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Today, diagnostic reasoning combines common and specialized knowledge,

elements of numeracy, some facility with the basics of probability theory and,

last but not least, ease in interactions with AI tools. We present procedures

and tools for constructing trees that lead to understandable, transparent,

simple, and robust classifications and decisions. These tools are more heuristic

than optimal models, inspired by the perspective of Bounded Rationality. We

describe how the tenets of Bounded Rationality provide a framework for the

human-machine interaction this paper is devoted to. We claim that, because

of this rationality, our proposed tools facilitate machine-aided decisionmaking

that is smooth, transparent and successful.
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Introduction

When a doctor—let’s call her Dr. Devlin—decides on a course of treatment for a

patient, she coordinates information from multiple sources: the patient’s appearance,

findings from an examination, test results, the medical history, and so forth. This

information constitutes a set of cues, or features, that she uses to make her diagnosis,

that is, to classify this case: is the patient diabetic? Do they suffer from hypertension?

Do they have COVID? Dr. Devlin uses that classification to make crucial decisions

about treatment.

Sometimes, the information at the doctor’s disposal may be scarce and the time

for action may be limited. But Dr. Devlin’s decision making must always be consistent

and justifiable. She must be able to explain to patients and colleagues how the available

evidence led to her decisions—decisions that follow from the way she classifies each case.

Standardized classification methods have gained importance in the biomedical

diagnostic field. Recently, Lötsch (2022) have published a comprehensive review of

methods from Artificial Intelligence that are used in the biomedical context for the

support of medical diagnosis. The authors report how physicians are now often

aided by machine learning algorithms that are designed to produce optimal or

near-optimal predictions. The algorithms cover a wide range of models, sometimes

denoted “skill learning methods”, such as artificial neural networks, CART, Bayesian

Networks and support vector machines. The review demonstrates how an adequate

understanding of these methods requires a basic knowledge of statistics and computer

science. This has important consequences for the curricula of future doctors.
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Unfortunately, as the authors point out, it is often hard for

patients (and some practitioners) to understand the explanations

given by the developers of the models. One result has been that

the traditional doctor-patient relationship, based on trust built

through the years, is giving way to a less transparent interaction,

in which the doctor communicates diagnostic results obtained

by such AI algorithms. These methods are sometimes criticized

as being neither easily explainable nor transparent.

We agree with that criticism. Complex machine learning

methods for medical diagnosis are guided by a search for

optimality or near optimality, often leading to intractability,

lack of transparency and lack of explainability. At the other

extreme of the spectrum are transparent models such as fast-

and-frugal trees, which are guided by a desire for simplicity

and transparency, and yet do not have to trade that simplicity

for accuracy. They satisfice rather than optimize, that is, they

take the perspective of bounded rationality. The essence of

bounded rationality is that it results from adaptation between

the environment and the mind, and takes advantage of this

adaptation (Gigerenzer et al., 1999).

Fast-and-frugal heuristics for medical diagnosis, prediction

and decision making have been developed, aiming at modeling

and supporting medical institutions and doctors (see, for

instance, Green and Mehr, 1997; Fischer et al., 2002; Jenny

et al., 2013). In several studies, it has been found that diagnosis

based on fast-and-frugal trees is more accurate, especially when

generalizing from small training sets to large test sets, than both

the physicians’ clinical judgment andmore complex statistical or

machine learning models (Green and Mehr, 1997; Fischer et al.,

2002; Jenny et al., 2013).

We introduce fast-and-frugal classification trees and want to

compare the efficiency, diagnostic power and accuracy of these

trees, which are simple both in construction and execution, with

inference machines constructed by other tools. We will exhibit

tree-construction tools based on elementary computations of

sensitivities and predictive values, produced using the Common

Online Data Analysis Platform (CODAP), a free, web-based

educational tool for data analysis.

By proposing AI tools based on boundedly rational heuristic

models for categorization, classification and decision, we take

into account psychological and philosophical principles that

have evolved over millennia. We recall that the classical view of

categories was introduced in the work of Plato and systematized

by Aristotle, whose method was popularized in the Middle Ages

through Porphyry’s Isagogé. Porphyry’s tree is one of the first

trees used as a model for categorization and classification. The

historical evolution of such trees has been impressive in many

realms of human knowledge. Boundedly rational classification

trees combine the tree structure with lexicographic procedures,

as we will describe below.

These principles help create explainable and transparent

tools. Because these heuristics have a small number of

parameters, they tend not to overfit, and they compete well

with sophisticated machine learning techniques. The overfitting

and lack of robustness of complex AI algorithms in the clinical

domain has recently been a subject in Stat+ with a detailed

account by Casey Ross (2022), which also appeared as this paper

was in production1.

The posture of the paper by Lötsch (2022), may seem

extreme. Another perspective may be that the patient trusts the

doctor to choose the best option/method. Thus it is actually

the doctor who needs to trust the AI; and if they do not,

they will be reluctant to apply it, or suggest it to patients.

Better, more humane explanations might be a solution in certain

circumstances. There is a vivid discussion in the literature with

many publications outlining that in certain cases, to generate

patient trust, a validated performance might be preferable over

explanations [see, for instance, (Katsikopoulos et al., 2021)].

The following section is a brief digression devoted to the

main tenets of bounded rationality and their history.

Brief historical account of bounded
rationality for decision making

The modern behavioral interpretation that can be

formulated in favor of bounded rationality is as follows:

Decisions can be rational or not based on their cognitive

success in problem-solving and in adapting to the environment

(Gigerenzer and Selten, 2002). According to this ecological

perspective, the structure surrounding the decision-making task

is highlighted in the process and becomes a fostering factor of

succesful procedures. Based on this principle it is preferable,

from an adaptive perspective, to adopt heuristic decision-

making procedures based on the “less-is-more” principle, and

on “satisficing” rather than to search for optimal classifications

and decisions. The evolution of bounded rationality as a

paradigm had its focus on procedural features. Bounded

rationality concerns the process for arriving at a decision,

not just the decision itself. It involves substantive rationality,

i.e., the rationality of the decision, and also procedural

rationality. Taking into account that we live in a world full of

uncertainty and cognitive complexity and that humans have

limited information processing capacities, Simon (1978, p. 9)

introduced the distinction between substantive and procedural

rationality in the following way: “In such a world, we must

give an account not only of substantive rationality—the extent

to which appropriate courses of action are chosen—but also

procedural rationality—the effectiveness, in the light of human

cognitive powers and limitations, of the procedures used to

choose actions.” And Simon remarked that “There is a close

affinity between optimizing and substantive rationality, and an

1 https://www.statnews.com/2022/02/28/sepsis-hospital-

algorithms-data-shift/.
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affinity between bounded and procedural rationality. The utility-

maximizing optimum is independent of the choice process; the

outcome is all that counts. In the bounded rationality approach

the choice depends upon the process leading up to it” (Simon,

2001). Bounded rationality postulates procedures that respect

human limits on knowledge of present and future, on abilities

to calculate the implications of knowledge, and on abilities to

evoke relevant goals (Simon, 1983). Bounded rationality is thus

aimed at attaining outcomes that satisfice (attain aspirations)

for the wants and needs that have been evoked (Conlisk, 1996).

Procedural rationality stresses the emphasis on the rational

scrutiny to which the used procedures can be subjected (Viale,

2021a,b,c). The role of procedural rationality is evident in

all the fields of decision making. For example in design and

engineering: “Needless to say that, given the uncertainty and

cognitive complexity of many engineering-design projects, this

form of rationality may be of great importance for engineering-

design practice” (Kroes et al., 2009).

Bounded rationality and medical
decision-making

Medical classifications deal with the most important of our

resources: health. Whether assigning a patient with worrying

symptoms to a hospital bed or to her/his home bed, has to be

resolved quickly, on the basis of tests and symptoms. During

the last 2 years doctors in the world have had to assess the

predictive value or diagnostic power of a combination of features

and decide accordingly, whether a patient with Covid symptoms

has to be assigned to a hospital bed. A decision tree that

cristallized from statements from a number of doctors in the city

of Tübingen was the following:

What mattered here was making a quick decision. In

more standardized procedures some formalization becomes

necessary. The high predictive value for an oxygen saturation

of <90 (or, in some cases, <85), for high Covid risk had been

assessed collectively based on shared knowledge and shared

expertise. Low blood pressure was also considered predictive

of imminent high risk. Here three features are combined

for judgment.

Performing judgment and decision problems by inferences

based on situational features is fundamental; what is so special

about our mind/brain is that it has, among its competencies, the

ability to extract adequate crucial features of items or situations

and make predictions based on these features.

From the perspective of AI the construction of the

representation scheme for inference corresponds to the

extraction of features and the structuring of these features. Trees

offer one way of structuring features. Once the features are

extracted they have to be organized as a scheme. We combine

the Bayesian inference mechanisms with very simple trees. In

the next section we begin by discussing about the assessment of

predictive values of single cues based on Bayesian inference.

The mathematical tools for accurate inferences
in the medical domain

The revolution in the field of medical inferences and

classifications came with the formalization of measures for

the reliability of the observed features. The most important

formalization came with the inception of the probability calculus

during the Enlightenment.

Here we make a brief historical digression and recall

the origins of the probabilistic calculus: Probability theory

emerged during the Enlightenment as tools of rational belief

and for decision-making in the presence of risk (Daston, 1995).

According to Laplace,

“the theory of probabilities is nothing but common

sense reduced to a calculus; it enables us to appreciate with

exactness that which accurate minds feel with a sort of instinct

for which often they are unable to account,” (Laplace, 1812).

The theory of probabilitiesmade it possible to assess features’

reliability, and opened the gate to optimality of judgment and

fully rational decision making. Bayes’ Theorem, discovered by

reverend Thomas Bayes in the eighteenth century, became the

tool for assessing predictive values of features.

The enthusiasm of the Enlightenment was crowned by

Kolmogorov’s embedding of the theory of probability into

the axiomatic edifice of modern Mathematics in the early

twentieth century (1936). However, in the second half of

the twentieth century, the cognitive and behavioral sciences

produced a flurry of research demonstrating systematic ways

in which human reasoning fails to conform to the probability

calculus (Kahneman et al., 1982). The revelation which resolved

this gridlock was that the representation of information plays

a fundamental role in probabilistic reasoning: representation

formats based on a boundedly rational perspective—away from

strict formalism—foster probabilistic inferences while formal

probabilities blur intuition.

Assessing the predictive value of a feature the
Bayesian way

Although Bayesian reasoning can be used for assessing the

predictive value of any feature on any item we encounter in

everyday life, let us concentrate on the medical domain and

consider the following example.

Assume a physician has to establish whether a patient suffers

from a disease D based on just one piece of evidence E, which

could be, for instance, a symptom or a test result.

During her years of study and experience the physician

acquires knowledge on the prior probability, or base rate, of the
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disease, which can be denoted by P(D+). Here D+ indicates the

actual presence of the disease. Assume the piece of evidence is a

test T, which can turn out positive, denoted by T+, or negative,

denoted by T-. Assume also, that the doctor knows the sensitivity

of the test, that is P(T+|D+) and its specificity, that is P(T-

|D-). What Bayes‘ Theorem provides is a formula for obtaining

P(D+|T+) from these quantities:

P(D+ |T+) =
P (D+) P(T + |D+)

P (D+) P (T+|D+) + P (D−) P(T + |D−)

An important mathematical issue is the following: This

formula, which is a simple consequence of the definition

of conditional probability, contains P(D+), that is the prior

probability of the disease being present, in its numerator. This

has as consequence that this prior probability has a strong

impact on the overall predictive value of the piece of evidence.

As mentioned above, people are notoriously bad at

manipulating formal probabilities, as a plethora of empirical

studies have shown (Eddy, 1982) and this is typically a problem

in the context of medical diagnosis. In Eddy’s classical study

on doctors’ estimate of the probability that a certain disease

is present, given that a test of the disease is positive (Eddy,

1982), he discovered that his participants made mistakes based

on misconceptions. The so-called predictive value of the test was

estimated as being close to the chances of the test detecting the

disease. Thus, if a test had a probability of 95% of detecting

the disease, Eddy’s participants estimated that the actual chances

of having the disease, given that the result of the test was

positive, was a value quite close to 95%. What surprised Eddy

was that the doctors’ estimates of P(D+|T+), i.e., the chances

of being ill with the disease, given that the test is positive,

remained quite close to the inverse probability P(T+|D+), i.e.,

that the test is positive given that they have the disease, also

called sensitivity of the test. Further, they made this error even

when the base rate of the disease was very small. As the base

rate is found in the numerator, it has a big influence on the

result. Therefore, when the disease is very rare, the posterior

probability, namely the test’s positive predictive value (PPV),

tends to be small. This discovery led to a sequence of important

replications with the same discouraging results. The key factor

that makes this kind of reasoning difficult—even for experts,

as Gigerenzer and Hoffrage (1995) pointed out—seems to be

the abstract, symbolic format of the ’probabilistic’ information

used for inference. In the next section, we will present

representations and visual aids that simplify the understanding

of that same information (again, focussing mainly on examples

from medicine).

Boundedly rational representational tools
for assessing the quality of features for
classification

Being of such fundamental importance Bayesian Reasoning

has been studied by cognitive psychologists, who have devised

more adaptive information formats for it. A boundedly

rational approach has helped translating the formula

above in understandable, simple expressions, which are

mathematically not equivalent to the formula but help

making the adequate classifications. Instead of working

with Kolmogorov probabilities the physician can imagine a

population of fictitious people, say 1,000 of them. She divides

them into those who do and do not have the disease. For

example, if the disease is present in only 1% of the population,

she would partition her imaginary 1,000 patients into 10 who

have the disease and 990 who do not. Of those who have the

disease, suppose 80% will test positive. In this case, the doctor

imagines that 8 of the 10 ill patients will test positive and 2

will test negative. Now, suppose that 90% of those who do not

have the disease will have a negative test result. In our doctor’s

imaginary population, this works out to 99 healthy patients

who test positive and 891 who test negative. The proportions

thus formed, 10 out of 1,000, 8 out of 10, 2 out of 10, can easily

FIGURE 1

This decision tree summarizes the steps taken to establish

whether a patient had to be assigned to a hospital bed during

the Covid pandemic.
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FIGURE 2

The tree on the left hand side represents information about base rate of the diesease (P(D+) = 0.01), sensitivity of the test P(T+|D+) = 0.8,

probability of false negatives (P(T-|D+) = 0.2), probability of false positives (P(T+|D-) = 0.1) and specificity (P(T-|D-) = 0.9). The tree on the right

hand side represents the corresponding natural frequencies for a random sample of 1,000 people.

become part of the computation that leads to an estimate of

P(D+|T+), namely 8 out of 107.

Already in this simple situation of just one feature for

classification a tree as in Figure 1, becomes a handy, transparent

representational aid for depicting the quantitative facts.

Natural frequencies appear to be more akin to the unaided

mind than formalized probabilities. The approach through

natural frequencies is to be seen as “boundedly rational”, because

it restricts the reasoning to an imagined fixed finite sample,

thus reducing the power of generality of formal probabilities.

However, what matters from the perspective of bounded

rationality, is that this approach induces people of all ages

to make correct inferences. Strict Bayesians criticize natural

frequencies because, as Howson and Urbach write in their

famous book on scientific reasoning (Howson andUrbach, 1989,

2006), “there is no connection between frequencies in finite

samples and probabilities”. Gage and Spiegelhalter (2016) adopt

another perspective: they close the gap between probabilities

and natural frequencies, by treating natural frequencies as

expected frequencies.

Educational tools for fostering
proto-Bayesian reasoning based on one
feature

During the Covid pandemic the media communicate

intermittently data about the incidence or base rate of the

disease; less frequently they also describe the sensitivity of

tests and their specificity. What matters is then to develop an

understanding for positive and negative predictive values as

function of sensitivity and specificity, and grasp the changes of

the positive and negative predictive value of tests, based on the

changes of the disease incidence.

We have developed dynamic webpages, which

foster precisely these competencies. Our treatment

is based on icon arrays representing data on tests

and incidences.

An icon array is a form of pictograph or graphical

representation that uses matrices of circles, squares, matchstick

figures, faces, or other symbols to represent statistical

information. Arrays are usually constructed in blocks, say, of

10, 20, 25, 50, 100, or 1,000 icons where each icon represents

an individual in a population. Icons are distinguished by color,

shading, shape or form to indicate differences in the features of

the population, such as the presence (or absence) of a positive

test. In Figure 3 an icon array represents a population of 100

patients, who have made a test for detecting whether they suffer

from a disease.

Icon arrays are helpful for communicating risk information

because they draw on people’s natural disposition to count

(Dehaene, 1997), while also facilitating the visual comparison

of proportions (Brase, 2008). Further, the one-to-one match

between individual and icon has been proposed to invite

identification with the individuals represented in the

graphic to a greater extent than other graphical formats

(Kurz-Milcke et al., 2008). The next Figure 4 results from

sorting the icon array of Figure 3 so that positive tests are

grouped together.
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FIGURE 3

In this array 100 patients are represented by round icons. A red

icon represents a patient with the disease, while a blue icon

corresponds to a healthy patient. The signs + and – represent

positive and negative tested patients.

FIGURE 4

Here the icon array presents the same data as in Figure 2, but

they have been sorted, so as to make computations of

sensitivity, specificity and predictive values simple.

Figure 4 above shows data from the same 100 people,

grouping those who test positive, together by using a button at

the bottom of the array.

Icon arrays are excellent tools for representing information

but their effectiveness can be enhanced: they can be constructed

to be dynamic and interactive. Dynamic displays of icon arrays

can be designed in a way that fosters elementary statistical

literacy in general. The dynamic aspect may be conferred by

sliders that let the agent to modify base rates and population

sizes. The additional statistical action is to organize the data

FIGURE 5

A double tree representing the same data as Figure 3, but

organized in a double tree.

so that inference becomes straightforward. In this situation we

have two types of inference: one is causal, the other one is

diagnostic. In the causal direction the original sample of 100

people splits into the portion with the disease and the portion

without the disease. These again split into those with positive

and those with negative tests. In the diagnostic direction the

first splitting corresponds to the test: those with a positive test

and those with a negative one. The next splitting correponds

to the disease: present or absent. In order to foster Bayesian

inference we arrange these two trees, one causal and one

diagnostic into what we call “double tree” as illustrated in

Figure 5.

Instruction on Bayesian inference based on natural

frequencies can be aided by the interactive tool in http://www.

eeps.com/projects/wwg/wwg-en.html, developed for this and

other purposes by the first and second author.

The QR Code below leads to this interactive page.

The resource is designed for facilitating the teaching and

training of basic components of inference and decision making;

it by offers multiple complementary and interactive perspectives

on the interplay between key parameters. Useful interactive

displays for adults have also been introduced, for instance, by

Garcia-Retamero et al. (2012).
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FIGURE 6

This is a diagnostic tree for classifying patients with breast

cancer based on two cues: Mammogramm, labeled by M+

(positive) and M- (negative), Ultrasound test, labeled U+

(positive) and U- (negative). The leaves at the bottom

correspond to cancer/no cancer.

Trees for inference based on many
cues

The advantages of trees with natural frequencies are lost

when many cues are considered: As the number of cues grows

the size of the natural frequency tree explodes and ecological

rationality disappears. Massaro argued in 1998 (Massaro, 1998,

p. 178) “a frequency algorithm will not work” because “it might

not be reasonable to assume that people can maintain exemplars

of all possible symptom configurations”. Based on two cues,

as shown by Hoffrage et al. (2015), people are still able to

make correct Bayesian inferences. As an example of such a tree

consider the one in Figure 6.

But Massaro’s view is right when the number of cues grows.

The question is then: How can such full trees be pruned or

reduced in adequate ways? We discuss two categories of trees

for classification and decision-making.

Classification trees

Classification Trees have been used as representational

schemes since ancient times; Porphyry used tree based

classification already in the years 268–270 in his Isagoge,

an introduction to Aristotle’s “Categories”. Without

digging into details of the fascinating history of trees

for knowledge representation and classification we

would like to stresss that they have maintained their

important role in many realms of science, cognition and

machine learning.

In the eighties Breiman et al. introduced the CART

algorithm 1993, which has become a popular tool in

machine learning. Trees are intuitive, conceptually easy to

comprehend and result in nice representations of highly

complex datasets. CART forms a milestone in the development

of tree methods in function estimation and its applications.

CART is based on a generic binary decision tree which

proceeds by recursively subdividing the sample space into

two sub-parts and then calculating locally an average,

trimmed average, median etc. Over the last 30 years, several

alternatives to CART have been proposed. Reviews some widely

available algorithms and compares their capabilities, strengths

and weaknesses.

The construction of trees in regression and classification is

based on recursive partitioning schemes (RPS). They proceed by

partitioning the sample space into finer sets aiming at having

homogeneity according to given criteria. The partitioning

scheme is associated with a binary tree. The nodes of the

tree correspond to partition sets. If the set is divided into

two parts in the process of recursive partitioning, then the

corresponding node has two further child nodes. The terminal

nodes of a tree correspond to final partition sets and are

called leaves.

CART obviously belongs to the realm of unbounded

rationality. At the other extreme of the spectrum we find fast-

and-frugal trees, which we introduce in the following section.

Boundedly rational fast-and-frugal trees

A fast-and-frugal tree has a single exit at every level before

the last one, where it has two. The cues are ordered by

means of very simple ranking criteria. Fast-and-frugal trees are

implemented step by step, with a limited memory load and can

be set up and executed by the unaided mind, requiring, at most,

paper and pencil. These paper and pencil computations can be

long but elementary.

A fast-and-frugal tree does not classify optimally when

fitting known data. It rather “satisfices”, producing good enough

solutions with reasonable cognitive effort. For generalization,

that is learning their strauctural parameters structure from

training sets and extrapolating to test sets, fast-and-frugal trees

have proven surprisingly robust. The predictive accuracy and

the robustness of the fast-and-frugal tree has been amply

demonstrated (Luan et al., 2011; Woike et al., 2017; Martignon

and Laskey, 2019).

Martignon, Vitouch, Takezawa and Forster provided a

characterization of these trees in 2003:

Theorem: For binary cues with values 0 or 1, a fast-and-

frugal tree is characterized by the existence of a unique cue

profile of 0’s and 1’s that operates as a splitting profile of the

tree; this means that any item with a profile lexicographically

lower than the splitting profile will be classified in one of the two

categories, while the rest of items will be classified in the other

one, as illustrated in Figure 7.
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FIGURE 7

An example of splitting profile characterizing a fast-and-frugal

tree for classifying items into two complementary categories

based on three cues (extracted from Martignon et al., 2003).

Simple methods for constructing
inference trees

The basic elements for making a binary classification are the

cues or features, which are here assumed to be binary. In a fast-

and-frugal tree, the cues are ranked according to a previously

fixed rule. We will treat this ranking phase below. Once the cues

are ranked, the tree has one cue at each level of the tree and

an exit node at each level (except for two exit nodes for the

last cue at the last level of the tree). Every time a cue is used, a

question is asked concerning the value of the cue. Each answer

to a question can immediately lead to an exit, or it can lead

to a further question and eventually to an exit. A fundamental

property of fast-and-frugal trees is that, for each question, at least

one of the two possible answers leads to an exit.

The execution phase is simple: To use a fast-and-frugal tree,

begin at the root and check one cue at a time. At each step, one of

the possible outcomes is an exit node which allows for a decision

(or action): if an exit is reached, stop; otherwise, continue until

an exit is reached. you take an exit, stop; otherwise, continue and

ask more questions until an exit is reached.

Figure 8 illustrates a fast-and-frugal tree for classifying

a patient as “high risk” of having a heart attack and thus

having to be sent to the “coronary care unit” or as “low

risk” and thus having to be sent to a “regular nursing bed”

(Green and Mehr, 1997). The accuracy and robustness of

fast-and-frugal trees has been shown to be comparable to

that of Bayesian benchmarks in studies by Martignon and

Laskey (2019). Extensive studies comparing the performance

of fast-and-frugal trees to that of classification algorithms

used in statistics and machine learning, such as Naive

Bayes, CART, random forests, and logistic regression, have

also been carried out by using large batteries of real-world

datasets.

FIGURE 8

A fast-and-frugal tree for patients with symptoms that may

indicate the risk of heart attack.

Constructing fast-and-frugal trees
with ARBOR

Arbor is an educational tool for constructing classification

trees. It works within CODAP, that is, a user with data in

CODAP can use Arbor to construct a tree. An appropriate

dataset consists of a collection of cases, represented as rows in

a table. The columns of the table are features or attributes of the

cases. One of these is the outcome condition that we are trying

to predict; we can use the rest as predictors.

Arbor does not compute an optimal tree or use any

algorithm. Instead, the user dynamically constructs arbitrary

binary trees by dragging attributes (features) onto nodes; Arbor

splits that node into two branches, thus growing the tree.

One can also “prune” the tree, eliminating nodes. The user

also assigns a diagnosis to each terminal node—each “leaf” on

the tree—specifying, for every combination of features (and

therefore for every case in the table), whether the tree predicts

a positive or negative outcome.

Because we also know the true value of the outcome

condition for every case, we can assess the overall accuracy of

the tree’s predictions. We can count the number of true positive

(TP) diagnoses, false positives (FP), true negatives (TN) and

false negatives (FN). We can then use those values to create a

measure for the effectiveness of the entire tree. For example,

we can compute positive predictive value (ppv), which is the

fraction of cases diagnosed as positive that are in fact positive,

that is,

ppv = TP/(TP + FP)
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We could use other measures as well, such as sensitivity—the

fraction of positive cases that we identify as positive—which we

can express as

sens = TP/(TP + FN)

We can now explore how adding or removing nodes from

the tree affects how well it predicts the outcome variable, based

on our measures.

A specific example: Predicting heart
attacks

Suppose our Dr. Devlin sees patients who, she fears, are in

danger of suffering a heart attack in the near future (myocardial

infarction, MI). If they are at high risk, she will send them to

the cardiac care unit (CCU); otherwise, they will go to a normal

hospital bed. She wants to use data to develop a procedure for

deciding where each patient should go, based on the cues-the

symptoms and test results—each patient presents.

She uploads the data from Green and Mehr (1997) into

CODAP. There are 89 cases (patients) with the binary values of

three cues, each coded yes or no:

• pain: chest pain

• STelev: an elevated ST segment on the EKG

• oneOf: one or more of four other “typical” symptoms

We also know the value of MI: whether the patient later had

a heart attack. Let’s follow her exploration and decision making

process.

Her first step is to specify the outcome variable by dragging

MI from the data table into an empty Arbor window. This

creates “root” and “trunk” nodes for our tree. She sees that of

the 89 patients, 15 had MIs. This is the simplest possible tree; if

she identifies this terminal node with a positive diagnosis—that

is, the plan is to send everybody to the CCU-she sees the result

in Figure 9.

In this case, TP (the true positive count) is 15 and FP = 74.

The ppv will be the base rate, 0.169, and the sensitivity sens will

be a perfect 1.0.

Because CCU care is so costly, this plan is impractical in

the hospital, and uses none of the diagnostic information. So

she drags pain from the data table and drops it onto the white

“15 of 89” node. After classifying the nodes, she sees the tree in

Figure 10.

The reader should take a moment to understand the tree

display. The “yes” box, for example, tells us that 50 patients

experienced chest pain, and 12 of them (24%) got heart attacks.

We identified them as being at risk (the green CCU(+) label), a

“positive” diagnosis. In the other branch, out of the 39 people we

diagnosed as not at risk, three got heart attacks anyway.

FIGURE 9

The simplest possible tree.

FIGURE 10

A tree representing the criterion MI and one feature for

classification, namely “pain”.

Though Dr. Devlin could compute ppv and sens with paper

and pencil, she has Arbor “emit” a record of this tree. She sees

the table in Figure 11 in CODAP. The system has calculated

her measures, showing her that ppv has improved to 0.24, but

that sensitivity has declined to 0.8. She then tries the other

symptoms—STelev and oneOf—in place of pain, and records the

results (Figure 12).

Based on this table, Dr. Devlin decides that she likes STelev

because it yields so few false positives, saving hospital resources.

She decides that she will therefore use ppv as her measure-of-

choice and that STelev should be the first cue in the tree.

If she sends everyone with a raised ST segment to the CCU,

however, that still leaves two patients who should have gone

there (the FNs in the STelev line of the table). So she drops the
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FIGURE 11

Relevant measures for the feature “pain”.

FIGURE 12

Relevant measures for the three features considered.

FIGURE 13

The classification and decision tree with two features.

second-place cue, pain, onto the right-hand branch of the tree

(Figure 13).

This captures all of the heart attacks at a cost of

more false positives. The ppv of this tree compared

to STelev alone has declined from almost 0.4. to 0.25.

Perhaps the last cue can help. Dr. Devlin drops oneOf

onto the “middle” leaf node, to get our final tree, seen

in Figure 14.

FIGURE 14

The classification and decision tree based on three cues.

Including one of has improved our ppv to 0.30, and the

sensitivity is still 1.0, that is, under this tree, everyone in

the Green and Mehr dataset who had a heart attack would

have been in the CCU. This is the same tree that appeared

in Figure 8.

We might ask whether we could do even better by

adding more branches. For example, could we send some

of the 20 false positives who had elevated ST segments

Frontiers inHumanDynamics 10 frontiersin.org

https://doi.org/10.3389/fhumd.2022.790033
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Martignon et al. 10.3389/fhumd.2022.790033

to regular beds if they had no chest pain? With Arbor,

a student (or Dr Devlin) could explore that possibility2.

But as studies like suggest, that direction can lead

to overfitting.

More importantly for our purposes, it leads to additional

complication. The frugal tree is easy to implement, especially

when you have to act fast: if a patient might have a cardiac event,

get an EKG, because the first question, the first node, is about

an elevated ST segment. While you’re taking the EKG, get the

medical history and probe for other symptoms. When the EKG

is done, if there’s an elevated ST segment, send the patient to the

CCU right away. Then, if they have chest pain, check the other

4 symptoms. If they have any of those, send them to the CCU as

well. Otherwise, they go to a regular bed for further monitoring

at a more leisurely pace. In the meantime, everyone who is most

likely to suffer a heart attack has been moved to the place where

they can get the best care.

Of course, Dr. Devlin might not upload the data and

make the tree herself, though she could. More likely,

a best-practices scheme would have been debated and

constructed elsewhere using sophisticated AI algorithms and

vast datasets.

But let us look in on Dr Devlin, visiting a patient in

the CCU, explaining her treatment plan to a frightened old

man and his wife. Because Dr Devlin has made decision

trees herself, in medical school or in continuing education,

she has personal experience with the considerations and

tradeoffs that a treatment algorithm inevitably entails. A

tree has become part of her personal diagnostic logic rather

than a set of steps handed down by some machine. She is

better able to implement and accept a tree (or question it

with good reason) and better able to explain it: to make a

doctor’s recommendations more accessible and transparent to

her patients.

Comparison of FFT’s and other models

The performance of FFT’s has been evaluated in several

comparisons studies. The first author has collaborated with

K. Laskey in an analysis oft he performance of five models,

which included two FFT‘s. These five classification methods

were tested on eleven data sets taken from the medical and

veterinary domains. Most of the data sets were taken from the

UC Irvine Machine Learning Repository (Bache and Lichman,

2013). Each data set consisted of a criterion or class variable

and five to 22 features. The number of observations ranged

from a minimum of 62 to a maximum of 768. The numerical

2 The answer, in this case, is no: out of 10 such patients, 3 had heart

attacks.

variables were dichotomized by assigning values larger than

the median to the “high” ctegory and values less than or

equal to the median to the “low” category. The estimation

was performed for each model on each data set by taking a

random subset of the data as a training sample, dichotomizing

numerical variables (if any), applying the fitting method to

the training sample, and then classifying each element of the

remaining test sample. This process was repeated 1,000 times

for each classifier. This process was carried out for training

samples of 15, 50, and 90% of the data set. The five classification

models are:

• Naïve Bayes

• Logistic regression

• CART (see Breiman et al., 1993)

• Fast and frugal trees with Zig-Zag rule: This method

constructs the tree by using positive and negative cue

validities. Positive validity is the proportion of cases with a

positive outcome among all cases with a positive cue value.

Negative validity is the proportion of cases with a negative

outcome among all cases with a negative cue value. The

Zig-Zag method alternates between “yes” and “no” exits at

each level, choosing according to the cue with the greatest

positive (for “yes”) or negative (for “no”) validity among the

cues not already chosen.

• Fast and frugal trees with MaxVal rule: This method also

uses positive and negative cue validities. It begins by

ranking the cues according to the higher of each cue’s

positive or negative validity. It then proceeds according

to this ranking, applying the cues in order and exiting in

the positive (negative) direction if the positive (negative)

validity of the cue is higher. Ties in this process are

broken randomly.

Our results are exhibited in Figure 15, below. Performance

of the five methods is remarkably similar. Naïve Bayes has the

best performance across the board, living up to its reputation as a

simple and robust benchmark. The fast and frugal trees are only

slightly less accurate than the computationally more expensive

naïve Bayes.

Concluding remarks

This work has an educational aim. It promotes simple

schemes for classification and decision, which are both

transparent and easy to grasp. It also promotes dynamical tools

which foster the understanding of properties of features, like

their sensitivity and predictive value. Transparency is an ideal

that decision schemes may have if they are to be part of the

communication between patients and doctors.
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FIGURE 15

Comparison of 5 classifiers: Naïve Bayes, Logistic Regression, CART, Fast and Frugal tree with a Zig-Zag rule, and with a Max-Val rule.
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