

P
(

x|zcovi

)

f (yi|x, z
cov
i )2 (3)

Where P
(

x|zcovi

)

corresponds to the probability of observing
the latent variable (or each of its categories), conditioned on the
levels of the covariates. Class-specific conditional distributions,
f (yi|x, zcovi ), can take distinct exact shapes depending on the scale
of the variables. The identification of each class probabilities of
occurrence is given by:

P
(

x|zcovi

)

=
exp

(

ηx|zcov
)

∑k
x=1 exp

(

ηx|zcov
)

, with x = 1, · · · ,K (4)

Where ηx|zcov = zcovγ , in which γ represents the effects of
each covariate on the linear transformation of the probability of
occurrence of each cluster. The model parameters are obtained by
maximum likelihood.

To find the ideal number of profiles, we used a bootstrap p-
values, pboot . The statistic−2LL(difference) estimated by bootstrap
is suggested for models with continuous indicators, as in our case
where all extreme rainfall indices are continuous in nature. The
statistic 2LLdifference = 2∗(LLH0 LLH1 ) compares a model with K

clusters (under H0) with a model with K + 1 clusters (under H1).
The pboot is estimated as the proportion of bootstrap statistics larger
than the 2LLdifference in the original sample. Confidence interval for

the pboot is generated by the standard error (pboot) =

√

pboot
1 pboot

B ,

where B represents the number of replications. Values of pboot >

0.05 suggest a model with fewer profiles. We chose B = 5, 000
replications in this study.

In addition to the pboot criterion, we resorted on the Bayesian
information criterion (BIC) and the classification error for models
with K = 1, 2, . . . 10. If the decrease in BIC is followed by
a significant increase in the error classification after including an
additional cluster, the most parsimonious model is chosen.

2 To incorporate direct e�ects, the T indicators are divided in H groups.

Thus, the yi density becomes: f
(

yi
)

=
∑K

x=1 P (x)
∏H

h=1 f (yih|x). Thus, indicators

belonging to the same H set remain correlated after the conditionality in x,

but those belonging to distinct H will be conditionally independent.

2.3.2. Modeling strategy
We modeled the climatic-geo-socio-sanitary data using latent

class analysis, applied sequentially in this study. First, we applied
latent class analysis as a pure LCC model without covariates
on seven extreme precipitation indices (the annual total wet-day
precipitation, the mean wet-day precipitation, days with ≥1mm
of rainfall, the monthly 1-day precipitation maximum, annual
rainfall exceeding the 99th percentile, the annual number of days
with ≥20mm of rainfall, the maximum number of consecutive
days with <1mm of rainfall, and the maximum number
of consecutive days with > 1mm of rainfall), coupled with
elevation data (Alvares et al., 2013). The first stage model (1S-
LCC) identified extreme precipitation typologies used to classify
municipalities. Second, the LCC model was used to identify
clusters of precipitation-related disasters (flash floods, floods, and
droughts). Subsequently, its specification was expanded to include
the multinomial variable describing the extreme precipitation
typologies from the 1S-LCC as an active covariate (2S-LCC).
As with the 1S-LCC model, this 2S-LCC typology was used
to create a classificatory multinomial variable at the municipal
level. Finally, the sociodemographic and infrastructure variables
(municipal HDI, the urban population percentage, the percentage
of households with walls built using poor quality materials, and the
percentage of households lacking adequate access to clean water,
basic sanitation, or garbage collection and disposal, respectively)
were simultaneously used alongside the multinomial variable
representing the typology of geophysical and precipitation risk-
adjusted disasters to municipality clusters based on risk exposure,
hazards, and resilience attributes during a period characterized
by increasingly frequent precipitation-related disasters in Minas
Gerais. The final model was adjusted as a pure LCC model without
active covariates (3S-LCC), but, because this disaster typology
is derived from the 2S-LCC, all previous adjustments (altitude
and extreme precipitation risk) are considered in the final model
specification.3 All estimates were made using Latent Gold 5.1.

3 There are two principal strategies used to link precipitation-related

disaster zones to socioeconomic attributes. The first strategy is to perform

a latent class analysis of socioeconomic indicators as an LC model

without covariates. Once the model is fit, posterior probabilities of class

membership are used against the multinomial variable created from the

2S-LCC using an ANOVA or a multinomial regression. Although commonly

used, Bolck et al. (2004) demonstrated that this strategy underestimates

the association between external variables and class membership. In this

vein, Vermunt (2010) proposed an adjustment based on maximum likelihood

estimation. This study implemented both BCH and ML adjustments utilizing

the Latent Gold 5.1 software. The second strategy involves modeling both

socioeconomic indicators and the multinomial variable created from the 2S-

LCC as a single LC model without covariates and with robust standard errors.

As the model uses a multivariate distribution of indicators (encompassing

the socioeconomic variables and the multinomial variable from 2S-LCC), the

result is a joint, rather than conditioned, membership to both dimensions

(precipitation-related disasters and socioeconomic variables). Since the

multinomial variable for the 2S-LCC was created from a model with

covariates, and the covariate is a multinomial model from the 1S-LCC, there

is no need to include extreme precipitation variables in the 3S-LCC, once the

multinomial variable from the 2S-LCC has been included as an indicator.
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3. Results

Our three LCC models have indicators (and covariates, when
applicable) with highly significant results for cluster identification,
as measured through a Wald test for linear predictors (Table 2).
For the model 1S-LCC, PRCPTOT, R20, and R99p are the
three indicators whose variability is most explained by the four
identified clusters (86.1, 81.4, and 75.2%, respectively). Despite its
significance, the relatively low discrimination power of CDD is
explained by the high clusterization of dry days in the northern
and northeastern parts of Minas Gerais (Figure 2). For the 2S-
LCC model, DR stands out as a variable that is almost completely
explained by the four identified clusters (93.1%), while the FF and
FD variables have an R2 below 30%. This result is not surprising as
droughts tend to be more continuous and spatially defined events,
while flooding events often vary in time and space. For the 3S-
LCC model, the discrimination power of clusters for indicators
is more evenly distributed across variables, which indicates the
stable spatial heterogeneity of sociodemographic attributes in the
state. Our three models have conditional bivariate residuals below
5, which prevents the use of direct effects in the final estimation
and reinforces the quality of the models’ adjustment to the data, as
suggested by Vermunt and Magidson (2002).

Based on our 1S-LCC model, we defined four types of altitude-
adjusted homoclimatic zones for extreme precipitation events
(Table 3—Panel 1S-LCC), comprised of: (1) a low-altitude dry
zone—Cluster 3, representing 24% of municipalities; (2) a relatively
low-altitude intermediately wet zone—Cluster 1, encompassing
31% of municipalities; (3) a relatively high-altitude intermediately
wet zone—Cluster 2, containing 27% of municipalities, and (4)
a high-altitude wet zone—Cluster 4, comprising the remaining
18% of municipalities in the state. The low-altitude dry zone,
the largest cluster, possesses an average of only 13.94 consecutive
wet days and the largest number of consecutive dry days across
clusters (71.67 days, on average). Similarly, daily precipitation
intensity was the lowest among the four clusters at 9.76 mm/day,
in addition to registering only 13.23 days with more than 20mm of
precipitation. Cluster 1’s municipalities are located in low altitude
areas at an average of 612.99 meters above sea level and possess
an average cumulative annual precipitation as low as 952.38mm.
In sharp contrast, the high-altitude wet zone is the smallest cluster,
comprising 154municipalities, and is characterized by an average of
21.31 consecutive wet days and the smallest number of consecutive
dry days across all clusters (45.34 days, on average). Cluster 4’s
municipalities possess an average cumulative annual precipitation
as high as 1,537.19mm and are located in areas 960.25meters above
sea level, on average.

Interestingly, our 1S-LCC model identified two transition
zones. The relatively low-altitude intermediately wet zone
combines the attributes of the wet zone cluster, in terms of
precipitation frequency and intensity, but is located in areas as
low as 673.26 meters above sea level. It is also the largest cluster,
encompassing 264 municipalities scattered diagonally across Minas
Gerais from northwest to southeast, in addition to including the
far western part of the Triângulo Mineiro. It is a typical transition
zone, dividing the state into wet (south and southeast) and dry
(north and northeast) areas. The second transition zone, called the

relatively high-altitude intermediately wet zone, encompasses 230
municipalities located mainly in the southern and central-western
reaches of the state. It is scattered between the high-altitude wet
zone, with an average altitude of 871.93 meters above sea level.
It displays slightly lower precipitation levels, but possesses a
precipitation intensity that is greater than that of the wet zone.
Figure 2 represents the spatial distribution of the four zones
estimated using our 1S-LCC model.

The 2S-LCC model was fitted using the classification results
from the 1S-LCC. Before describing the estimated results, it is
important to understand temporal trends in disasters across Minas
Gerais. Our results show an overall increase in the occurrence
of precipitation-related disasters in the state, with municipalities
located in the northern region of the state being particularly
affected. Minas Gerais registered 5,553 natural disasters from 1991
to 2016, including 3,006 (54.1%) dry spells or droughts, 1,166 flash
foods (21.0%), and 1,078 (19.43%) floods. Therefore, precipitation-
related disasters represent 94.5% of all natural disasters registered
during this period. These events are also distributed in a spatially
uneven manner. While floods are more common in the eastern
parts of Minas Gerais (especially in low-lying municipalities or
those located in valleys), flash floods are more concentrated in
highly urbanized areas, where the excess use of asphalt limits water
drainage, particularly in the Belo Horizonte Metropolitan Area,
located in the center of the state. On the other hand, droughts are
entirely clustered in the northern portion of Minas Gerais, which
belongs to the Brazilian semi-arid region. These disasters are not
only more spatially defined, but also are more severe in intensity,
frequency, and duration.

These disaster events combined with the homoclimatic
zones for extreme precipitation produced four areas (zones)
of precipitation-related disasters (Table 3—Panel 2S-LCC),
encompassing: (1) low risk—Cluster 1, representing 45% of
municipalities; (2) high risk of excess precipitation—Cluster 2,
encompassing 33% of municipalities; (3) intermediate risk of
precipitation deficit and excess—Cluster 4, containing 8% of
municipalities; and, (4) high risk of precipitation deficit—Cluster
3, comprising the remaining 15% of municipalities in the state. On
average, the low-risk zone displayed less than one extreme rainfall
event of each type between 1991 and 2016 and is predominantly
located in the western and southwestern parts of Minas Gerais.
Across clusters, its municipalities possess the highest relative
probability of being located in the high-altitude wet zone (0.27).
The high risk of excess precipitation zone is the second largest and
has registered an average of slightly more than two flood and flash
flood events, but virtually no drought episodes, from 1991 to 2016.
These municipalities, mostly located in the state’s southern and
eastern reaches, have the highest probability of belonging to the
relatively low-altitude intermediately wet zone. The high risk of
precipitation deficit zone is not only smaller in size, but is spatially
clustered in the state’s semi-arid regions, composed of parts of
northern and northwestern Minas Gerais. Clusters pertaining to
this zone have registered an alarming average of almost 20 droughts
across the dataset period, in addition to having experienced more
than two flooding episodes. Finally, the intermediate risk of
precipitation deficit and excess zone, the smallest in area, has
experienced an average of almost seven droughts and more than
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TABLE 2 Linear projection parameter estimates regarding the latent class profiles of extreme rainfall events, rainfall-related disasters, and

sociodemographic attributes in Minas Gerais, Brazil.

Indicators Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Wald R
2

1S-LCC

PRCPTOT −21.72 171.31 −367.21 217.61 3453.80∗∗∗ 0.861

SDII 0.33 0.67 −0.68 −0.32 470.35∗∗∗ 0.336

RX1day 1.29 4.75 −3.27 −2.77 478.24∗∗∗ 0.389

R99p −1.37 10.31 −18.61 9.68 1762.41∗∗∗ 0.752

R20 0.33 3.35 −5.57 1.89 2107.45∗∗∗ 0.814

CDD −0.30 −5.02 15.82 −10.50 134.78∗∗∗ 0.207

CWD −0.93 0.16 −3.30 4.07 626.86∗∗∗ 0.596

ELV −106.35 92.33 −166.61 180.64 331.65∗∗∗ 0.310

2S-LCC

FD −0.91 0.43 0.13 0.35 129.76∗∗∗ 0.214

FF −0.93 0.72 0.08 0.13 217.14∗∗∗ 0.291

DR −2.31 −2.44 2.95 1.79 1302.73∗∗∗ 0.931

Covariate (1S-LCC)

Cluster 1 −0.47 −0.24 −0.04 0.76 162.36∗∗∗

Cluster 2 2.24 1.58 −1.61 −2.22

Cluster 3 −3.33 −2.12 3.54 1.90

Cluster 4 1.56 0.78 −1.89 −0.44

3S-LCC

HDI 0.03 −0.05 −0.01 0.04 −0.01 704.64∗∗∗ 0.492

UP 12.14 −13.04 1.49 4.45 −5.03 244.52∗∗∗ 0.253

GC −3.67 8.72 0.42 −3.80 −1.66 325.32∗∗∗ 0.498

WS −3.41 6.85 −1.92 −2.76 1.24 466.57∗∗∗ 0.600

WM −1.80 4.22 −1.50 −1.16 0.23 233.72∗∗∗ 0.399

Covariate (2S-LCC)

Cluster 1 2.04 −1.89 −0.32 0.82 −0.64 214.36∗∗∗ 0.168

Cluster 2 1.79 −1.52 0.23 0.48 −0.99

Cluster 3 −3.16 2.37 −0.73 0.21 1.31

Cluster 4 −0.67 1.04 0.81 −1.51 0.33

∗∗∗p-value < 0.001.

Source: The Brazilian Demographic Census—IBGE (2010), Anderson et al. (2013), Centro de Estudos e Pesquisas em Engenharia e Defesa Civil - CEPED (2013a), The Climdex Project—Xavier

et al. (2015), and Sistema Integrado de Informações sobre Desastres Naturais – S2iD (2022).

three flooding events during the 25-year period encompassed by
the study data. It possesses the highest probability of belonging to
the low-altitude dry zone, encompassing municipalities along the
fringes of the dry zone. Figure 3 represents the spatial distribution
of the four zones estimated using our 2S-LCC model.

The 3S-LCC model combines results from the 2S-LCC with
municipalities’ sociodemographic and infrastructure attributes in
order to construct sociodemographic and climate adjusted-disaster
vulnerability profiles. The model identified five distinct profiles
(Table 3—Panel 3S-LCC and Figure 4), comprised of: (1) low
sociodemographic and climate/disaster vulnerability—Cluster 1,
representing 35% of municipalities; (2) high sociodemographic
and rainfall deficit vulnerability—Cluster 2, encompassing 21% of

municipalities; (3) low sociodemographic and intermediate excess
rainfall vulnerability—Cluster 3, containing 17% of municipalities;
(4) low sociodemographic and high excess rainfall vulnerability—
Cluster 4, englobing 14% of municipalities; and, (5) intermediate
sociodemographic and mid-to-low rainfall deficit vulnerability—
Cluster 5, comprising the remaining 12% of municipalities in
the state.

The low sociodemographic and climate/disaster vulnerability
profile comprised the largest cluster, with an average of 78.4%
of its population living in urban areas and almost universal
basic sanitation and garbage collection and disposal coverage.
Not surprisingly, 64% of its municipalities belong to the low-
risk disaster area, while the remaining 35% pertain to the area
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FIGURE 2

Altitude-adjusted homoclimatic zones for extreme precipitation events in Minas Gerais, Brazil. Source: Anderson et al. (2013), Instituto Brasileiro de

Geografia e Estatística – IBGE (2020), and The Climdex Project—Xavier et al. (2015).

at high risk of excess precipitation. No municipality belonging
to this profile is located in areas of precipitation deficit.
This profile is predominant in the southern and southwestern
parts of Minas Gerais, as well as in the Triângulo Mineiro.
The high sociodemographic and rainfall deficit vulnerability
profile, the second largest, contains municipalities displaying the
worst sociodemographic and infrastructure characteristics. It is
predominantly located in areas at high risk of precipitation
deficit (56% of its municipalities), and it is mostly clustered
in low-altitude areas in the northern and northeastern parts
of the state. The 3S-LCC model showed that although semi-
arid parts of Minas Gerais appear to be relatively homogenous
concerning the occurrence of extreme weather events and disasters
(Figures 2, 3), they are somewhat diverse in terms of their
vulnerability. In Figure 4, municipalities with intermediate levels
of sociodemographic vulnerability and mid-to-low levels of rainfall
deficit vulnerability are scattered throughout the semi-arid parts
of the state, with a near majority of these municipalities (49%)
located in the high risk of excess precipitation zone. In summary,
the 3S-LCC model’s results suggest that within the semi-arid areas
of Minas Gerais (including the Caatinga biome), cities with better
infrastructure and sociodemographic profiles are more resilient
to droughts. In the richer parts of the state, floods are still a
concern in areas where incomplete urbanization transitions may

threaten resilience to extreme precipitation events as they increase
in intensity in conjunction with the advance of climate change.

4. Discussion

Disaster research has historically used the term “natural
disaster” to refer to “a serious disruption of the functioning
of a community or a society at any scale due to hazardous
events interacting with conditions of exposure, vulnerability, and
capacity, leading to one or more of the following: human, material,
economic, and environmental losses and impacts” (UNISDR,
2016). The use of “natural” to refer to the occurrence of events
as diverse as earthquakes, volcanic eruptions, floods, droughts,
and landslides disguises a human dimension that links hazards
with risk production, management, and reduction. On the one
hand, humans can produce risks that result in disruptive events,
which could otherwise be viewed as hazards (or latent disasters).
These risks are typically called technological disasters, such as dam
failures, atomic reactor leaks, and water pollution due to industrial
discharge (Andrade L. et al., 2021). Other “produced” risks include
anthropogenic changes in climatic conditions, which can ultimately
lead to the increased occurrence and intensification of disasters,
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FIGURE 3

Precipitation-related disaster zones in Minas Gerais, Brazil. Source: Anderson et al. (2013), Instituto Brasileiro de Geografia e Estatística – IBGE (2020),

and The Climdex Project—Xavier et al. (2015).

such as floods, droughts, and landslides (Quintão et al., 2017;
Avila-Diaz et al., 2022).

On the other hand, vulnerability research emerges as an
area of scientific and political interest regarding the degree
to which disaster risks are addressed via management and
reduction strategies. In the above definition provided by the
UNISDR (2016), hazards transform into risks because of omission
or commission, highlighting the role of socioeconomic and
infrastructure attributes, as well as that of public policies
(Chmutina and von Meding, 2019). In this regard, areas that
are socioeconomically advantaged may be better equipped to face
the consequences of disasters with higher degrees of resilience
(IPCC, 2014; Andrade L. et al., 2021). A not so commonly
emphasized dimension of disasters is the intricate connection
between climatic systems, extreme weather events, and disasters
in human populations. Given that contemporary climate change is
increasingly the result of human activities, risk production derived
from these activities intensifies the link between extreme weather
events and the temporal/spatial occurrence of climate-sensitive
disasters (Lyra et al., 2017; Fernandes and Rodrigues, 2018; Costa
et al., 2021). In turn, this results in differing levels of impacts
depending on the degree of socioeconomic development. Although
it sounds circular, the climate-disaster-vulnerability connection
emphasizes the importance of separating disaster research from its

“natural” dimension. In this regard, Chmutina and von Meding
(2019)’s suggestion to opt for the singular term “disaster” when
analyzing what are commonly labeled as “natural disasters” proves
to be appropriate in most contexts. In the case of climate-induced
disasters, we argue that the terms “climate” or “extreme events” help
qualify disaster research and reinforce the role of human agency in
producing risks and being affected by events induced by changes in
extreme climatic conditions.

There are three major axes within the climate-disaster-
vulnerability research agenda. The first axis seeks to conceptualize
how climate and social attributes are mediated by how hazards
morph into disasters. Some examples are Cutter (1996), Adger and
Kelly (1999), Adger (2006), Brooks et al. (2006), Eakin and Luers
(2006), Füssel (2010),Wolf et al. (2013), Chmutina and vonMeding
(2019), Melchior et al. (2020), and UNDRR (2020). Most of these
studies date to the 2000s, when definitions and mechanisms were
being discussed in the wake of waves of general concern regarding
global environmental change in the 1980s and 1990s, especially
related to climate change (Pebley, 1998). Concerning Brazil, Engle
and Lemos (2010), Barbieri (2022), and Barbieri and Pan (2022)
have made important contributions to this theoretical discussion.
In contrast with earlier conceptual efforts, these more recent
studies have advanced climate-disaster-vulnerability research by
explicitly incorporating a demographic analysis into the concepts
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FIGURE 4

Sociodemographic and climate-adjusted disaster vulnerability zoning in Minas Gerais, Brazil. Source: Anderson et al. (2013), Instituto Brasileiro de

Geografia e Estatística – IBGE (2020), and The Climdex Project— Xavier et al. (2015).

of vulnerability as a central mechanism linking climate change,
hazards, risks, and disasters within human populations.

A second axis comprises studies that propose indices
encompassing the multiple dimensions of the climate-disaster-
vulnerability agenda. Based on a wide range of techniques and
dimensionality, these efforts to summarize complex relationships
into a single measure appropriate for diagnostics and monitoring
represent genuine and constructive results of data availability and
theoretical advancement. Sullivan andMeigh (2005), Füssel (2010),
Sena et al. (2017), and Stennett-Brown et al. (2019) are examples
of the value of this type of research, as they have developed very
broad and comprehensive reviews of indicators and their potential
uses. In Brazil, there is a growing, yet well-founded, literature
regarding multidimensional indices related to climate change,
disasters, and social vulnerability (Hull and Guedes, 2013; Barbieri
and de Souza, 2015; Debortoli et al., 2017; Quintão et al., 2017;
Menezes et al., 2018; Andrade L. et al., 2021). These recent studies
apply differing techniques, such as the Grade of Membership
method (Hull and Guedes, 2013; Andrade L. et al., 2021), the
Alkire-Foster approach (Barbieri and de Souza, 2015; Andrade L.
et al., 2021), and utilizing the weighted averages of normalized sub-
indices (Debortoli et al., 2017; Quintão et al., 2017; Menezes et al.,
2018).

A third axis encompasses studies that link climate data (usually
measured in a continuous resolution, based on raster data) with
disaster and population data (mostly discrete in their measurement
and availability). The major challenge facing these studies is
how to link climate data, which follow an Earth systems logic,
with population data that are captured and measured in artificial
administrative units (Avila-Diaz et al., 2022). Two major challenges
manifest themselves in the form of spatial resolution (raster vs.
polygonal/point discrete data) and temporal resolution (how long
the data must be monitored to detect changes). Most population
data reference a limited time frame, while climatic changes are
intrinsically measured in long periods, known as climatological
normals (Marengo et al., 2021). Some studies in Brazil have
made creative use of statistical and spatial techniques to couple
these different data sources when analyzing the impact of climate
change or climate extremes on population-level vulnerability, both
multidimensionally (Barbieri and de Souza, 2015; Menezes et al.,
2018) or with a dimensional focus, such as on health indicators
(Menezes et al., 2018; Andrade L. et al., 2021). For example,
Andrade L. et al. (2021) sampled climate data points from the
Climdex Project, available in a 0.25◦ × 0.25◦ resolution, to
discretize information on climate extremes at the mesoregional
level. These discretized data points, encompassing a time series
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TABLE 3 Estimates of conditional averages for indicators and covariates

regarding the latent class profiles of extreme rainfall events,

rainfall-related disasters, and sociodemographic attributes in Minas

Gerais, Brazil.

Indicators Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

1S-LCC

Cluster size 0.31 0.27 0.24 0.18

PRCPTOT 1297.87 1490.90 952.38 1537.19

SDII 10.77 11.11 9.76 10.12

RX1day 62.48 65.94 57.92 58.42

R99p 80.24 91.92 63.00 91.28

R20 19.13 22.15 13.23 20.69

CDD 55.54 50.83 71.67 45.34

CWD 16.30 17.40 13.94 21.31

ELV 673.26 871.93 612.99 960.25

2S-LCC

Cluster size 0.45 0.33 0.15 0.08

FD 0.53 2.02 1.50 1.87

FF 0.49 2.55 1.35 1.41

DR 0.10 0.09 19.84 6.23

Covariate (1S-LCC)

Cluster 1 0.30 0.49 0.03 0.23

Cluster 2 0.41 0.27 0.00 0.00

Cluster 3 0.02 0.08 0.97 0.76

Cluster 4 0.27 0.16 0.00 0.01

3S-LCC

Cluster size 0.35 0.21 0.17 0.14 0.12

HDI 0.70 0.61 0.66 0.70 0.66

UP 78.35 53.16 67.70 70.66 61.18

GC 0.86 13.24 4.94 0.73 2.86

WS 0.28 10.54 1.77 0.93 4.93

WM 0.14 6.15 0.44 0.78 2.16

Covariate (2S-LCC)

Cluster1 0.64 0.13 0.40 0.65 0.47

Cluster 2 0.35 0.13 0.49 0.32 0.23

Cluster 3 0.00 0.56 0.02 0.02 0.21

Cluster 4 0.00 0.18 0.10 0.00 0.09

Source: The Brazilian Demographic Census—IBGE (2010), Anderson et al. (2013), Centro de

Estudos e Pesquisas em Engenharia e Defesa Civil - CEPED (2013a), The Climdex Project—

Xavier et al. (2015), and Sistema Integrado de Informações sobre Desastres Naturais – S2iD

(2022).

of 27 extreme weather indices, were modeled with the Grade of
Membership method to identify extreme homoclimatic zones, a
strategy previously implemented by SilveiraMarinho et al. (2020) to
identify climate zones in Brazil based on meteorological data series.

The interaction between homogenous climatic zones and
socioeconomic contexts helps identify climate vulnerability

hotspots (Menezes et al., 2018; Avila-Diaz et al., 2022).
Vulnerability reduction depends on the ability of each society
to improve protective mechanisms (adaptive capacity), which
include private insurance (contractual insurance policies, self-
protection, information seeking, home improvement) and public
technologies (such as extreme weather alerts from official climate
agencies). A key motivation for improving protective behaviors
is related to the level of information concerning the occurrence
and likely damage of climatic events. Theoretical findings from
Raad et al. (2019) show that the demand for insurance against
climate-induced disasters declines due to climate uncertainty.
Building on a previous study, Guedes et al. (2019) used time series
data obtained from meteorological stations, coupled with Digital
Elevation Models (DEM), data on flooding events, and primary
survey data on local perceptions of meteorological changes to
understand the extent of welfare losses due to degree of perception
errors concerning disaster occurrence. The dissonance between the
perception of and the actual occurrence of disasters led to a major
decline in insurance acquisition, causing an aggregate welfare
loss. Araújo et al. (2020) built upon this analysis by including the
likelihood of adopting protectivemeasures against flooding hazards
using a Bayesian approach. Their results suggest that agents favor
insurance transfers over insurance premiums, which has direct
implications on taxation flexibility and efficiency. Greater efforts to
enhance and expand scientific communication regarding climate
change and its consequences may help reduce the uncertainty
surrounding climate-induced events. This could lead to the more
efficient adoption of preventive measures, preventing unnecessary
losses in agents’ wellbeing due to incomplete information (Guedes
et al., 2019).

Our study contributes to this third axis in four distinct ways
by: (1) linking climate and population data with a grid point
sampling strategy, as previously implemented by Silveira Marinho
et al. (2020) and Andrade L. et al. (2021); (2) focusing on
extreme climate indices instead of meteorological data, which more
appropriately report climate-sensitive disasters; (3) using zoning
instead of relying exclusively on a multidimensional index; and,
(4) utilizing latent class analysis instead of a simpler multivariate
technique, such as grade of membership or principal component
analysis. In this regard, latent class analysis is model-based and
fully probabilistic, allowing the researcher to have more control
over model fitting and increasing result replicability. Furthermore,
the sequential empirical strategy used in this study allowed us
to validate results from each model step using external data and
previous studies on climate zoning (Santos et al., 2015, 2016;
Oliveira et al., 2017; Rodrigues et al., 2019; Silveira Marinho et al.,
2020), in addition to the spatial distribution of disasters in Brazil
(CEPED, 2013b; de Freitas et al., 2014) and Minas Gerais, in
particular (Sardinha et al., 2016; Quintão et al., 2017).

There are very few studies on climate zoning and vulnerability
to climate-induced disasters concerning the state of Minas Gerais,
although there are some studies that examine Brazil as a whole.
For example, Torres et al. (2012) estimated socio-climatic hotspots
in Brazil based on extreme climate indices and socioeconomic
data (particularly, the Human Development Index and population
density). Their so-called Regional Climate Change Index (RCCI)
revealed northwestern Minas Gerais to be a climate change
hotspot. When combined with socioeconomic data, they found
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that Belo Horizonte, the capital of Minas Gerais, emerged
as a national hotspot among state capitals concerning climate
change vulnerability. When comparing data regarding monthly
precipitation and surface air temperature averages for 1961–
1990 and 2071–2100, Torres et al. (2012)’s results differ from
ours because their focus on future climate change sensitivity
hides the ability to fully discern the heterogeneity of current
climate vulnerability. Furthermore, their results were not able
to spatially map climate-induced disasters—events that are more
readily translated into welfare losses (Guedes et al., 2019; Araújo
et al., 2020). Our results show that cities with better developed
infrastructure and more advantaged sociodemographic profiles
located in semi-arid regions of Minas Gerais are more resilient to
droughts. We also found that areas in the very dry northern parts of
the state are highly susceptible to flooding due to a combination of
complex topography and disadvantaged socioeconomic conditions.
In richer areas, floods are still a concern where incomplete
urbanization transitions may diminish resilience to these events
as they increase in intensity alongside the advance of climate
change. From a policy perspective, interventions should prioritize
areas with a low ability to respond to disasters, rather than
focus exclusively on event occurrence likelihoods. Minas Gerais
possesses disaster hotspots scattered across municipalities with
varying response capabilities, requiring a birds-eye approach to
any intervention.

A more recent study from Debortoli et al. (2017) includes
data on flooding vulnerability, in addition to other environmental
and socioeconomic variables. Utilizing a multidimensional index
approach as an average of normalized sub-indices, their results
produce a scenario of heterogeneity very similar to what was found
by our study for the state of Minas Gerais. Any divergences can
mainly be explained by how disaster data differ between both
studies. While Debortoli et al. (2017) use the predefined Flooding
Vulnerability Index obtained from the Brazilian National Water
Agency, we use data on disaster event occurrences. This is a subtle,
but important, difference, as our findings examine real-life disasters
as opposed to analyzing potential disaster areas. Moreover, by
applying latent class analysis, we have more control over model
fit and predictive ability, while avoiding averaging indices that
may otherwise reduce the potential to identify local heterogeneities
(Quintão et al., 2017).

Despite enhancing the literature on climate-induced disaster
vulnerability, our findings have some limitations. First, the use of
grid data for extreme climate indices on a 0.25◦ × 0.25◦ resolution
limits the level of detail concerning local climatic conditions,
which other studies have attempted to address by comparing Earth
systemmodels with finer resolutions (Avila-Diaz et al., 2020, 2022).
Second, the procedure for sampling grid point data for climate
indices was based on a single point per grid, with this point
coinciding with the centroid of each municipal seat. Sampling
multiple points with different weights may improve extreme
climate measures to better represent the entire municipality and
reduce urban bias. Third, because the latent class model we use
is not longitudinal, we accounted for the cumulative number
of each disaster event (droughts/dry spells, floods, and flash
floods). In this regard, any bias would be related to the timing
of the events, which could occur over different years, rendering

a longitudinal cluster approach more appropriate. However, the
study’s sociodemographic data are only available on a cross-
sectional basis, impeding the use of a fully Markovian approach.
Fourth, data on socioeconomic and infrastructure characteristics
are based on the 2010 Brazilian Demographic Census, which is
already 12 years old. However, this is the sole and most recent
socioeconomic data source available at the municipal level, as
data collection for the current 2022 Census was delayed by the
COVID-19 pandemic and was still underway as of the publication
of this study. Finally, our climate zoning was based solely on
extreme precipitation indices, as our analysis exclusively focused on
hydrometeorological disasters. In this regard, our study excluded
climate-sensitive disasters that are more dependent on temperature
and wind conditions, signifying that the zoning presented in this
study may not serve as a general guide to any type of climate-
induced disaster.

Quintão et al. (2017) is the only study specific to Minas Gerais
that is readily comparable to ours. Despite differences in indicators
and methods, their results bear close resemblance to our findings.
Their proposed exposure index (including natural vegetation
coverage and the number of weather-induced disasters) shows
higher levels of exposure along the state’s northeastern and eastern
borders. This spatial pattern contrasts with Figure 3 from our study
because we condition disaster zoning on extreme rainfall indices. In
addition to border areas, we found that areas in the north of Minas
Gerais and some cities scattered throughout the southern and
western parts of the state were also disaster hotspots. Our approach
allows for a more heterogeneous characterization of hotspot areas,
as we differentiate high-risk areas of both precipitation deficit
and excess. This is important as disasters related to water deficits
and excess not only possess varying durations, but also occur at
divergent spatial locations, with disasters resulting from excess
precipitation predominantly occurring in more socioeconomically
advantaged areas.

In contrast with Quintão et al. (2017) and Avila-Diaz et al.
(2020, 2022), which based their climate data on meteorological
station averages and projections from regionalized Earth system
models, we utilized climate data developed by Xavier et al.
(2015), which obtained raw data from the National Institute
of Meteorology (INMET), together with data from other public
institutions (such as the Brazilian National Water Agency’s
São Francisco River Basin data). Our approach also avoids
analyses based on multidimensional indices, instead making use
of probabilistic models. As these models are also classification
devices, we can allocate units (municipalities, regions, etc.)
into vulnerability classes or use the estimated probabilities of
each latent class as sub-indices adept for creating a model-
based multidimensional index. However, we avoided utilizing the
aforementioned strategy, as the zoning technique we adopted better
facilitates comparisons with mapping from the prior literature.

5. Conclusion

Minas Gerais is frequently subject to climate-induced disasters.
Data indicate that Minas Gerais suffered from more disasters
than any other Brazilian state over the previous 25 years,
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which were characterized by an increasing number of disasters
in both Minas Gerais and Brazil, as a whole. We found an
increase in precipitation-related disasters, with municipalities
located in northern Minas Gerais being particularly affected.
We identified four homoclimatic zones, encompassing a low-
altitude dry zone, a relatively low-altitude intermediately wet
zone, a relatively high-altitude intermediately wet zone, and
a high-altitude wet zone that are distributed across regions
possessing varying risk levels for precipitation-related disasters
(low risk, high risk of excess precipitation, intermediate risk of
precipitation deficit and excess, and high risk of precipitation
deficit). When these areas were examined in conjunction with
sociodemographic and infrastructure attributes, we were able to
identify higher levels of heterogeneity in areas of Minas Gerais
that are traditionally treated as homogeneous zones from a climatic
(semi-arid regions) or socioeconomic (the richer southern part of
the state) standpoint.

Due to its geophysical configuration and high dependence on
mining, the state of Minas Gerais is also highly vulnerable to
technological disasters. In the last decade, two major dam collapses
have resulted in catastrophic environmental, socioeconomic,
cultural, and human impacts (Andrade M. V. et al., 2021; Dias
and Verona, 2021). The Mariana and Brumadinho dam failures
are considered to be the two largest socioenvironmental disasters
in Brazilian history (Rotta et al., 2020; Andrade M. V. et al.,
2021). In recent decades, the state has experienced an increasing
number of hydrometeorological disasters on top of these tragic
technological dam failures. These recent disaster trends in Minas
Gerais highlight the importance of studies concerning disaster
vulnerability due to its high levels of regional heterogeneity, wide
range of climatic, topographical, and environmental systems, and
the importance of tourism, mining, and agriculture to the state’s
economy (Barbieri and de Souza, 2015). Correctly addressing these
challenges is key to maximizing municipalities’ resilience to threats
posed by the future evolution of climatic conditions and recurrent
climate-induced disasters.
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