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As global climate change progresses, the United States (US) is expected to

experience warmer temperatures as well as more frequent and severe extreme

weather events, including heat waves, hurricanes, and wildfires. Each year,

these events cost dozens of lives and do billions of dollars’ worth of damage,

but there has been limited research on how they influence human decisions

about migration. Are people moving toward or away from areas most at risk

from these climate threats? Here, we examine recent (2010–2020) trends in

human migration across the US in relation to features of the natural landscape

and climate, as well as frequencies of various natural hazards. Controlling for

socioeconomic and environmental factors, we found that people have moved

away from areas most a�ected by heat waves and hurricanes, but toward

areas most a�ected by wildfires. This relationship may suggest that, for many,

the dangers of wildfires do not yet outweigh the perceived benefits of life

in fire-prone areas. We also found that people have been moving toward

metropolitan areas with relatively hot summers, a dangerous public health

trend if mean and maximum temperatures continue to rise, as projected in

most climate scenarios. These results have implications for policymakers and

planners as they prepare strategies to mitigate climate change and natural

hazards in areas attracting migrants.

KEYWORDS

human migration, natural amenities, climate change, extreme weather, natural

hazards, heat, wildfire, United States

Introduction

Climate change has already begun to affect life in the United States (US), with

temperatures warming by 1.2◦F since the 1960s and events like storms and wildfires

causing massive disruptions. The US climate is expected to warm by an additional 2.5◦F

in the next few decades (Hayhoe et al., 2018). As climate change advances, we won’t just

see warmer average temperatures. We can also expect to see more frequent and severe

extreme weather events such as hurricanes, heat waves, and wildfires (Hayhoe et al., 2018;

Radeloff et al., 2018). These extreme events can have devastating impacts on people’s lives

and can influence patterns of human migration (McLeman and Hunter, 2010; Cattaneo

et al., 2019).
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Each year in the US, natural hazards and disasters in the

form of extreme weather events cause numerous deaths and

billions of dollars in damages. From 2010 to 2020, hurricanes

killed an average of 332 people per year and did an average of

$47 billion in damage per year, while wildfires killed an average

of 23 people per year and did an average of $7 billion worth of

damage per year (NOAA National Centers for Environmental

Information, 2022). Heat waves are a leading cause of weather-

related deaths in the US. The US Center for Disease Control

estimates that heat caused or contributed to an average of 702

deaths per year in the US between 2003 and 2018, counting only

official death records (Vaidyanathan et al., 2020); other estimates

have been as high as thousands per year (Weinberger et al.,

2020).

Some of these impacts are due to a lack of sufficient

preparation and planning for natural disasters. For example,

Knighton et al. (2021) observed that US cities with strong

flood defenses had reduced flood-related deaths and property

loss, while cities with poor flood defenses had higher death

rates and costlier damage from flooding. Natural disasters

have also increased in frequency and scale over time due to

population growth in more vulnerable areas (Hunter, 2005). It

will be important to consider the spatial relationships between

migration and natural hazards as the country invests in strategies

for disaster preparedness and climate resilience.

Most of the literature on climate change and natural hazard

migration has focused on the Global South (Piguet et al., 2018).

Within the US, most such studies have focused on internal

migration following specific, punctuating events such as the

Dust Bowl of the 1930s or Hurricane Katrina in 2005 (Piguet

et al., 2018), or else looked at specific threats such as sea-level

rise (e.g., Hauer, 2017). There has been less research on how

US migration is affected by natural hazard risk more broadly,

or how migration might be affected if climate change amplifies

the risk of multiple natural hazards simultaneously. Some recent

exceptions include Shumway et al. (2014), and Winkler and

Rouleau (2020), which both consider the influence of multiple

hazards across longer time periods.

Relationships between migration and the environment—

both positive and negative—can be understood using the

framework of natural amenity migration. Natural amenities

are features of the environment that people value, and that

can influence where they choose to live. Natural amenities

include factors like a pleasant climate, lakes or ocean,mountains,

beautiful scenery, and outdoor recreation (McGranahan, 2008;

Lekies et al., 2015; Schaeffer and Dissart, 2018). In the natural

amenities framework, natural amenities act as migration “pulls”,

attracting new residents or encouraging them to stay, whereas

natural hazards (or natural “disamenities”) do just the opposite,

acting as migration “pushes” (Hunter, 2005; Shumway et al.,

2014; Winkler and Rouleau, 2020).

The idea that people prefer mild climates and varied

landscapes—with hills or mountains, lakes or ocean, and a

mixture of forest and open space—is supported by the literature

on landscape preferences and housing values (McGranahan,

2008; Winkler and Rouleau, 2020). Studies exploring these

natural amenities have found significant relationships with

migration around the US: in general, people move toward

warmer winters, more temperate summers, more varied

topography, water bodies, and intermediate levels of forest cover,

particularly in rural (nonmetropolitan) areas (McGranahan,

2008; Hjerpe et al., 2020; Winkler and Rouleau, 2020).

The Natural Amenities Scale (McGranahan, 1999) attempts

to capture desirable features of the landscape and climate by

measuring a suite of natural amenities across the contiguous

US: summer and winter temperatures, winter sunshine, summer

humidity, topographic variation, water area, and forest cover

(with the latter added in McGranahan, 2008). On the Natural

Amenities Scale, Florida and theWest are rated as rich in natural

amenities, while the Midwest and Great Plains rank relatively

low. These spatial patterns are closely aligned with long-term

migration patterns across the country.

Since the 1950s, 35% of rural counties have seen population

declines (Johnson and Lichter, 2019), largely driven by long-

term outmigration from rural areas, particularly by the young

(Smith et al., 2016). The strongest out-migration has been from

rural counties far from metropolitan areas, with few economic

opportunities. These areas are concentrated in the Great Plains

and along the Mississippi River, regions which are low in

natural amenities. In contrast, rural population growth has been

strongest in counties near metropolitan areas or high in natural

amenities, particularly across the West and along the coasts

and mountains of the Southeast (Smith et al., 2016). In recent

decades, high-amenity counties have become destinations for

recreation and retirement (Smith et al., 2016; Mockrin et al.,

2018; Johnson and Lichter, 2019).

Natural amenities can act as a draw for seasonal or

permanent migration. This is seen in particular among retirees,

for whom income is less tied to place than for working-age adults

(Nelson et al., 2009; Lekies et al., 2015; Moeller, 2020). As rural

economies have shifted away frommanufacturing and extractive

industries toward services, many jobs have also become less tied

to place (Gosnell and Abrams, 2011; Moeller, 2020). Retirees

and teleworkers in particular can choose to live anywhere, and

it remains to be seen if the recent rise in telework during

the COVID-19 pandemic will lead to a new wave of natural

amenity migration.

In addition to natural amenities, socioeconomic factors such

as job opportunities, affordability, and population density are

also important drivers of migration. Socio-cultural factors such

as social networks, cultural norms, crime rates, and family ties

also play important roles (Roback, 1982; Czaika and Reinprecht,

2020; Winkler and Rouleau, 2020). Socioeconomic factors can

also constrain migration, since the ability to move can be limited

by income and access to resources (Hunter, 2005; Cattaneo

et al., 2019). Overall, the decision to move is a highly personal
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one, involving complex tradeoffs among social, economic, and

environmental factors.

Existing research on natural amenity migration has

identified several literature gaps and areas for continued

research, including more interdisciplinary collaborations

between social and natural scientists (Gosnell and Abrams,

2011; Lekies et al., 2015; Schaeffer and Dissart, 2018), more

use of remote sensing and land cover data (Lekies et al., 2015),

and inclusion of natural disamenities (Shumway et al., 2014;

Schaeffer and Dissart, 2018), particularly the impacts of climate

change and more frequent natural hazards such as fires, floods,

and extreme temperatures (Lekies et al., 2015).

We have combined environmental data from a variety

of sources to update the Natural Amenities Scale, while also

incorporating natural hazards across US counties, alongside a

number of socioeconomic covariates. We explore recent US

migration patterns (2010–2020) in relation to both natural

amenities and disamenities using spatially explicit Spatial

Autoregressive (SAR) and Geographically Weighted Regression

(GWR) models to address two questions: (1) How do climate,

landscape, and extreme weather shape net migration rates across

the US? and (2) Are people moving toward or away from the

dangers of extreme weather events?

Understanding the baseline relationships between migration

and the climate, environment, and extreme weather is an

important first step in studying and preparing for migration in

response to a changing climate. These relationships might not

hold in the long-term, as temperatures and weather events grow

more extreme, but they may be our best estimate for the near

future. Even if migration patterns suddenly shift, the trends in

this study represent not just the transitory movements of people,

but also the concomitant decade of investment in housing and

infrastructure, whichmay contribute to lags in any future change

in migration patterns.

Our study contributes to the literature by combining

spatially explicit biophysical and socioeconomic characteristics

into a novel dataset, which we use to rigorously analyze US

migration patterns for the most recent decade. According to

the literature we have explored, no study has yet examined the

most recent national migration trends in relation to natural

amenities and natural hazards. To achieve this, our study uses

dynamic econometric SAR models and spatially variable GWR

models to study both the drivers of migration, and how their

relationships with migration vary across space. Our results

contribute to a better understanding of migration patterns and

provide empirical evidence that can inform strategies for natural

hazard planning and preparedness.

Materials and methods

We created a novel dataset from a variety of sources on

net migration rates, natural amenities, natural hazards, and

socioeconomic factors for each county in the contiguous US

(Table 1). Net migration rates, natural hazard frequencies, and

socioeconomic drivers were all publicly available as tabular data

by US county. In contrast, current US data on natural amenities

like climate, water bodies, topographic diversity, and forest cover

were only available as raster data, spatially gridded information

where each grid cell or pixel contains a value. We overlaid these

data with US county boundaries to calculate the county mean or

total for each natural amenity variable.

In order to investigate the relative importance of different

migration drivers, we used the natural amenity, hazard, and

socioeconomic variables as covariates in a set of spatially

explicit county-level SAR models for net migration, both for

the entire contiguous US, and for metropolitan (metro) and

nonmetropolitan (nonmetro) counties separately. We also used

a subset of these variables as the inputs to a GWR model for net

migration in order to map and explore any spatial variations

in the relationships between our explanatory variables and

migration rates. Our data sources (Supplementary Table 1),

processing steps, and analyses are described in the

following sections.

Data sets

Net migration rates

We obtained annual county-level population and net

migration estimates from the US Census Bureau for the period

from 2010 to 2020 (US Census Bureau, 2021d). These county

population estimates are for July 1st of each year. Net migration

values (population change due to in- and out-migration) are

calculated for the period from July 1st of one year to June

30th of the next. To calculate each county’s net migration

rate for the decade (July 1, 2010–June 30, 2020), we summed

each county’s annual net migration estimates for this period,

normalized by the county’s population estimate for July 1,

2010, and scaled to units of migrants per thousand residents

(Equation 1).

Net Migration Rate2010−2020 =
∑

Annual Net Migration Estimates

Population Estimate2010
∗1000 (1)

The net migration rates included some extreme outliers.

We excluded statistical outliers lying more than three

interquartile ranges beyond the first and third quartiles in

order to meet statistical assumptions of normality. This

excluded 31 of 3,108 counties (<1%), of which four had

large negative values (net outmigration) and 27 had large

positive values (net in-migration), leaving 3,077 counties for

analysis. The counties with exceptionally high outmigration

all had small 2010 population sizes (1,000–35,000 people),

meaning an event like the closure of a correctional facility
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TABLE 1 Summary statistics and correlations with net migration rates.

Variable Units Mean Min Max S.D. Pearson’s R

Net migration rate Migrants per 1,000 residents −1.8 −261.2 279.9 72.1 –

Riverine flooding* Z-score 0.00 −3.30 4.27 0.99 0.06

Earthquakes* Z-score 0.00 −1.48 4.08 1.00 0.1

Heat Waves* Z-score 0.01 −1.34 3.30 1.00 −0.18

Hurricanes* Z-score 0.00 −1.23 2.85 0.99 0.07

Wildfires* Z-score −0.01 −1.34 3.98 1.00 0.13

January temperatures+ Degrees F 32.9 4.3 66.5 11.3 0.13

January cloud cover+ Percent 39.9 24.0 66.5 6.7 0.19

Temperate summer+ Degrees F from expected 0.0 −9.0 21.8 3.7 0.25

July humidity+ Percent 43.0 12.2 62.9 9.9 Not sig.

Topographic diversity+ Index 1.0 0.0 1.6 0.4 0.18

Distance to water+ Km 32.9 0.6 120.6 20.9 −0.23

Forest cover+ Percent 36.0 0.0 92.5 27.0 0.15

Forest cover squared+ Percent Squared 2,025 0.0 8,563 2,144 0.09

Geometric HDI Index 4.9 1.2 10.7 1.1 0.3

Ln(population density) 3.8 −1.5 11.2 1.7 0.27

[Ln(population density)] squared 17.5 0.0 124.9 14.3 0.26

Unemployment rate Percent 6.3 1.7 24.4 2.0 −0.12

Income inequality Index 0.4 0.3 0.6 0.0 −0.08

Diversity index Index 0.6 0.1 1.5 0.3 0.06

Population 65 and over Percent 17.8 4.3 36.8 4.3 Not sig.

Economic typology codes 6 categories – – – – –

Rural urban continuum codes 9 categories – – – – –

*Cube-root transformed and standardized to the mean and standard deviation.
+These variables were standardized to their mean and standard deviation for subsequent analysis.

could have an outsized impact. Three of the four negative

outlier counties were in or adjacent to migration cold

spots (Figure 1), so we feel that regional trends were well

represented in the models, even without these outliers.

Of the counties with exceptionally high positive values,

all but three lay in or near regions characterized by high

in-migration such as migration hotspots in Florida, Texas,

Utah, North Dakota, and parts of the South (Figure 1). The

other three had relatively small initial populations (3,500–

66,800). So once again, regional trends are well represented

by the surrounding counties, which also experienced

high in-migration.

We imported the net migration rates into ESRI’s

ArcGIS Pro and mapped them using 2020 county

boundaries for the contiguous US (US Census Bureau,

2021b). Finally, we created a map of migration hot and

cold spots for the last decade using the Getis-Ord Gi∗

hot spot statistics (Getis and Ord, 1992; Ord and Getis,

1995) applied through ArcGIS Pro’s “Hot Spot Analysis”

tool with a Euclidean fixed distance band of 147,000m

(Figure 1).

Natural amenities: Climate variables

Based on the work of McGranahan (1999, 2008), we

examined seven natural amenities encompassing climate,

surface water, topography, and forest cover. We characterized

climate using four variables: January Temperature, January

Cloud Cover, July Humidity, and “Temperate Summer”, a

measure of relatively mild summer temperatures. Each climate

variable is a long-term mean for the period from 1991 to

2020, consistent with the National Oceanic and Atmospheric

Administration’s (NOAA) most recent climate normals—used

to define a place’s current climate. We also tested annual

precipitation but excluded it after preliminary analyses showed

it was strongly correlated with humidity and cloud cover, with

no improvement in predicting net migration rates.

We obtained spatially explicit temperature and humidity

data for the contiguous US from the GRIDMET dataset

hosted on the Google Earth Engine (GEE) Data Catalog

(Abatzoglou, 2012). We filtered and processed these data using

the GEE API (Gorelick et al., 2017). Daily minimum and

maximum temperatures were averaged to calculate separate 30-

year means for January and July temperatures. Since January
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FIGURE 1

Results of a Getis-Ord Gi* hotspot analysis of county-level net migration rates, 2010–2020. Migration hot spots, where many more people

moved into a region than out, are in shades of red. Migration cold spots, where many more people left than arrived, are in shades of blue.

Statistical outliers in the net migration data (values lying more than three interquartile distances beyond the interquartile range) were excluded

from the analysis, but are shown in the darkest shades of red and blue.

and July temperatures are highly correlated, we calculated a

Temperate Summer metric as the negative residual of July

Temperatures regressed on January Temperatures. Temperate

Summer indicates how much hotter or cooler the summer is

than might be expected based on winter temperatures. We

calculated the 30-yearmean for July humidity using GRIDMET’s

daily minimum relative humidity levels (Abatzoglou, 2012),

as relative humidity is generally lowest around midday when

people are active, and highest at midnight.

We obtained raster cloud cover data from NOAA’s NCEP-

DOE Reanalysis 2 dataset (Kanamitsu et al., 2002) through the

GEE Data Catalog and API, and used them to calculate a long-

term cloud cover mean. Data for 2006 was unavailable, so we

calculated a 29-year mean for the 1991–2020 period, excluding

2006. We used noon values, as the most representative time of

day for human activity.

Finally, we imported the 2020 US county boundaries into the

GEE API and used them to calculate county means for each of

the four climate variables by taking the mean of the raster data

within each county polygon, using a 4,000m scale. Each of these

variables was subsequently mapped in ArcGIS Pro.

Natural amenities: Landscape variables

Previous studies of natural amenity migration

(McGranahan, 1999, 2008) represented surface water using

the natural log of a county’s total percent water area, capped

at a certain area or percentage. That metric is complicated by

the fact that counties along the coasts and Great Lakes include

very large areas of coastal waters, sometimes accounting for the

majority of a county’s area. We consider the mean Distance to

Water (including water in other counties) to better capture most

residents’ relationship with surface water. Many people prefer

to live relatively close to water bodies such as lakes and oceans

(McGranahan, 2008), but it seems reasonable to assume that the

average person cares more about whether there is a water body

within driving distance than whether there is one in the same

county. Net migration rates also had a stronger relationship

with Distance to Water than with the natural log of percent

water area (Pearson’s R=−0.23 vs. 0.17).

To have a comprehensive and detailed representation of

US surface waters, we used the European Commission Joint

Research Centre’s (JRC) Global Surface Water Mapping Layers,

v1.3 (Pekel et al., 2016) accessed via the GEE Data Catalog.

To isolate permanent water bodies, we selected areas where the

dataset’s coded ‘seasonality’ band was equal to 12, meaning that

surface water was present for 12 out of 12 months in the dataset.

We calculated the distance to surface water using a Euclidean

distance method (with a 300 km radius kernel) in ArcGIS Pro.

We overlaid this distance raster with the 2020 county boundaries

to calculate the mean Distance to Water for each county.

The literature on landscape preference and amenity

migration supports the idea that humans prefer a varied

landscape, including varied topography (McGranahan, 2008).

While this is a matter of taste, areas with dramatic hills

and mountains tend to be more renowned for their stunning

scenery than uninterrupted plains. The Natural Amenities

Scale (McGranahan, 1999) measured topographic variation
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using a ranked categorical scale of landform types, ranging

from flat plains to high mountains. Rather than relying on a

categorical scale, or a simple metric like elevation, we wanted

to use a comprehensive, continuous metric of Topographic

Diversity. We chose to represent Topographic Diversity using

the 1 km resolution Shannon Index of Geomorphological

Landforms (SIGL) from the Amatulli et al. (2018) suite of

topographic variables.

While the Shannon Index is often used to measure

biodiversity, it can be used to measure the diversity of any

type of categorical data, including landform classes. It is a

useful metric that balances both the number of distinct classes

present, and their evenness or relative abundance. A land area

that is mostly flat would receive a low SIGL score, even if it

included a small patch of every other landform class. Meanwhile,

an area that included an even mix of peaks, slopes, valleys,

and flats would receive a high score. One potential limitation

is that, since this metric is calculated at a 1 km resolution,

it may undervalue very large mountains (e.g., in the Rocky

Mountains), where a continuous slope might extend over most

of a pixel. We calculated our Topographic Diversity variable as

the mean SIGL value for each county in the contiguous US using

“Zonal Statistics as Table” tool in ArcGIS Pro. Compared to the

categorical variable in the Natural Amenities Scale, our metric

had a marginally stronger correlation with net migration rates

(Pearson’s R= 0.18 vs. 0.15).

As a potential alternative to countymeans, we also calculated

county medians for each preceding amenity variable, but these

produced nearly identical maps to the means, consistent with

our data being normally distributed. The variable with the largest

(but still marginal) difference between mean and median was

Topographic Diversity, for which a number of counties had

a small value for the mean, but a zero for the median. If we

imagine a county consisting of 60% flat plains and 40% hills or

mountains, the median would be zero, the same as for 100% flat

plains, but the mean would be an intermediate value, which is

more representative. For these reasons, we chose to use county

means throughout.

We calculated percent Forest Cover for each county in

the contiguous US using data from the National Land Cover

Database’s (NLCD) 2011 Land Cover raster (Yang et al., 2018).

NLCD data is available every 2–3 years. We used the 2011

NLCD data as the nearest to the start of the migration period

of interest, 2010–2020. We summarized the county area in

each of 17 land cover classes and combined the four forest

classes (deciduous, evergreen, and mixed forest, and woody

wetlands) to represent total percent Forest Cover for each

county. Previous research has found a quadratic relationship

between forest cover and migration rates (McGranahan, 2008);

people prefer a mixed landscape with intermediate forest cover,

neither fully wooded nor fully devoid of trees. For this reason,

we used both percent Forest Cover and its square as covariates

in our net migration models. Net migration was expected to

FIGURE 2

(A) Mean january temperatures in degrees fahrenheit,

1991–2020 (Abatzoglou, 2012). Colder winters are in deeper

shades of blue, while the warmest winters are in white. (B)

Temperate summers (the negative residual of July over january

temperatures), 1991–2020 (calculated from Abatzoglou, 2012).

Areas in deeper shades of blue have relatively cooler summers,

while those in pale blue and white have relatively hot summers.

Counties are grouped and color-coded in quintiles.

show a positive relationship with Forest Cover and a negative

relationship with its square.

We converted each natural amenity variable to a Z-score for

subsequent analysis. Each one was also mapped in ArcGIS Pro

(Figure 2; Supplementary material).

Natural hazards data

In order to represent the relative likelihood of experiencing

a particular natural hazard in a given county, we obtained the

annualized frequencies of 18 different natural hazards from the

US Federal Emergency Management Agency’s (FEMA) National

Risk Index (FEMA., 2020). Of these hazards, we excluded four

(avalanches, coastal flooding, tsunamis, and volcanoes) that were

missing or inapplicable for more than 30% of counties. For the

remaining hazards, we applied a cubed-root transformation to

meet assumptions of normality but had to exclude a fifth hazard

(landslides) for which the transformation was insufficient.

We assessed the relationships among the remaining hazards

and between the hazards and natural amenities using Pearson’s

correlation coefficients. We used these to select a subset of

hazards that minimized multicollinearity while prioritizing the

most salient hazards for human health, property damage, and

the types of extreme weather expected to be exacerbated by

climate change. An example of high multicollinearity would

be the high incidence of drought and wildfire in the same
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FIGURE 3

Z-scores of (A) hurricane frequency, (B) heat wave frequency,

and (C) wildfire probability (FEMA., 2020). Counties are grouped

and color-coded in quintiles.

counties—these variables often vary together in a consistent and

predictable pattern.

Our selected natural hazards included earthquakes, heat

waves, hurricanes, riverine flooding, and wildfires. The

underlying data for earthquakes and wildfires were modeled

probabilities from 2017 to 2016, respectively, while those for

riverine flooding, heat waves, and hurricanes were based on the

number of recorded events over a period of record: 2005–2017

for heat waves, 1851–2017 for hurricanes, and 1995–2016 for

riverine flooding. We converted each natural hazard variable to

a Z-score for subsequent analysis. Each one was also mapped in

ArcGIS Pro. Maps for hurricanes, heat waves, and wildfires are

shown in Figure 3, while earthquakes and riverine flooding are

not shown.

Socioeconomic data

Socioeconomic factors are major drivers of migration.

The most influential socioeconomic factors include job

opportunities, cost of living, population density, social services,

crime rates, and socio-cultural factors such as social networks,

cultural norms, and gender relations (Roback, 1982; Altschul

et al., 2020; Czaika and Reinprecht, 2020). Demographics are

also important to consider since migration patterns vary across

age groups and across race and ethnicity (Johnson et al., 2013;

Winkler and Johnson, 2017).

We aimed to control for as many socioeconomic factors

as possible, although multicollinearity among certain variables

and a lack of data availability for others limited the inclusion

of some of these factors in our models. In order to

minimize duplicate information between correlated variables,

we used the variance inflation factor (VIF) to determine

the level of multicollinearity among our entire suite of

variables. Any variable that exhibited a VIF >10 was dropped

(Hair et al., 2012).

Our final suite of variables is listed in Table 1, and

data sources are summarized in Supplementary Table 1. The

socioeconomic covariates include: the geometric Human

Development Index (HDI), Population Density and its square,

the Unemployment Rate, the Gini coefficient of Income

Inequality, a Diversity Index of race and ethnicity, the percent

of the Population 65 and Over, Economic Typology Codes, and

Rural Urban Continuum Codes (RUCC).

The geometric HDI is the geometric mean of three welfare

indicators: health (life expectancy at birth), education (the

weighted sum of educational attainment and enrollment),

and income (per capita personal income). Health, education,

and income are strongly related—people with higher incomes

tend to have higher education levels and live longer. Since

these health, education, and income indicators are highly

correlated (Pearson’s R correlation coefficients of 0.57–0.63),

they cannot be included separately in the models, but by

combining them into an index, we are able to incorporate

information about all three factors. This index improves on

using income alone by adding metrics of health and education

outcomes, which themselves reflect a location’s underlying

health and education infrastructure, such as schools, hospitals,

and their quality. The geometric HDI is calculated as follows

(Lewis, 2021):

HDI = 3
√
health ∗ education ∗ income (2.1)

Where: education =
(

2

3
attainment +

1

3
enrollment

)

Each welfare indicator is first scaled to an index on a scale of

10 using its minimum and maximum:

Welfare Indexi =
Xi − Xi min

Xi max − Xi min
∗10 (2.2)

Xi = value of welfare indicator i

i= health, attainment, enrollment, income

Ximin =minimum value of Xi

Ximax =maximum value of Xi

We calculated the natural log of Population Density and

its square from population and area data from the US Census

Bureau.We obtained data on county Unemployment Rates from
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the US Bureau of Labor Statistics (2022) and took the mean

of annual values from 2010 to 2019. The Unemployment Rate

accounts for willingness to work by quantifying the number of

unemployed active job-seekers in the civilian population over 16

years of age, giving the percentage of this population that are

looking for work but have not yet found a position. It is expected

to have a negative relationship with net migration rates since

people tend to move away from high unemployment (Roback,

1982).

The literature also suggests that crime rates can affect

migration (Roback, 1982). While comprehensive county-level

data on crime rates is difficult to find, areas with high

income inequality tend to have high crime rates (Becker, 1982).

Therefore, to indirectly account for crime and other social

repercussions of inequality, we include the Gini coefficient,

which is a measure of Income Inequality. The Gini coefficient

is given by:

G =
A

A+ B
(3)

where A and B are, respectively, the areas above and below

the Lorenz Curve, which measures income distribution. We

obtained county-level Gini coefficients from the American

Community Survey through the US Census Bureau (2021a). We

averaged values from two 5-year periods to calculate means for

the period of 2011–2020.

We also included a measure of diversity across race and

ethnicity, which has been shown to be a factor in migration

dynamics (Nelson et al., 2009; Winkler and Johnson, 2017). We

calculated our Diversity Index using the Shannon Index, a useful

diversity metric that balances the number of groups and their

prevalence in the population. It is calculated as follows:

H = −
n

∑

i=1

pi ln pi (4)

Where pi is the proportion of the population belonging to

each race and ethnicity. For pi we used the fractions of the

population in each of seven racial and ethnic groups, which were

calculated as 2010–2019 means using data from the US Census

Bureau (2021c). The seven categories were as follows: Non-

Hispanic White, Non-Hispanic Black, Non-Hispanic American

Indian and Native Alaskan, Non-Hispanic Asian, Non-Hispanic

Native Hawaiian and Other Pacific Islander, Hispanic (all races),

and Other. The first five categories consisted of individuals

who identified as that race alone, while people in the Hispanic

category could be of any race. Non-Hispanic individuals who

identified as another race or multiracial were included in the

Other category, which was calculated as the total population

minus the sum of the other six categories.

Age demographics are another important factor influencing

migration (Johnson et al., 2013; Frey, 2019). Migration patterns

can differ greatly across age groups, and retirees are a particularly

important demographic driving in-migration to suburbs and

high amenity rural areas. Once retirees are freed from the

geographic ties of a job, many choose to move to scenic

rural areas, or move closer to adult children. Retirees can also

affect migration by attracting younger workers to retirement

destinations to work in associated health and assisted living

service sectors (Slavov, 2006; Zaiceva, 2014). To better account

for these patterns, we have included the percent of each

county’s Population 65 and Over, calculated as the 2010–2019

mean using demographic data from the US Census Bureau

(2021c).

We obtained the Economic Typology Codes, which

classify counties by major industries of employment, and

the RUCC codes, from the US Department of Agriculture’s

Economic Research Service (USDA Economic Research

Service, 2013, 2015). The Economic Typology Codes classify

counties into six mutually exclusive categories, based on

counties’ principal economic sectors. The categories are

defined using the share of a county’s earnings or working

population employed in the sector. The USDA Economic

Research Service (ERS) defines the six economic types

as follows:

1. Farming (≥25% earnings or ≥16% employees).

2. Mining (≥13% earnings or ≥8% employees).

3. Manufacturing (≥23% earnings or ≥16% employees).

4. Federal/state government (≥14% earnings or

≥9% employees).

5. Recreation. In addition to employment and earnings,

seasonal housing is used to classify recreational counties. The

three criteria are given weights and converted to z-scores.

The respective weight of each criterion are: 0.3 (earnings),

0.3 (employment) and 0.4 (seasonal housing). A county is

regarded as recreational if its index score is ≥0.67.

6. Non-specialized. A county is classified as non-specialized

if it is does not fall into any of the five groups

listed above.

The RUCC codes classify metropolitan and

nonmetropolitan counties into nine categories based on

population size, degree of urbanization, and adjacency to a

metro area. The RUCC has three metro and six nonmetro

categories. The USDA ERS defines the nine RUCC classes as

follows (USDA Economic Research Service, 2013):

1. Metro area with one million population or more.

2. Metro area with 250,000 to 1 million population.

3. Metro area of fewer than 250,000 population.

4. Urban population of 20,000 ormore, adjacent to ametro area.

5. Urban population of 20,000 or more, not adjacent to a

metro area.

6. Urban population of 2,500–19,999, adjacent to a metro area.

7. Urban population of 2,500–19,999, not adjacent to a

metro area.
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8. Completely rural or <2,500 urban population, adjacent to a

metro area.

9. Completely rural or <2,500 urban population, not adjacent

to a metro area.

We also used the RUCC codes to label each county as either

metro (RUCC codes 1–3) or nonmetro (RUCC codes 4–9).

In joining the socioeconomic variables to our other data, we

were forced to drop 11 counties that were each missing one or

two socioeconomic values, leaving a total of 3,066 counties in

our combined dataset.

Analysis and models of net migration
rates

We calculated summary statistics for each explanatory

variable including the mean, minimum, maximum, and

standard deviation (SD) (Table 1). We also calculated the

Pearson’s R correlation coefficient between each explanatory

variable and the net migration rates (Table 1). We further

explored the relationships between these explanatory variables

and net migration using a series of Spatial Autoregressive

Models and a Geographically Weighted Regression model,

described in the following sections.

While an ordinary least squares linear regression (OLS)

would have been the most straightforward type of model to

use, it is not the best model for data that exhibit spatial

autocorrelation. Spatial autocorrelation is the tendency for

observations that are closer together in space to also have

more similar values, a property that is characteristic of most

geographic data, including our net migration rates and our

environmental and socioeconomic variables. Since neighboring

counties often exhibit similar characteristics and similar net

migration rates, it is worth considering whether they influence

each other through neighborhood effects. For instance, if a given

county is high in natural amenities and experiences high in-

migration, these factors could influence neighboring counties

to also experience high in-migration as people move to be

close to a desirable area. A Moran’s test for spatial dependence

showed that our dataset exhibited strongly significant spatial

autocorrelation (Chi2 = 1041, p < 0.0001). We therefore chose

to use Spatial Autoregressive (SAR) models rather than OLS,

since SAR models control for these neighborhood effects.

One limitation of global models like OLS and SAR is that

they do not allow for spatial nonstationarity. That is, if there

tends to be a positive relationship in one area of the country

and a negative relationship in another area, these models

will only give a summary of the overall global relationship,

masking any spatial variations. We have therefor conducted a

GeographicallyWeighted Regression (GWR), which allows us to

map and explore spatial variations in the relationships between

net migration and our various drivers.

Spatial autoregressive models

We used SAR models to model the influence of our

various environmental and socioeconomic drivers on net

migration rates, both globally, and separately for metro and

nonmetro counties. It has long been established that there is a

neighborhood effect in many spatial data: that societies in one

location influence societies in adjacent areas (Durlauf, 2004).We

chose to use SARmodels rather than OLS in order to account for

this neighborhood effect—the impact the covariates and errors

of one location have on their neighbors. SARmodels account for:

i Spatial lag outcome (L.y)—i.e., an outcome (y) in one given

location has an effect on the outcomes in neighboring areas

(neighborhood effect—denoted by L, or lag).

ii Spatial lag covariate (L.x)—i.e., a covariate in one location

affects the covariates of neighboring locations.

iii Spatially autoregressive errors—i.e., errors in one location

affect the errors of neighboring locations.

The SAR model is specified as follows:

y = β0 + β1Wijy+ β2x+ β3Wijx+ (I − ϕWij)
−1ε (5)

Where y = the outcome of interest;Wij = spatial weighting

matrix of area i of j-order neighbor, j= 1, 2, . . . J. The weighting

matrix measures the spillover of y or x on neighboring locations.

The spillover of y or x on adjacent neighbors is the first-order

neighbor and the spillover of areas adjacent to the adjacent areas

are the second-order neighbor. The jth neighbor order run from

j = 1, 2, . . . J. If there is no spillover of y or x, then W = 0.

The stronger the spillover the greater the value of W. Similarly,

the spatially autoregressive error is denoted by ϕWij and has the

same jth neighborhood order.

The statistical significance of the jth neighbor order was

tested to ensure that all statistically significant indirect impacts

were captured and reported.

Model coefficients for SAR models differ from those for

linear regression models; because of the extra terms in the SAR

model equation, the model coefficients do not correspond to a

slope or rate of change as with linear regression models. The

model output gives a separate estimate of the direct, indirect,

and total
dy
dx

for each input variable. The direct
dy
dx

represents the

direct effect without considering spatial lags from neighboring

counties, while the indirect
dy
dx

considers only the neighborhood

spillover effects, and the total is their sum. The direct and

indirect effects showed similar trends throughout, so we focus

our discussion on the total effects (Table 2).

We ran three separate SAR models: a global model for all

counties in our dataset (n = 3,066), a model for nonmetro

counties (n= 1934), and amodel for metro counties (n= 1,132).
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TABLE 2 Total dy

dx
e�ects for each SAR model.

Model

Variable Global Metro Nonmetro

Riverine flooding −1.3 −4.9 0.7

Earthquakes 1.8 −1.3 4.6

Heat Waves −14.5*** −16.6*** −8.4**

Hurricanes −12.1*** −8.9 −13.2***

Wildfires 15.8*** 11.3** 12.1***

January temperatures 38.5*** 53.9*** 22.9***

January cloud cover 7.2* 5.4 6.1*

Temperate summer −8.2* −13.7** 1.7

July humidity −13.1*** −18.6*** −9.3*

Topographic diversity −2.1 −4.8 4.1

Distance to water −4.4* 1.2 −8.2***

Forest cover 54.0*** 24.0 50.8***

Forest cover squared −38.0*** −15.0 −37.4***

Geometric HDI 30.1*** 34.9*** 11.9***

Ln(population density) 51.5*** 52.5*** 25.2***

[Ln(population density)] squared −4.5*** −4.4*** −0.5

Unemployment rate −13.8*** −14.9*** −13.2***

Income inequality −149.2* −568.3*** 63.9

Diversity index −68.9*** −59.5*** −40.1***

Population 65 and over 4.9*** 0.7 7.1***

Economic Typology Codes (cf Agriculture)

Government 14.2 −2.7 6.2

Manufacturing 23.8*** 29.2** 1.2

Mining 0.7 −10.4 −7.9

Nonspecialized 38.4*** 27.3** 13.9*

Recreation 68.7*** 61.9*** 45.1***

Rural Urban Continuum Codes (cf Metro > 1 million)

Metro: 250k-1 million −14.3

Metro: <250k −30.7***

Nonmetro: >20k (Metro-Adj.) −61.3***

Nonmetro: >20k (Non Adj.) −72.6***

Nonmetro: 2.5–20k (Metro Adj.) −64.6***

Nonmetro: 2.5–20k (Non Adj.) −66.7***

Nonmetro: <2.5k (Metro Adj.) −32.0**

Nonmetro: <2.5k (Non Adj.) −32.2***

Pseudo R2 0.47 0.36 0.38

NB: *p ≤ 0.1, **p ≤ 0.05, ***p ≤ 0.01.

Geographically weighted regression

We used a subset of the socioeconomic, natural amenity,

and natural hazard variables to construct a GWR model for

Net Migration in ArcGIS Pro, using a fixed distance band of

564,000m. The GWR constructs a local regression model for

each county, using the data for all counties within 564,000m of

that county. Because the GWR consists of a separate model for

each county, it allows us to map and explore how the adjusted

R2 values and model coefficients vary across the country. This

allows us to determine if there are regions where the model

performs better or worse, and even whether net migration has

opposite relationships with a given driver in different parts of

the country.

Since the GWR uses spatial subsets of counties, it is highly

sensitive to local multicollinearity. That is, if any two input

variables exhibit similar spatial clustering, they might be highly

correlated within a localized region even if they aren’t in the

global model. For this reason, we were unable to include all

the explanatory variables used in the SAR models. Of the

socioeconomic variables, we excluded the RUCC and Economic

Typology codes of each county. We were able to include all

of the natural amenity variables, but only one of the natural

hazard variables: Wildfires. The variables used in each of our

four models (three SAR models and one GWR) are summarized

in Table 3.

Results

Hot spot analysis of net migration rates

Figure 1 shows the Gi∗ hot spots for net migration rates

across the contiguous US over the last decade (2010–2020). In

shades of red are statistically significant migration hot spots,

areas where more people have been moving in than out. These

can be seen across large areas of the South—particularly around

major cities like Nashville, Charlotte, and Atlanta—and across

most of Florida, a large portion of Texas, and many areas across

theWest. In shades of blue are migration cold spots, where more

people have been moving out than in. These can be seen across

much of the Great Plains and along the Mississippi River, as well

as over large portions of New York State and West Virginia.

Natural hazard maps

Hurricanes are mostly an issue along the East and Gulf

Coasts of the US, affecting areas from Texas up to Maine

(Figure 3A). They more commonly affect coastal areas but can

have devastating effects even hundreds ofmiles inland, such as in

land-locked Vermont, which was hit with disastrous flooding in

the wake of Hurricane Irene in 2011 (Crossett and Clark, 2021).

Heat waves affect areas along the East and West Coasts, as

well as the middle of the country, across the Great Plains and

along the Mississippi River (Figure 3B). They are less common

in mountainous areas. It is useful to note that heat waves

are defined relative to the average temperatures for a given

area (FEMA., 2021). In states across the South and Southwest,

residents are used to relatively high temperatures, and many are

equipped with air conditioning. As a result, it takes much higher

temperatures to merit a heat advisory in Texas or Arizona than

Frontiers inHumanDynamics 10 frontiersin.org

https://doi.org/10.3389/fhumd.2022.886545
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Clark et al. 10.3389/fhumd.2022.886545

TABLE 3 Summary of variables used in each model.

Variable Global Metro SAR Nonmetro SAR GWR

SAR

Riverine flooding X X X

Earthquakes X X X

Heat Waves X X X

Hurricanes X X X

Wildfires X X X X

January

temperatures

X X X X

January cloud cover X X X X

Temperate summer X X X X

July humidity X X X X

Topographic

diversity

X X X X

Distance to water X X X X

Forest cover X X X X

Forest cover

squared

X X X X

Geometric HDI X X X X

Ln(population

density)

X X X X

[Ln(population

density)] squared

X X X X

Unemployment rate X X X X

Income inequality X X X X

Diversity index X X X X

Population 65 and

over

X X X X

Economic typology

codes

X X X

Rural urban

continuum codes

X

in Washington State or Maine, where residents are adapted to

cold, but may not have air conditioning.

Wildfires affect large swaths of the country, particularly

across the West (Figure 3C) where smoke and evacuations have

become a routine fact of life in many areas, claiming headlines

every summer. However, they also affect counties in the East,

where residents may be less aware of this potential danger (Rott

et al., 2021).

Summary statistics and correlations with
net migration rates

We present the Pearson’s R correlation coefficients between

net migration rates and each of the natural and socioeconomic

variables in Table 1, along with summary statistics for each

variable. Net migration rates for counties in the contiguous US

(excluding outliers) ranged from−261 to 280migrants per 1,000

residents, with a mean of−1.8.

The five natural hazards were scaled to their means and

standard deviations, so their means were forced to 0.0 and

their ranges were compressed to about −1.5–4.1 (−3.3–4.3 for

Riverine Flooding). Four of the five hazards had significant

positive correlations with net migration (R = 0.06, 0.1, 0.07,

and 0.13 for Riverine Flooding, Earthquakes, Hurricanes, and

Wildfires, respectively), indicating increased population gains

frommigration in areas at higher risk of these hazards. However,

Heat Waves were significantly and negatively correlated with

migration (R = −0.18), suggesting that people have migrated

away from this particular hazard.

January Temperatures ranged from 4 to 67◦F with a mean

of 33◦F and were positively correlated with migration rates (R

= 0.13), indicating an overall trend of migration toward warmer

winters. Temperate Summer (the negative residual of July over

January temperatures) values ranged from−9 to 22. Since this is

a metric of relative coolness, these can be interpreted as ranging

from 9◦ warmer than expected (given January temperatures)

to 22◦ cooler than expected, with a mean of 0 (the expected

temperature in our linear model). Relatively cool, temperate

summers were positively correlated with net migration rates (R

= 0.25), suggesting an overall trend of moving toward relatively

cool summers. January Cloud Cover ranged from 24 to 67%with

a mean of 40% and was positively correlated with net migration

(R = 0.19), indicating migration toward cloudier areas. July

Humidity ranged from 12 to 63% with a mean of 43% and had

no significant correlation with migration rates.

Topographic Diversity ranged from 0 to 1.6, with a mean

of 1.0, and was positively correlated with migration (R =
0.18), suggesting overall migration toward more topographically

diverse landscapes. Distance to water ranged from 0.6 to 121 km,

with a mean of 33 km. It was negatively correlated with net

migration rates—that is, being a greater distance from water

is correlated with lower migration rates (R = −0.23), so areas

closer to water would have higher net migration. Forest cover

ranged from 0 to 93%, with a mean of 36%. It and its square

were both positively correlated with net migration (R = 0.15

and 0.09, respectively), indicating increased net migration with

greater forest cover.

The geometric HDI had a mean of 4.9 and was positively

correlated with net migration rates (R = 0.3). The natural log

of Population Density ranged from −1.5 to 11.2 with a mean

of 3.8. This corresponds to raw population densities ranging

from 0.22 to 73,130 people per square mile, and a mean of 44.7

people per square mile. The natural log of Population Density

and its square were both positively correlated with net migration

(R = 0.27 and 0.26, respectively), indicating that people tend

to move to more densely populated areas. The Unemployment

Rate is the percentage of unemployed active job-seekers in the
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civilian population over 16 years of age. It ranged from 1.7

to 24.4 with a mean of 6.3 and was negatively correlated with

net migration rates (R = −0.12), suggesting migration away

from high unemployment rates. Income Inequality (the Gini

coefficient) ranged from 0.3 to 0.6 with a mean of 0.4, and

was negatively correlated with net migration (R = −0.08). The

Diversity Index ranged from 0.1 to 1.5 with a mean of 0.6, and

was positively correlated with net migration (R = 0.06). The

Population 65 and Over ranged from 4.3 to 36.8 with a mean of

17.8, and had no significant correlation with net migration rates.

Spatial autoregressive models

The SAR results are reported in in Table 2, which shows the

total
dy
dx

effects for the global, nonmetro, andmetro SARmodels.

The direct and indirect effects, model coefficients, and errors are

included in the Supplementary Tables 2, 3.

In the global model there was no significant effect for

Riverine Flooding or Earthquakes. Both Heat Waves (
dy
dx

=

−14.5) and Hurricanes (
dy
dx

= −12.1) had negative relationship

with net migration as expected. Contrary to expectation

however, Wildfires (
dy
dx

= 15.8) had a positive relationship

with net migration. The results for the metro and nonmetro

models followed the same trends, although the relationship

with Hurricanes was not significant in the metro SAR model

(Table 2).

Among the climate variables, summer and winter

temperatures were the most important. The global model

showed that January Temperatures had a positive relationship

with net migration rates (
dy
dx

= 38.5), indicating that, holding

all else equal, people have been moving toward warmer winters.

However, Temperate Summers had a negative relationship with

net migration rates (
dy
dx

= −8.2)—that is, controlling for other

factors, people have been moving away from areas with cooler,

more temperate summers and toward areas with relatively hot

summers. This is in contrast to the overall trends captured

by the correlation coefficient between Temperate Summers

and net migration, which was positive (R = 0.25), suggesting

overall migration toward relatively cool summers when we

don’t control for other variables. The relationship with Cloud

Cover was positive (
dy
dx

= 7.2) while that with Humidity was

negative (
dy
dx

= −13.1). These same trends held for the climate

variables in the metro and nonmetro models, with the exception

of Cloud Cover in the metro model, and the notable exception

of Temperate Summers: while there was a strong negative

relationship with migration in metro areas (
dy
dx

= −13.7), there

was no significant relationship in nonmetro areas. This suggests

that, holding all else equal, people have been moving toward

metro areas with relatively hot summers and away from metro

areas with relatively cool summers.

The impact of landscape amenities on migration varied

depending on whether metro or non-metro areas were

considered. The global model results were not significant for

Topographic Diversity and were negative for Distance to Water

(
dy
dx

= −4.4), although the latter was only significant in the

nonmetro model, and not in the metro model . The global

model showed a positive relationship with Forest Cover (
dy
dx

= 54.0) and a negative relationship with its square (
dy
dx

=
−38.0), reflecting the expected quadratic relationship. In this

case, the metro and nonmetro models showed similar trends,

although once again, these relationships weren’t significant in

the metro model.

Among the socioeconomic variables, the global model

showed positive relationships with the Geometric HDI (
dy
dx

=

30.1) and Population 65 and Over (
dy
dx

= 4.9), and negative

relationships with the Unemployment Rate (
dy
dx

= −13.8),

Income Inequality (
dy
dx

= −149.2), and the Diversity Index

(
dy
dx

= −68.9). These trends also held true for the metro and

nonmetro models, except in the case of Population 65 and Over,

which was not significant in the metro model, and Income

Inequality, which was not significant in the nonmetro model.

The natural log of Population Density had a positive relationship

with migration (
dy
dx

= 51.5) while its square had a negative

relationship (
dy
dx

= −4.5), reflecting the expected quadratic

relationship. These trends held true for the metro model,

although the relationship with the square was not significant

in the nonmetro model. Overall, the socioeconomic variables

tended to have stronger relationships with migration in the

metro SAR model compared to the nonmetro model (Table 2).

Among the Economic Typology classes, relative to

the Agriculture class, Recreation, Nonspecialized, and

Manufacturing had significant positive relationships with

migration, while Government and Mining were not significant.

This held true in the global and metro model, but not the

nonmetro model, where the Manufacturing relationship was not

significant. Among the RUCC categories, relative to large metro

areas with populations over 1 million, every other category had a

negative relationship with migration, although the relationship

with metro counties with populations between 250,000 and 1

million was not significant. RUCC codes were only included in

the global model.

Geographically weighted regression

The results of the GWR model allow us to visualize how

model performance (in the form of local R2 values for each

county) and relationships (in the form of local model coefficients

for each county) vary across the country. These results, mapped

in Figures 4–6, show how relationships between net migration

and variables like Wildfire and Temperate Summer vary
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spatially, and may be positive in some regions but negative in

others. While it is possible to create similar maps for each model

driver, we chose to focus on the local Wildfire and Temperate

Summer coefficients due to their unexpected results in the

SAR models. Wildfire was the only natural hazard included in

the GWR.

The GWR model had a global adjusted R2 of 0.59 and local

R2 values for each county ranging from 0.3 to 0.9, with lower

values in parts of the Great Plains, the Northeast, and Texas, and

higher values across the South and West, particularly Arizona

and Florida (Figure 4).

Local model coefficients for Wildfire are shown in Figure 5.

Values ranged from −60 to 100. Negative coefficients (in shades

of blue) indicate regions where people have been moving away

from counties with a higher risk of wildfires or toward counties

with lower risk. These are seen across much of California

and Nevada, in the region around Colorado, New Mexico,

Oklahoma, and Kansas, and along the Appalachian Mountains

from Tennessee to NewHampshire. Positive values (in shades of

red) indicate regions where people are moving toward counties

with higher risk or away from counties with lower risk. These

are seen in southernmost California, across Arizona and Utah,

in the Midwest, Maine, and in states along the Gulf Coast.

Local model coefficients for Temperate Summers are shown

in Figure 6. Values ranged from −160 to 990. Negative values

(in shades of red) indicate regions where people have been

moving away from counties with relatively cool summers or

toward counties with relatively hot summers. These can be seen

across much of the Southwest and Texas, in Iowa, Montana,

and parts of the Northeast. Positive values (in shades of blue)

indicate regions where people are moving toward counties with

relatively cool summers or away from counties with relatively

hot summers. These can be seen across much of the Pacific

Northwest, northern Arizona, NewMexico, and Colorado, areas

along the Mississippi, and much of the South and Florida.

Discussion

Our study identifies several troubling relationships between

US migration patterns and natural hazards. We find that during

the 2010s, controlling for environmental and socioeconomic

factors, people tended to move away from areas with more

frequent heat waves and hurricanes, but toward areas with

greater risk of wildfires. In addition, we find that people

have been moving toward areas with warmer summer and

winter temperatures, including metro areas with particularly

hot summers. These trends suggest that migration is increasing

the number of people in harm’s way, even as climate change

continues to exacerbate summer heat and contribute to more

frequent and severe wildfires.

We also investigated the relationship of migration to natural

amenities and socioeconomic factors. When it came to natural

amenities, we found that across nonmetro areas people have

generally moved toward cloudier areas, away from higher

humidity, closer to water bodies, and toward intermediate

levels of forest cover, while people in metro areas don’t

seem to be as heavily influenced by these factors. Among

socioeconomic variables, we found people moved toward areas

with higher human development scores (HDI), away from high

unemployment and high income inequality, toward large metro

areas and areas with intermediate population density, toward

more ethnically homogenous areas, and toward areas with larger

populations over age 65. We found that, with the exception

of the population over 65, all of these factors had stronger

effects across metro counties than across nonmetro counties.

This suggests migration across urban and suburban areas is

more heavily influenced by economic factors, while the natural

landscape plays an elevated role in rural areas. Key findings from

the SAR models are summarized in Figure 7.

Correlations with net migration

The correlation coefficients with net migration (Table 1)

show that, without controlling for any other factors, people have

been moving away from areas prone to heat waves, but toward

areas at risk of riverine flooding, earthquakes, hurricanes, and

wildfires. These results agree with a recent real estate report,

which showed that Americans are moving to places with high

risks of fire hazards and hurricanes, and that home prices are

trending upwards in such places (Katz, 2021).

Among the climate amenities, people moved toward areas

with warmer winters and cooler summers. Surprisingly, they

also moved toward areas with higher winter cloud cover (R =
0.19). This is in contrast to McGranahan (1999), who found a

correlation near zero (R = 0.01) between net migration rates

and winter sunshine (1970–1996). This change may be due to

our study period seeing very high migration into northwestern

states and southern Florida, two regions with particularly cloudy

winters. In terms of the landscape amenities, people have

been moving toward topographic diversity, closer to water, and

toward forest cover. People also moved toward areas with higher

HDI values, higher population densities, higher ethnic diversity,

lower unemployment rates, and lower income inequalities.

SAR models

Natural hazard and climate variables

While correlation coefficients indicate overall trends in

migration relative to each variable, the SAR models represent

a given variable’s relationship with net migration when we

hold all other factors constant, meaning the SAR results are

more representative of people’s preferences regarding individual

variables. The global SAR showed that, after controlling for
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FIGURE 4

Local R2 values for the GWR model. Values ranged from 0.3 to 0.9, with lower values in the Northeast, upper Great Plains and part of Texas, and

higher values across the South and West, particularly Arizona and Florida.

FIGURE 5

Local model coe�cients for wildfire in the GWR. Values ranged from −60 to 100. Negative values (in shades of blue) indicate regions where

people have been moving away from counties with a higher risk of wildfires or toward counties with lower risk. Positive values (in shades of red)

indicate regions where people are moving toward counties with higher risk or away from counties with lower risk.

socioeconomic and environmental factors, people have been

moving away from counties most affected by heat waves and

hurricanes, but toward those most at risk of wildfires (Table 2).

This suggests that people are attracted to fire prone areas.

There is a high risk of wildfires across much of the West, as

well as parts of the South (Figure 3C), including many areas

identified as migration hot spots (Figure 1). It is possible that

wildfire-prone areas are representative of the very types of

natural scenery and outdoor recreation areas that people find

most attractive.

Our results are in line with previous findings of population

and housing growth in the fire-prone Wildland Urban Interface

(WUI) (Radeloff et al., 2018), and in fire-prone areas more

broadly (Bliss et al., 2021; Katz, 2021). Across the US, much of

the last decade’s population growth and development has taken

place in the WUI: suburban and exurban areas in and around
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FIGURE 6

Local model coe�cients for temperate summers in the GWR. Values ranged from −160 to 990. Negative values (in shades of red) indicate

regions where people have been moving away from counties with relatively cool summers or toward counties with relatively hot summers.

Positive values (in shades of blue) indicate regions where people are moving toward counties with relatively cool summers or away from

counties with relatively hot summers.

FIGURE 7

Conceptual diagram highlighting significant relationships between SAR input variables and net migration rates. The most salient relationships

given climate change are highlighted in red and blue. Riverine flooding, earthquakes, and topographic diversity were included but not significant.

Typologies of major employment sectors and the rural-urban continuum were also included. There were significant positive relationships with

manufacturing, recreation, and nonspecialized counties relative to agricultural counties. Relative to large metro counties (population over one

million), there were significant negative relationships with RUCC codes designating metro and nonmetro counties of smaller population sizes.

forests and wildlands where wildfires are not only more likely,

but also harder to fight (Radeloff et al., 2018). The WUI grew by

33% in land area from 1990 to 2020 (Radeloff et al., 2018), and

there is evidence that development in this zone—placing more

homes, infrastructure, and human activity in fire-prone areas—

has led to an increase in human-sparked wildfires (Bar-Massada

et al., 2014; Radeloff et al., 2018; Moeller, 2020), which could

also contribute to the positive relationship we found between

migration rates and wildfires.

This positive relationship is a troubling trend, particularly

as climate change is expected to contribute to more frequent

wildfires (Radeloff et al., 2018). Our results reflect the complex

tradeoffs people must consider as they weigh where to settle.

Factors like job opportunities, family ties, affordability, or
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perceived quality of life could all outweigh the perceived danger

of fire.

While natural amenities act as migration “pulls”,

disamenities do not always act as “pushes.” People will

not relocate if they are not aware of risks, don’t take them

seriously, or are simply unable to move due to financial or

familial constraints. Some will also choose to stay if they

accept potential losses as the worthwhile cost of living in a

desirable location (Hunter, 2005). Many migrants have been

drawn to western states by dramatic mountain scenery and

plentiful opportunities for outdoor recreation, but newcomers

are often unaware of the potential dangers of wildfires (Bliss

et al., 2021), and might not consider the impact of wildfire

smoke on day-to-day life. Meanwhile, long-term residents,

after repeated exposure to wildfire smoke and evacuations, may

become habituated to the danger and no longer consider it

as worrisome, a phenomenon documented for other natural

hazards (Hunter, 2005). Finally, the poorest residents in at-risk

areas may not have the resources to leave, even if they wish to

(Hunter, 2005; Cattaneo et al., 2019).

While natural hazards do not always drive local residents

to leave, there is some evidence that they can discourage new

in-migrants. Hunter (1998) found that US counties with air

and water pollution gained fewer new residents than those

without. Winkler and Rouleau (2020) found that counties

with increased days of extreme heat (days > 90◦F) in a

given year had suppressed in-migration in the following year.

They also found that the occurrence of a FEMA disaster-

level wildfire in a given year suppressed net migration in the

following year.

At first glance, this appears to contradict our findings of

a positive relationship between migration rates and wildfire

risk. However, Winkler and Rouleau (2020) only considered

the incidence of highly destructive disaster-level fires, while

our approach measures wildfire risk more broadly. More

importantly, their study focuses on one-year impacts, while

ours considers long-term relationships, neither of which fully

captures the nuance of how these relationships change over

time. Real estate trends suggest that while a wildfire can

suppress housing demand in an area for a period of months—

when the memory is still fresh in people’s minds and burn

scars still mar the landscape—these areas often bounce back

relatively quickly, seeing rising demand within a few years

(Bliss et al., 2021). Affordability may also play an important

role—in expensive states where home prices have skyrocketed,

homes in the most fire-prone areas can be more affordable,

attracting new residents (Bliss et al., 2021; Katz, 2021). It

seems that after a few years, when the immediate threat has

faded from people’s minds, the WUI entices new residents

once more.

Heat waves had a strong negative effect on migration in our

SAR models, in line with Winkler and Rouleau (2020) findings,

and this was stronger in metro areas than in nonmetro areas.

This could be due to the urban heat island effect exacerbating hot

weather. Compared tomore rural or suburban areas, urban areas

tend to have less tree canopy, which has cooling and shading

effects, andmore concrete and other buildingmaterials that hold

heat (Fokaides et al., 2016).

Despite the negative effect of heat waves, our SAR models

show that people preferred to move toward counties with

warmer winter temperatures. Somewhat surprisingly, they also

preferred to move away from areas with relatively cool,

temperate summers and toward those with relatively hot

summers. This is in contrast to trends for previous decades

when people tended to migrate toward areas with relatively

mild summers and winters, such as the Mountain West and

California (McGranahan, 1999, 2008). Temperate summers

had an even stronger negative effect on migration in metro

areas than in the global model—that is, holding all else equal,

people moved toward metro areas with relatively hot summers.

This could be driven in part by extremely high migration to

areas surrounding major cities in Nevada, Arizona and Texas

(Figure 1). Meanwhile, temperate summers had no significant

effect on migration rates in nonmetro areas.

Our results show that, over the study period, people were

attracted to areas with relatively warm summer and winter

temperatures, while at the same time avoiding areas prone to

heat waves. As air conditioning has become more prevalent, it

has enabled more and more population growth in hot climates,

such as Arizona, Nevada and Texas. However, as average

temperatures continue to warm with climate change, these areas

could become more inhospitable. Temperatures could reach a

point where they affect residents’ health, wellbeing, and quality

of life, even with adaptations such as air conditioning (Ebi et al.,

2018; Milman, 2018).

Landscape variables

In line with previous literature (McGranahan, 2008; Hjerpe

et al., 2020), we found that people preferred to move closer

to water, and forest area had a quadratic relationship with

migration rates. This is what we would expect, since landscapes

with water features tend to be considered more scenic, and

the literature suggests that people prefer varied landscapes with

intermediate levels of forest cover. These effects were stronger

and significant in nonmetro areas, but were non-significant in

metro areas. This suggests that pleasant natural scenery plays

more of a role in shaping migration patterns in rural areas than

in urban ones, where economic opportunities may play a more

important role (Winkler and Rouleau, 2020).

Socioeconomic variables

The geometric HDI, an indicator of health, education, and

income, had a strong positive effect across the three SARmodels,

particularly in metro areas. This suggests people are attracted

Frontiers inHumanDynamics 16 frontiersin.org

https://doi.org/10.3389/fhumd.2022.886545
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Clark et al. 10.3389/fhumd.2022.886545

to counties with higher incomes, education levels, and life

expectancies, which may be indicative of better economic and

educational opportunities, more safety, and higher quality of

life. As expected, there was also a strong negative relationship

between net migration and unemployment rates. This would be

consistent with people being attracted to areas with strong job

markets, perhaps even securing employment or other income

(such as retirement income) before moving to an area.

We found a very strong positive relationships between

income inequality and migration in the global and metro

SAR models, but this relationship was not significant in the

nonmetro SAR. This is consistent with the idea that income

inequality could act as a proxy for crime rates, which may

depress net migration rates in urban areas. This relationship

does not seem to hold in nonmetro areas, perhaps because

rural areas tend to have lower population densities and lower

crime rates.

We also found a strong negative relationship in the SAR

models between net migration and the Diversity Index, which

was in contrast to the positive Pearson’s R correlation between

these two variables. This indicates that while people have

moved toward more diverse areas over all (perhaps as they

flock to urban areas), when we control for other factors

such as population density and RUCC codes, as we do in

the SAR models, we find higher net migration rates in less

diverse, generally “whiter” counties. This result is consistent

with Winkler and Johnson (2017), who found that black

and Hispanic Americans of all ages have been migrating to

“whiter” counties (contributing to increased diversity), and older

whites of family or retirement age have also been moving

to “whiter” counties (decreasing diversity), as they move into

suburban or exurban areas. Meanwhile, younger whites have

moved toward more diverse urban centers, meaning that overall

migration trends, (including people of all races moving toward

less diverse, “whiter” areas) have contributed to a national

trend of increasing diversity (Winkler and Johnson, 2017; Frey,

2020).

We found a positive relationship between net migration and

the population 65 and older in the global and nonmetro SAR

models, but this relationship was not significant in the metro

SAR. This is consistent with retirement being an important

source of in-migration to rural and suburban counties—

nonmetro counties with higher populations over age 65 may

be retirement destinations that attract new retirees, as well as

younger workers who are drawn to jobs in associated service

industries. Meanwhile, as retirees become older and less mobile,

they are less likely to migrate out again, which also contributes

to higher net migration rates.

As expected, population density had a quadratic relationship

withmigration rates (McGranahan, 2008), indicating that people

prefer more densely populated areas up to a point, but dislike

excess density, and these effects held true in both the metro

and nonmetro models. Controlling for population density and

all our other factors, large metro areas with populations over

1 million were generally preferred to other RUCC categories,

consistent with the literature’s findings of a longstanding rural

exodus (Johnson and Lichter, 2019).

Geographically weighted regression

The results of our GWR model can be used to investigate

how relationships between net migration and the various

environmental and socioeconomic drivers vary across space.

Here, we focus on spatial variations in two of the most salient

variables for climate change given our SAR results: Wildfires and

Temperate Summers.

The relationship between wildfire and net migration varied

widely across the country, with positive values in some regions

and negative values in others. Figure 5 shows the local model

coefficients for the effect of wildfire risk on migration rates.

Where counties are red, there is a positive relationship,

consistent with our SAR results: people are moving toward

wildfire-prone areas (e.g., in the Southwest, Northwest, and

Texas) or away from areas less prone to wildfires (e.g., in

the Midwest and Maine). Where counties are blue, there is a

negative relationship not captured by our SAR model: in these

regions people are moving away from wildfire-prone areas (e.g.,

California) or toward areas less prone to wildfires (e.g., major

cities across the South).

The relationship between relatively cool summers and net

migration also varies spatially. Figure 6 shows a map of the

local model coefficients for the effect of temperate summers

on migration rates. Where counties are red, people are moving

away from areas with relatively cool summers (e.g., New York,

Maine, northern Montana, and northern California), or toward

relatively hot summers (e.g., southern California and Arizona).

Where counties are blue, people are moving toward areas

with relatively cool summers (e.g., the Pacific Northwest, New

Mexico, and Colorado) or away from relatively hot summers

(e.g., along the Mississippi River).

Limitations and future research

Our results are limited by the variables we did not control

for. For instance, housing values, cost of living, and socio-

cultural factors, are all important drivers of migration (Czaika

and Reinprecht, 2020; Winkler and Rouleau, 2020), but data on

these factors were not available at the county level. Socio-cultural

factors like professional networks and family ties are particularly

hard to measure.

Demographics like age, race, and ethnicity are all important

factors influencing migration (Nelson et al., 2009; Johnson et al.,

2013; Winkler and Johnson, 2017). Unfortunately, there is no

available data for this study period breaking down net migration
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rates by the age, race, or ethnicity of those moving. Income is

also an important factor which often determines who can afford

to move. Unfortunately, we are not aware of any county-level

data on net migration by income bracket. Our study was only

able to control for the static demographic and socioeconomic

characteristics of counties, not those of migrants, but there is a

need for more research on how recent migration patterns vary

across income levels, age, race, and ethnicity, and how these

factors interact with each other (Nelson, 2011). It is important

to capture both the heterogeneity in people’s preferences, and in

their ability to act on those preferences, since the option to move

to a high-amenity area or avoid environmental disamenities may

be highly tied to income and access to resources (Hunter, 2005;

Cattaneo et al., 2019).

There is also a role for more research on the social impacts

of amenity migration, and its intersection with inequality

and environmental justice (Schaeffer and Dissart, 2018). For

example, natural amenity migration has the potential to

contribute to rural gentrification as relatively wealthy new

arrivals buy up property, either for permanent homes, or

seasonal second homes. This can drive up the cost of housing,

pushing locals to move to more affordable areas (Gosnell and

Abrams, 2011). Conversely, some residents of hazard-prone

areas may not have the financial means to move out of danger.

Research on migration in relation to sea-level rise has identified

populations that may become trapped in high-risk areas due

to their socio-economic vulnerabilities (Seeteram et al., 2020).

Those with lower incomes are generally more vulnerable to

natural hazards as they may live in more affordable but higher

risk areas, may live in less sturdy housing, andmay not be able to

afford disaster preparedness or recovery measures like sufficient

insurance coverage (Hunter, 2005; Cattaneo et al., 2019).

There is also scope for additional research on the

environmental impacts of amenity migration. In some cases,

population growth in high-amenity areas, and the associated

development, can adversely affect the very environmental

factors that attracted migrants in the first place, such as forest

wilderness, clean air, clear water bodies, and wildlife (Abrams

et al., 2012; Ducey et al., 2016; Mockrin et al., 2018; Radeloff

et al., 2018). Much of this new development occurs in the

WUI, where people and housing are most at risk from wildfires,

and where increased development and human activity has

contributed to an increase in human-ignited fires (Radeloff et al.,

2018).

Conclusions

Our study analyzes US migration trends for the last

decade (2010–2020) in relation to natural amenities and natural

hazards. We find that, controlling for socioeconomic and

environmental factors, people have been moving toward areas

most at risk of wildfire, and toward metropolitan areas with

relatively hot summers. As climate change advances, we can

expect to see hotter summer temperatures and heightened risk of

wildfire, meaning that if these migration trends continue, more

and more people will be in danger from heat and fire. We hope

our findings will contribute to more awareness of these growing

dangers, while providing empirical evidence to guide planners

and policymakers as they design strategies for climate resilience

and hazard preparedness.
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