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Cowpea (Vigna unguiculata L.) is an underutilised vegetable legume indigenous

to and predominantly cultivated and consumed in Africa. However, its reach in

agricultural production and consumption has expanded globally. This resilient

crop is known for its ability to withstand various environmental stressors, making

it suitable for marginal crop production systems commonly used by small-scale

farmers. Although cowpea exhibits tolerance to drought, it is notably sensitive to

salinity stress and biotic agents. The degree of tolerance to drought varies among

different cultivars, which requires further research to develop more resilient

varieties.The changing climate patterns and associated uncertainties highlight

the urgent need to breed more resilient and productive cowpea cultivars.

Conventional plant breeding techniques have produced new varieties of

cowpeas, yet the limited genetic diversity within cultivated cowpeas poses

challenges for future conventional breeding efforts. New breeding techniques

(NBTs), including gene editing tools, single base pair alterations, and DNA

methylation methods, offer promising alternatives to accelerate cowpea

improvement. However, such approaches are also faced with challenges

associated with the success of organogenesis (OG) and somatic

embryogenesis (SE) in tissue culture. This review examines challenges and

advances in the use of tissue culture to enhance cowpea productivity and

resilience against abiotic and biotic stresses.
KEYWORDS

organogenesis, somatic embryogenesis, new breeding techniques (NBTs), tissue
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Introduction
Cowpea is an indigenous African legume that is widely

cultivated, distributed, and traded worldwide (Boukar et al., 2020;

Horn et al., 2022). As a place of origin, the African continent

continues to dominate global cowpea production, with West Africa

contributing a staggering 95% of total global production (Phillip

et al., 2019; Boukar et al., 2020). The African and global production

of cowpeas faces challenges that limit its optimal growth and

reproduction and ultimately its productivity. Various biotic and

abiotic factors, including cropping systems, soil type and nutrition,

pests, and diseases affect cowpea productivity (Horn and Shimelis,

2020; Omoigui et al., 2020; Togola et al., 2020; Wabwayi et al., 2020;

Omomowo and Babalola, 2021; Ravelombola et al., 2022; Song et al.,

2023). Despite the limitations of these factors, cowpea remains a

vital crop in Africa, where 52% of its production is consumed as

food, while 16% is lost to waste (Nkomo et al., 2021). The grain is

the most valuable part of the cowpea plant for human consumption,

and its versatility is showcased in Nigeria’s diverse array of cowpea-

based dishes and popular street foods. Cowpeas are an important

alternative source of nutrition to staple crops that are often high in

calories. They contain protein (25%), potassium (112 mg/100 g),

dietary fibre (11%), and a high lysine content (Bhowmik et al., 2021;

Affrifah et al., 2022).

Beyond food for human consumption, cowpea allocation

includes 13% for animal feed, 10% for seed production, and 9% for

miscellaneous uses (Nkomo et al., 2021). Moreover, cowpea offers

significant agronomic benefits, enriching the soil with 30-125 kgN/ha

through nitrogen fixation and providing a valuable residue for

subsequent crops (Ennin-Kwabiah et al., 1993). Its shade tolerance

and compatibility with various cereals and root crops make it an ideal

intercrop for marginal lands and drought-prone tropical regions,

where it can thrive in challenging conditions (Tarawali et al., 1997).

Vigna unguiculata L., commonly known as cowpea, is a self-

pollinating annual diploid legume (2n = 2x = 22) belonging to the

Fabaceae family (Leguminosae). Cowpea consists of distinct species

and subspecies: Vigna unguiculata subsp. unguiculata, Vigna

unguiculata subsp. dekindtiana, Vigna unguiculata subsp.

stenophylla, Vigna unguiculata subsp. tenuis, Vigna nervosa, Vigna

vexillata, Vigna oblongifolia, Vigna frutescens, Vigna reticulata, Vigna

luteola, Vigna pygmaea, Vigna gazensis, Vigna nuda, Vigna kirkii,

Vigna platyloba, and Vigna wittei (Padulosi and Ng, 1990; Boukar

et al., 2020). Among the listed species and subspecies of cowpea,

Vigna unguiculata subsp. Unguiculata and Vigna vexillata have been

successfully domesticated (Panzeri et al., 2022), with Vigna

unguiculata subsp. Unguiculata commonly cultivated by farmers

across the world. The centre of diversity for domesticated cowpea is

reported to be North and East Africa, while Southern Africa is the

centre of diversity for wild relatives (Boukar et al., 2020). Typically, in

some parts of the continent, wild species/subspecies of cowpea are

predominantly found near cultivated cowpea fields, often thriving in

the peripheral areas and even within the fields themselves, where they

can co-exist with their domesticated counterpart. This shows that

Africa is a golden mine for the diversity of cowpea species

(domesticated and wild relatives) translating to a diverse gene pool.
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However, cowpea still exhibits limited genetic variability, a

characteristic that limits its potential for improvement through

traditional breeding approaches (Horn and Shimelis, 2020). The

strong cross-incompatibility barriers that exist between the

domesticated and wild relatives hinder the introgression of desirable

traits from the wild into the cultivated gene pool. These factors have

collectively contributed to the slow progress in developing elite

cowpea varieties with superior characteristics through conventional

breeding programs, highlighting the need for innovative approaches

to enhance the genetic improvement of this vital legume crop.

Introducing new breeding techniques (NBTs) in crop

improvement has seen accelerated improvements in soybean

production, the leading cultivated legume globally (Cai et al.,

2023; Vollmann, 2016). The wide acceptance and success of NBTs

in soybean production provide a pathway for the application and

acceptance of NBTs for other legume crops such as cowpeas. It is

worth noting that the success of NBTs depends on the success of

plant regeneration in tissue culture. Various attempts have been

made to improve cowpeas using NBTs such as clustered regularly

interspaced palindromic repeats (CRISPR) associated protein 9

(Cas9) targeted genome editing (Bhowmik et al., 2021). However,

the recalcitrancy associated with the transformation of cowpea

results in low transformation efficiencies in tissue culture. To this

end, organogenesis (OG) and somatic embryogenesis (SE) have

been the two pathways of choice in cowpea regeneration in tissue

culture. However, it is almost two decades since the optimisation of

SE in cowpea with researchers using the OG pathway irrespective of

SE advantage of direct gene transfer to the plant cell (Anand et al.,

2000; Ramakrishnan et al., 2005; Popelka et al., 2006). The OG

pathway relies on the usage of seed and vegetative plant organs as a

starting material to generate a plantlet (small whole-growing plant

in vitro). The OG pathway can be achieved through both direct

(without intervening callus stage) and indirect (with intervening

callus stage) strategies. Direct strategy is time and cost saving, with

organs directly transformed and plantlets directly subjected to

selection and growth with the target gene or gene manipulation.

The SE pathway relies on the use of somatic cells to generate

embryo-like structured cells that develop into plantlets (Bidabadi

and Mohan, 2020). Similarly to OG, two strategies are taken, direct

(a rare event in tissue culture where embryos are directly formed

from the cell) and indirect (where the callus is first produced before

embryo formation). Different factors such as the age of tissue/organ

used, genotype, tissue culture medium, type, and concentrations of

phytohormones influence the success of OG and SE. This ultimately

influences the transformation efficiencies observed in vitro. Both

OG and SE have been used in cowpea improvement and

regeneration with various regeneration rates reported (Anand

et al., 2000; Ramakrishnan et al., 2005; Raveendar et al., 2009;

Bett et al., 2019; Bala, 2022). The findings of previous research show

that differences in cowpea regeneration rates in vitro are influenced

by the composition of the MS media. In this review, we summarise

the challenges and opportunities in cowpea production,

conventional breeding, and NBTs contribution to cowpea

improvement, and explore different in vitro avenues through

which researchers improve the efficiencies of tissue in

cowpea improvement.
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Cowpea production: challenges
and opportunities

Legumes are notably a crucial component of sustainable and

nutritious diets, offering a rich source of essential nutrients and

serving as an alternative to calorie-dense meat- based diets. The

protein-rich nutrition of legumes makes them ideal plant-based

targets for sustainable agriculture during challenging climate

changes. As a leguminous crop, cowpea (Vigna unguiculata L.) is

an alternate crop with origins in Africa, mainly produced by small-

scale farmers. Cowpea is a versatile and valuable crop that plays a

crucial role in mixed farming systems. Its ability to fix nitrogen

through specialised mechanisms enriches the soil, making it an

excellent companion crop that boosts the productivity of other

crops. Furthermore, cowpea provides a rich source of protein for

animal feed and human consumption, further solidifying its status

as a multipurpose crop. As diverse as it is, cowpea faces major

constraints that limit its production. Such constraints include

drought stress, salinity stress, extreme temperatures, pest and

disease infestations, and parasitic weeds (Horn and Shimelis,

2020; Togola et al., 2020; Wabwayi et al., 2020; Omomowo and

Babalola, 2021; Ravelombola et al., 2022; Song et al., 2023). These

directly affect the crop growth rate by reducing the nodulation and

photosynthetic efficiency of the cowpea crop. This occurs due to leaf

necrosis, stem rot, and wilting caused by sensitivity to biotic agents,

as well as reduced stomatal conductance and chlorophyll content as

a result of an exposure to abiotic stress factors (Omomowo and

Babalola, 2021). Damage due to oxidative stress as a consequence of

biotic and abiotic stress factors accelerates damage to cells and

tissues of sensitive cowpea crops, leading to crop wilting and death

in severe cases (Song et al., 2023). Cowpea tolerance levels to biotic

and abiotic stresses vary significantly, revealing certain levels of

genetic diversity among cultivated cowpea varieties. This inherent

genetic variation suggests that some cowpea lines may possess

natural resilience to certain constraints. Taking advantage of this

potential, we can further enhance the resilience of cowpea

germplasm, paving the way for more efficient and sustainable

production systems.

Cowpea yields in Africa are woefully underperforming, with

average yields of 0.1 to 0.6 tons per hectare, compared to the

estimated potential of 1.5 to 3.0 tons per hectare. This disparity

underscores the need for targeted interventions to unlock the full

potential of the crop (Horn and Shimelis, 2020; Omomowo and

Babalola, 2021; Atakora et al., 2023). This equates to an economic

loss for small-scale farmers in Africa, who tend to benefit from the

economic returns from high grain yields. The market forecast places

cowpea at USD 7.6 billion in 2024 and USD 9.43 billion in 2029

(Market Data Forecast, 2024). Despite the projected size of the

cowpea market, its recognition as an important crop remains

limited due to production constraints. Reducing cowpea

production constraints through research and development

investments would help improve cowpea grain yields. The African

adoption of the policies put in place by the Indian government to

promote pigeon pea production and utilisation (Research and

Markets, 2022) would also benefit the producers as local demand
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would also increase. This, in turn, would positively influence the

market share of cowpeas, as Africa is the largest producer.
Contribution of classical breeding to
cowpea improvement

Similar to other crops, breeding objectives for cowpeas emanate

from each challenge that a respective breeder seeks to address.

Researchers have focused on breeding early/medium maturing

cultivars to help cowpea plants avoid drought and reach a

reproductive stage on time (Asiwe, 2022; Owusu et al., 2022).

Given that small-scale farmers engage in cowpea cultivation only

relying on rainfall, this objective holds significant importance. Due

to changing weather patterns, farmers experience erratic rainfall,

with rain not covering the entire growing season. This exposes crops

to drought stress at crucial periods of growth and development,

such as the filling stage of the pods. Drought stress triggers a cascade

of physiological responses, including chlorophyll breakdown,

stomatal closure, reduced photosynthetic efficiency (measured by

Fv/Fm) and disruption of photosynthetic processes. Collectively,

these changes impair the ability of the plant to undergo

photosynthesis, ultimately impacting its growth and productivity.

Researchers have observed these physiological changes at various

stages of cowpea growth, including the seedling stage (Cui et al.,

2020; Ravelombola et al., 2020; Tengey et al., 2023) and the

reproductive stage (Nunes et al., 2022). When exposed to drought

stress, sensitive and moderately tolerant cowpea varieties experience

a diminishing leaf water status, which, if it occurs in the late

vegetative and reproductive stages, affects grain yield and quality.

Therefore, the breeding of early or medium-maturing and drought-

tolerant cowpea varieties is important in efforts to improve stagnant

cowpea yields.

In addition to breeding for early or medium maturity, cowpea

breeding has focused on improving grain yield, quality, and insect

pest resistance, among other things (Asiwe, 2022; Singh et al., 2023;

Togola et al., 2023). Pre-harvest and post-harvest insect pest

infestations are most devastating for cowpea producers. Pre-

harvest infestation reduces grain yield and quality, and, in severe

cases, results in a total loss of yield, while post- harvest infestation

results in the loss of seed lots (Mofokeng and Gerrano, 2021; Togola

et al., 2023). For example, aphids (Aphis craccivora) are among the

economically important pre-harvest insect pests in cowpea

production. They are prominent biotrophic agents that infect

cowpea seedlings with increased infestation, causing them to

spread to flower buds (Togola et al., 2020; Mofokeng and

Gerrano, 2021). While feeding on plants, aphids release toxic

secretions into the plant, creating a sickened plant with delayed

growth and development (MacWilliams et al., 2023). To counteract

this, farmers rely on the application of pesticides to control aphids, a

practice that is not economically sustainable and environmentally

friendly. Host resistance, which has been identified in cultivated and

wild cowpea species in Africa, is a sustainable alternative (Togola

et al., 2020; MacWilliams et al., 2023). Host resistance is a

phenomenon that refers to a plant’s ability to produce bioactive
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compounds that affect insect biology and growth (antibiosis

resistance), affect insect behaviour without endangering it

(antixenosis resistance), and the ability of the plant to withstand

insect damage (plant tolerance) (MacWilliams et al., 2023). A

screening of 375 cowpea varieties for host resistance to aphids

revealed that three varieties exhibited increased production of

bioactive compounds, specifically kaempferol and quercetin,

which conferred resistance to aphid infestation (Togola et al.,

2020). The low percentage of cultivated cowpea varieties with

host resistance is indicative of a bottleneck in achieving host

resistance through traditional breeding programs. Further

developments in host resistance identification led to the discovery

of two marker genes, QAC-vu7.1 and QAC-vu1.1, hypothesised to

be key targets for cowpea host resistance (MacWilliams et al., 2023).

Biotechnological approaches could utilise these to increase the

number of cultivated cowpea varieties with host resistance.

Soil salinity is another important environmental stress factor in

cowpea production and breeding. Researchers have widely used

selective breeding methods to identify cultivars tolerant of salinity

stress (Murillo-Amador et al., 2006; Taffouo et al., 2009;

Ravelombola et al., 2022). Among the cultivars recommended for

salinity-prone environments are Bambey 21 from the Senegalese

Institute of Agronomic Research (ISRA) and IT97K-556- 4 and

IT04K-332-1 from the International Institute of Tropical

Agriculture (IITA). Selective breeding forms an important part of

cultivar development as it identifies potential parental lines for

breeding purposes. However, developing a new cultivar using

physical and chemical mutagens (Odeigah et al., 1998; Nanhapo

et al., 2024), and classical cowpea breeding methods such as

pedigree, bulk, backcross, and recurrent selection (Horn and

Shimelis, 2020; Asiwe, 2022; Singh et al., 2023) is time-consuming

and laborious (Figures 1A, B). As a result, from 2000 to 2024, there

were a total of 37 cowpea cultivars (from the UPOV code

VIGNA_UNG and VIGNA_UNG_UNG) with active plant

breeders’ rights registered on the International Union for the

Protection of New Variety of Plants (UPOV) system. However,

these numbers could be higher since South Africa’s six newly

registered cowpea cultivars (De Bruyn and Sekele, 2023) do not

appear in the UPOV search engine for 2000– October 2024.

Although that is the case, the insufficient global list of active plant

breeders’ rights amid spiralling cowpea production challenges, such

as biotic and abiotic constraints aggravated by climate-change

consequences, suggests a challenging future ahead.

Another limiting factor in improving cowpeas using classical

breeding methods is the autogamous nature of the crop, which

narrows its genetic base compared to many crops (Boukar et al.,

2020). Recent studies of genetic diversity in cowpea germplasm

from various geographical locations, using SSRs, SNPs, and

SilicoDArT markers, reveal a moderate level of genetic diversity

(Nkhoma et al., 2020; Gumede et al., 2022; Guimarães et al., 2023).

Most markers representing this moderate diversity have only

identified diversity in segments of the genome linked to yield.

Consequently, the available germplasm may not be adequate for

breeding cowpeas with other desirable traits such as nutritional

quality and resistance to biotic and abiotic stresses. Boukar et al.

(2020) proposed introgression breeding in cowpeas to overcome the
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limitations posed by classical breeding’s narrow genetic base. This

involved utilising cowpea’s wild relatives to access their valuable

gene pool, currently underutilised. However, reports of success

using wild cowpea relatives to improve elite varieties are scarce.

According to Rawal et al. (1976), this may be due to a lack of

understanding of their biology, the presence of numerous

undesirable traits, and cross-incompatibility. Cowpea faces not

only a narrow genetic base, but also an eroding genetic base,

further challenging traditional breeding efforts (Horn and

Shimelis, 2020). Such obstacles may lead to reliance on secondary

and tertiary gene pools, further limiting classical breeding due to

incompatibility and infertility that arise with deviation from the

primary gene pool. NBTs can be used for gene transfer and editing,

increasing the success of cowpea improvement amid a narrow

genetic base bottleneck.
Advances in plant breeding and new
breeding techniques for
cowpea improvement

To achieve higher grain yields in cowpea, innovative plant

breeding strategies for crop improvement must be prioritised. Such

strategies include the use of NBTs which are already being utilised

and adopted in soybean improvement programs. The publicly

available cowpea genome encourages the adoption of NBTs for

cowpea improvement. However, the integration of such strategies

must involve the farming community as they have direct access to

diverse germplasm mostly comprising landraces. Improving farmer

preferred varieties with farmers’ knowledge and participation could

increase the chances of acceptance of the newly developed resilient

varieties as farmers will be aware of the technology used for

improvement. The incorporation of both conventional plant

breeding and NBTs with cowpea farming communities’ knowledge

and practices could maximise the opportunity to combat

environmental stressors facing cowpea production.
Integrated breeding approaches for
enhanced resilience

Traditional approaches to crop improvement often overlook the

complex relationships between traits, environmental factors, and

farmer adoption. However, a more holistic approach is gaining

prominence (Mir et al., 2012). Integrated breeding, which

acknowledges these complexities, is now taking centre stage. By

combining conventional and cutting-edge techniques, integrated

breeding aims to create high-yielding, stress- resilient crop varieties.

This approach involves collaboration among researchers, farmers,

and policymakers to align breeding objectives with local farming

community needs. The complexity of addressing climate resilience

in cowpea production underscores the need for integrated breeding

approaches. Participatory breeding, for instance, engages farmers in

the selection process, ensuring developed varieties align with local

agricultural practices and preferences (Lawali et al., 2024; Hamidou
frontiersin.org
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et al., 2023). This method not only enhances variety relevance but

also considers specific agrosystems, socio-economic conditions,

gender considerations, and other constraints faced by farmers. By

leveraging indigenous knowledge, participatory breeding facilitates

the identification of local varieties (landraces) with desirable traits,

allowing breeders to focus on enhancing those local adaptations.

Research has shown that while drought tolerance is highly valued

among all genders, women exhibit distinct preferences for traits

related to processing and marketing (Jinbaani et al., 2023).

Engaging farmers in the evaluation and selection process

democratises breeding programs and leverages local knowledge

about conditions, pest management, and nutritional preferences.

This is particularly important for cowpeas, which are sensitive to

environmental changes and benefit from farmers’ first-hand

experiences (Singh et al., 2013). By incorporating these insights,

breeding programs can develop varieties that are not only high-
Frontiers in Horticulture 05
yielding but also suitable for the end uses that matter most to

farmers, enhancing adoption rates. Furthermore, advances in

physiology, genomics, and molecular biology have greatly

enhanced the understanding of crop genetics. By combining this

deep knowledge, breeders can improve selection efficiency by

targeting specific traits with greater precision. This targeted

approach has proven particularly effective in developing crops

resistant to abiotic stress (Mir et al., 2012).
Advances in genetic engineering and
genome editing for cowpea improvement

The past decade has witnessed significant biotechnological

advancements, leading to the emergence of New Breeding

Techniques (NBTs) Girma, D. (2022). These innovations have
FIGURE 1

A schematic illustration of conventional breeding and NBT methods for the improvement of disease traits in cowpea. (A) The breeding pathway for
disease-resistant elite varieties involves crossing a susceptible elite variety (recurrent parent) with a resistant variety (donor parent). Multiple backcrossings
are required to introgress a homozygous mutation into a farmer- preferred genotype. Eight to ten years is required to generate an improved variety.
(B) The seeds of the susceptible variety are mutagenised and then backcrossed for a period ranging from 6 to 7 years. (C) Cisgenesis is an NBT strategy
that involves changing cowpea with Agrobacterium. This makes it easier to transfer gene(s) from the same species or species that can reproduce with
each other. (D) Genome editing with CRISPR/Cas9 is another NBT method. This can be done with agrobacterium- mediated transformation, also known
as protoplast fusion, which causes precise mutations in certain parts of the cowpea genome. This process generates multiple mutant lines from which
the best- performing phenotype emerges.
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given rise to various biotechnological techniques, which can be

broadly categorised as NBTs (Figures 1C, D). Notably, NBTs can be

distinguished into two main groups: those that involve the transfer

of foreign DNA into the target crop and those that do not. These

technological advances offer enormous potential to meet the global

challenges associated with food and nutritional security, posed by

population growth, consumer demand, and climate change. For

crop improvement, technological innovations related to NBTs make

use of available genome sequences. NBTs allow for the development

of crops with new desirable traits, thus enhancing crop germplasm.

The availability of the cowpea genome sequence has facilitated

the adoption of NBTs in cowpea development (Lonardi et al., 2019).

The application of NBTs in cowpea involves various genomic

alterations, including expression of foreign genes, genome-editing,

RNA interference (RNAi), and DNAmethylation. These techniques

have been successfully employed in cowpea research (Cruz and

Aragão, 2014; Kumar et al., 2022; Bridgeland et al., 2023; Singh

et al., 2024). Notably, most NBTs involve the introduction of foreign

DNA into the genome of the targeted crop, resulting in genetically

modified organisms (GMOs). A prominent example of a genetically

modified cowpea is the Pod borer-resistant (PBR) Cowpea.

Developed through agrobacterium-mediated transfer of the

Bacillus thuringiensis (Bt) gene, this cowpea produces a protein

that disrupts the digestive system of legume pod borer larvae,

conferring resistance. Successfully commercialised in several

African countries, including Nigeria, Ghana, and Kenya, the PBR

cowpea demonstrates the potential of NBTs to enhance crop

resilience and improve food security.

Other NBTs techniques are such as (i) editing the genome using

various methods, such as oligonucleotide-directed mutagenesis

(ODM) and sequence- specific nuclease (SSN); (ii) different types

of traditional transformation methods, such as cisgenesis,

intragenesis, grafting, and agro-infiltration; and (iii) creating

negative segregants by changing the epigenetic landscape

(through RNA-dependent DNA methylation, RdDM). These

enable precise, targeted, and reliable changes in the genome and

are therefore different from GMOs, which involve the integration of

foreign DNA (transgenesis). Unlike chemical- or radiation-induced

mutagenesis, often traditionally used as a basis for crop

improvement, NBTs do not create multiple, unknown,

unintended mutations throughout the genome. For several of the

techniques, the resultant plant product is free of genes foreign to the

species and would not be distinguishable from the product

generated by conventional breeding techniques. Adopting

epigenetic approaches, which alter gene expression, prevents

DNA sequence changes. Therefore, in certain cases, we may not

be able to identify the production method of the new crop variety.

In recent years, genome editing methods, particularly CRISPR/

Cas9, have emerged as powerful tools for crop improvement,

offering promising solutions for various crops (Adegbaju et al.,

2024). Since its inception, CRISPR/Cas9 mediated gene editing has

been demonstrated to offer great potential for resilience towards

environmental stress factors in legumes (Singh et al., 2024). The

popularity of CRISPR/Cas9 can be attributed not only to its ease of
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use but also to its ability to generate improved germplasm without

introducing foreign DNA. Despite cowpea’s recalcitrance to

transformation, researchers have made progress using CRISPR/

Cas-mediated gene editing, albeit with varying outcomes. Studies

employing Agrobacterium-mediated gene delivery have reported

success rates ranging from 4% to 67% in cowpea transformation,

using embryogenic axis and hairy root culture as explants (Ji et al.,

2019; Che et al., 2021). However, alternative approaches, such as

genome editing using CRISPR/Cas9 technology with protoplasts for

transient transformation, have also been explored. Initially, these

efforts met with limited success, with one study reporting zero

transformation success (Juranić et al., 2020). Nevertheless,

subsequent optimization of cowpea protoplast transformation

with CRISPR/Cas9 technology has yielded positive results,

highlighting the importance of factors such as protoplast isolation

method, constitutive promoter, temperature, plasmid concentration,

and buffer percentage (Bridgeland et al., 2023). While protoplast

transformation may offer a viable alternative to Agrobacterium-

mediated transformation, its application is still constrained by

limitations in regeneration efficiency, optimal culture conditions,

environmental stress factors, and genetic constraints (Omomowo

and Babalola, 2021).

Exploration of tissue culture
propagation methods in regenerating
cowpea plants

Cowpea is highly susceptible to biotic and abiotic stress factors

that limit yield potential (Omomowo and Babalola, 2021;

Wijerathna-Yapa and Hiti-Bandaralage, 2023; Basavaraj et al.,

2024). Conventional breeding through repetitive crossing is not

always possible due to the self-pollinated nature of this species,

which possesses very limited genetic variability (Boukar et al., 2016,

2020; Nair et al., 2023). The little success achieved through

conventional cowpea breeding for insect pest and disease

resistance is due to the narrow genetic base and barriers to

crossing with wild-type genotypes (Fang et al., 2007; Marubodee

et al., 2015). Wild-type relatives of cowpea such as Vigna vexillate L.

possess genes that confer resistance to pests, however, are cross-

incompatible with domesticated cowpea varieties (Barone et al.,

1992; Boukar et al., 2020). This prevents the crossing of

domesticated cultivars with wild-type to transfer resistance genes

to cultivated varieties (Boukar et al., 2020; Panzeri et al., 2022).

Biotechnological methods of genetic transformation can serve to

transfer such genes under in vitro conditions (Bett et al., 2017).

Exploring tissue culture propagation methods could help regenerate

in vitro transformed cowpea explants produced from NBT

approaches (Bakshi et al., 2012; Tang et al., 2012). Most cowpea

breeding programs intend to develop a system that will effectively

allow the efficient introduction of agronomically important traits

into domesticated cowpea varieties (Bett et al., 2017). The goal is to

produce a genetically engineered cultivar that would withstand

adverse stresses and thereby prevent losses in crop yield.
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Plant regeneration systems in cowpea

Plant regeneration is achieved by employing two in vitro tissue

culture pathways, namely organogenesis (OG) and somatic

embryogenesis (SE) which facilitate the rapid multiplication of

plants under sterile conditions (Sani et al., 2018; Pratap et al.,

2018). The implementation of NBTs relies on the ability of OG and

SE pathways to regenerate plants from the explants (Figure 2). Plant

regeneration through tissue culture is based on the totipotent nature

of meristematic plant cells, which is a phenomenon that allows fully

functional plants to be regenerated from competent cells under

proper culture conditions (Feher, 2019). The meristematic cells of

the explants undergo in vitro proliferation and become committed

to a morphogenic pathway such as OG or SE. Cowpea, similar to

other legumes with large seeds, exhibits recalcitrance to

regeneration and transformation, which limits the use of tissue

culture techniques for its improvement (Sahoo and Jaiwal, 2008;

Chaudhury et al., 2007). Numerous factors determine the

morphogenic response of the cultured explant. Integrating clonal

propagation tools (SE and OG) with NBTs improves the speed of

genetic improvement of crop species, particularly the recalcitrant

cowpea. These biotechnological tools complement existing cowpea

conventional breeding programs that intend to develop germplasm

with desirable traits (Popelka et al., 2006; Bett et al., 2017).
Somatic embryogenesis of cowpea

Somatic embryogenesis is an artificially induced morphogenic

plant regeneration process in which plant somatic tissues made up
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of meristematic cells undergo dedifferentiation to produce

competent embryos without gametes fusion (Sugimoto et al.,

2010; Bull and Michelmore, 2022). The resultant embryogenic

tissues are highly prolific and originate from single cells, ensuring

the production of highly uniform qualitative regenerants in a

relatively short period (Manman et al., 2013; Chokheli et al.,

2020). Since its inception and use in carrots, the single-cell origin

of SE from the induced callus has been considered the most valuable

tool in plant tissue culture due to its higher proliferation rate

(Zimmerman, 1993; Popelka et al., 2006; Bidabadi and Mohan,

2020). SE reduces the occurrence of chimeric and somaclonal

variations that affect the production of true-to- type plants,

leading to undesirable regenerated plants and affecting germplasm

preservation (Krishna et al., 2016; Bidabadi and Mohan, 2020).

In tissue culture, SE can be induced with the addition of

exogenous plant growth regulators or by subjecting cells to stressful

conditions. Auxinic herbicides, such as 2,4- dichlorophenoxyacetic

acid (2,4-D), are frequently used to induce SE. In this process, they

function as auxins, stressor, and/or trigger endogenous synthesis and

accumulation of auxins. After auxin accumulation, explants are

immediately transferred to a medium without auxin. This leads to

the formation of organiser cells- a specific type of cell that plays a vital

role in the development and arrangement of tissues and organs

during embryonic development. Subsequently, these organiser cells

divide at the outer edge to form globular structures along with the

surrounding epidermis (Smetana et al., 2019). Somatic

embryogenesis comprises four distinct stages: (1) induction of

somatic embryos; (2) embryo proliferation; (3) embryo maturation;

and (4) embryo germination (Hartmann et al., 1997). The somatic

embryo can develop through two pathways: direct SE, where SEs
FIGURE 2

A schematic diagram that describes stages in somatic embryogenesis and organogenesis. Plant regeneration can occur directly on the explant or
indirectly through the formation of a pluripotent callus, which differentiates into the desired tissue or organ. Conversion refers to the ex- vitro
survival of somatic seedlings and their continued growth.
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develop directly from the wounded site of explant, and indirect SE,

where SEs develop from the embryogenic callus (Figure 2). In the

culture of somatic embryos, somatic embryogenesis can also be

induced directly or through the callus. This is different from

primary SE, which is induced from explant cells, and is known as

secondary SE (Gaj, 2004). Although secondary SE is a valuable tool

for plant biotechnology, it can also cause genetic instability,

somaclonal variation, and epigenetic changes. Many crop species

have exhibited somatic embryogenesis; however, the germination

ability of these somatic embryos into plants has been notably

inadequate. In some instances, a conversion rate of as low as 3%-

5% has been observed (Parth et al., 2022). This is due to incomplete

development of the somatic embryos that may appear normal. To

achieve a complete development of somatic embryos, all essential

growth stages must be properly completed. Embryo maturation and

germination have been identified as the main limiting factors for

somatic embryogenesis in several crops including cowpea

(Ramakrishnan et al., 2005), olive (Rugini et al., 2016), and Persian

walnut (Vahdati et al., 2008). Somatic embryomaturation determines

the germination potential of embryos as they accumulate dietary

resources and proteins that improve their ability to withstand

desiccation. In several plant species, the maturation of the somatic

embryo is facilitated by abscisic acid (ABA). ABA has been reported

to promote embryo maturation in Persian walnut (Vahdati et al.,

2008), rapeseed (Finkelstein et al.,1985), cork oak (Garcıá-Martıń

et al., 2005), and it suppresses secondary somatic embryogenesis

(Ammirato, 1983). In cowpea, the addition of ABA (5 µM) and L-

proline (20 mg/L) to the maturation medium has improved embryo

maturation to 40% (Ramakrishnan et al., 2005), compared to 26%

reported by Anand et al. (2000). ABA is known to trigger the

expression of genes that are normally expressed during the drying

phase of seeds. The products of these genes impart tolerance to

desiccation in embryos (Florin et al., 1993). ABA has been reported to

increase desiccation tolerance in somatic embryos of carrots

(Tetteroo, et al., 1996) and celery (Kim and Janick, 1989).

Sometimes, the residual ABA, used during maturation, can

interfere with further development. The culture regime during

maturation may also induce dormancy. Therefore, dormancy-

breaking treatments such as cold or gibberellic acid application can

improve somatic embryo germination and plantlet growth. To this

end, respective usage of cytokinin and N-phenyl-1,2,3- thidiazol-5yl-

urea (TDZ) have been reported for cowpea plantlet growth, leading to

21- 33% regeneration efficiency (Table 1). Once the embryogenic

shoot or axis is developed, a spontaneous rooting occurs while in

some instances rooting is facilitated by the addition of hormones, and

thus the entire plantlet is regenerated via the somatic

embryogenesis process.
Organogenesis of cowpea

Organogenesis is the process by which shoots and roots develop

from cultured explants without the appearance of callus, often

called direct organogenesis, however, if the callus- forming stage

precedes organogenesis, this is called indirect organogenesis (Abbas

et al., 2021; Belanger et al., 2024). Even though it can occur without
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intervention in some instances, callus formation is activated by

exogenous synthetic or organic auxin and cytokinin media

supplementation in cowpea and other plant species explants

(Markin et al., 2023; Mosoh et al., 2024). The balanced addition

of phytohormones ensures the successful transition of callus into

whole plants to complete the regeneration process. The process of

OG is a multi-stage regeneration process which entails initiation of

shoots, proliferation of adventitious shoots, elongation of shoots,

and rooting of individual shoots. Plants regenerate from

differentiating buds of the meristem, forming a complete

functional plant (Raveendar et al., 2009; Markin et al., 2023).

Cultured explants initiate adventitious shoots by subculturing

them onto the same shoot initiation medium for a period of 2 to 4

weeks (Das Bhowmik et al., 2019). Different tissue types are being

used as explants in cowpea regeneration through OG. Explants

from the cotyledonary node (Bakshi et al., 2011) and shoot apices

(Bala, 2022) excised from germinated seedlings were used while Bett

et al. (2019) established that the optimal explant was an attached

embryogenic axis of the imbibed mature seeds. During in vitro

culture, the cotyledonary node cells of the detached embryogenic

axis of the shoot apical meristem undergo rapid cell division and

dedifferentiation to acquire organic competence for shoot

regeneration (Che et al., 2021). The process of OG relies on the

optimal auxin-to-cytokinin ratio to successfully induce

organogenesis. The formation of multiple shoots is significantly

affected by the concentration and type of phytohormones as well as

MSmedium composition (Bala, 2022). The mean number of shoots

per explant usual ly varies s ignificantly with varying

Benzylaminopurine (BAP) concentrations, such as an average of

2.89 shoots produced by an MS medium supplemented with a

combination of 1.5 mg/L BAP and 0.1 mg/L naphthalene (NAA),

while 1.5 mg/L BAP alone produced an average of 2.51 shoots

(Bala, 2022).

Regenerated multiple adventitious shoots are individually

elongated in an elongation medium supplemented with gibberellic

acid or cytokinin (Che et al., 2021). The elongation of shoots

normally takes between 4 to 6 weeks (Adesoye et al., 2010). The

speed of shoot regeneration and elongation is determined by the

type and concentration of phytohormone used. The highest mean

shoot length of 2.60 and 2.61 were achieved with 1.5 mg/L BAP and

0.1 mg/L NAA, respectively (Bala, 2022). As the concentration of

BAP decreases the shoot regeneration and elongation decrease

while NAA alone offers limited success in shoot regeneration and

elongation. The elongated shoots are usually subjected to a rooting

treatment to achieve a well-developed root system. Some shoots can

readily root in a medium devoid of a rooting hormone due to the

presence of NAA in the preceding elongation phase.
Factors regulatory to SE and OG
in cowpea

The acquisition of regenerative competence in plants is

generally regulated by several critical external and internal factors

(Mendez-Hernandez et al., 2019). SE induction is primarily
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TABLE 1 Varietal response of cowpea to somatic embryogenesis and organogenesis.
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regulated by the interaction of factors that act as external stimuli

triggering an embryogenic pathway in plants through the

dedifferentiation of cells into a competent embryogenic state and

gene reprogramming (Guan et al., 2016). Dedifferentiation is the

process through which differentiated cells regain the ability to

become distinct meristematic tissue capable of dividing

mitotically. The following factors drive the acquisition of

embryogenic competence in plant somatic cells.
Genotype, type, and age of explants

Various genotypes often show variability in terms of their

responses to culture (Table 1). Some genotypes easily undergo the

morphogenic process of either SE or OG, while some show

recalcitrance to tissue culture amenability (Bull and Michelmore,

2022). Successful induction of SE and OG depends on the judicious

selection of optimal explants at the appropriate developmental and

physiological stage (Mendez-Hernandez et al., 2019). The success of

establishing tissue culture is influenced by the age of the explant

(Bhatia et al., 2004). Fresh soft tissues are generally readily amenable

to in vitro manipulation compared to old tissues. Explants must

contain competent cells capable of undergoing SE induction when

exposed to proper inductive conditions (Feher, 2019). Cowpea SE has

been achieved using primary leaf explants (Anand et al., 2000;

Ramakrishnan et al., 2005), while cowpea OG is achieved using

cotyledonary nodes explants (Bakshi et al., 2011), cotyledonary nodes

with attached embryonic axis (Bett et al., 2019), embryonic axis

(Popelka et al., 2006; Adesoye et al., 2010; Kaur et al., 2016; Che et al.,

2021), and shoot apices (Bala, 2022; Markin et al., 2023). Mature

seeds are used as starting plant material even though immature seeds

result in a higher regeneration rate (Popelka et al., 2006). The easy

accessibility to mature seeds without having to raise plants for

production of immature seeds prior commencement of in vitro

cultivation for explant preparation is the benefit that comes with

the use of mature seeds. The type of explant prepared determines the

number of shoots produced, and the choice of explant may vary with

the genotype (Bhatia et al., 2004).

The selection of tissue type and age are among the important

factors to consider for a successful regeneration system of choice.

For OG, the young cotyledonary node is the most responsive

explant for the induction of multiple shoots under optimal

conditions (Bakshi et al., 2012; Tang et al., 2012, 2022). It has

been shown that seedling explant preconditioning promotes various

shoot responses in shoot multiplication medium according to

genotype (Kumari et al., 2021). Preconditioning of mature seeds

by imbibition was optimal for shoot regeneration from attached

embryogenic axis (Bett et al., 2019). The optimal length of exposure

period of genotypes to preconditioning treatment results in an

increase of the mean number and the length of multiple shoots.

Preconditioning enhances the ability to obtain high competence of

donor cultures (Sehaole and Mangena, 2024). For SE, the primary

leaf explant gives viable cells but is largely influenced by the

concentration of 2,4-Dichlorophenoxyacetic acid (2,4-D). As

such, the reduction of 2,4-D has been reported to improve
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regeneration efficiency of the cells obtained from primary leaf

explant from 21.8 to 32% (Table 1). As previously reported by

Popelka et al. (2006), the conditions to which the explant is exposed

dur ing SE determines the success or fa i lure of the

regeneration system.
Type and concentration of phytohormones

Phytohormones are plant growth regulators (PGR) that play a

significant role in plant tissue culture processes (Feher, 2019;

Mendez-Hernandez et al., 2019). Cowpea regeneration is driven by

the type and concentration of PGRs. The classification of PGRs is

based on their physiological mode of action. Both auxin and

cytokinin regulate cell division in plants (Mendez-Harnandez et al.,

2019). The balance between endogenous and exogenous

phytohormone levels are critical to determining the developmental

fate of meristematic cells of an explant (Bull and Michelmore, 2022).

The SE pathway is driven by both auxins and cytokinins, and

the molar concentration balance between them determines the

morphogenic response (Markin et al., 2023). The discovery of

synthetic auxins such as 2,4-D, and Indole-3-acetic acid (IAA) has

enabled the induction of embryogenic competence in plant cells.

They can act alone or in combination with cytokinin to induce

callus formation in plants (Gao et al., 2023a; 2023b). However, it is

argued that an explant at an optimal developmental stage can

potentially undergo SE induction without supplementing the

media with PGRs (Lelu et al., 1999). In cowpea, 2,4-D and IAA

have been popularly used to achieve callus tissue dedifferentiation

during the SE induction process. A high concentration of 2,4-D can

decrease the regeneration frequency and therefore inhibit the

transition of callus to somatic embryos (Alsafran et al., 2022).

Most importantly, SE induction depends on the application of

external stress achieved by supplementing the medium with PGRs

(Nzama et al., 2024). The withdrawal of auxin and the addition of

cytokinin in an inductive medium facilitate the dedifferentiation of

the callus from somatic embryos (Bernula et al., 2020). Examples of

cytokinin used in plant tissue culture are benzyl adenine (BA), BAP,

and TDZ, a potent non- purine growth regulator, among others

(Jahan et al., 2011).

Numerous types of cytokinin are used to induce OG in optimal

explants of cowpea genotypes. According to Tang et al. (2012),

cytokinin BAP alone or in combination with a lower concentration

of auxin is the most effective way to induce multiple shoots. It was

also found that the inclusion of auxin IBA had a worthless effect on

shoot multiplication from axillary buds (Aasim et al., 2009). An

average of 4 shoots per explant were produced at BAP

concentrations between 1.25 and 1.5 mg/L. Axillary bud cultures

in a medium supplemented with 2 mg/L of BAP produced

abnormal shoots with reduced proliferation and suppressed

elongation. The number of multiple shoots decreased with

increasing BAP concentration (Diallo et al., 2008). However,

Raveendar et al. (2009) achieved an average of 13.5 multiple

shoots in a medium supplemented with 0.5 µM BAP.
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Preconditioning of seedlings with a high dose of cytokinin before

plant regeneration has been shown to increase subsequent shoot

regeneration efficiency in plants (Jahan et al., 2011; Bakshi et al.,

2012). Prolonged exposure to higher doses of cytokinin such as

TDZ and BA resulted in an increased seedling length and the

formation of secondary roots. The comparison of TDZ and BA

equimolar doses in the same medium showed that TDZ is superior

to BA as it produced a 1.5 to -2-fold increase in the mean number of

new shoots (Bakshi et al., 2012). A study by Markin et al. (2023),

successfully established that plant-derived extracts can support in

vitro cowpea propagation in the absence of synthetic plant growth

regulators. This organogenic response induced by these explants

could be explained by the amounts of vitamins, minerals, and

phytohormones present in the extracts coupled with explant

growth in culture (Markin et al., 2023).
Chemical composition of culture
medium and its additives

The inductive and regenerative capacity of both embryogenic

and organogenic explants is reliant on the chemical composition of

the medium used which is mostly based on the molar ratios of

nitrogenous compounds constituting a particular basal medium.

The induction of embryogenic tissue and the formation of

proembryos are controlled by the chemical composition of the

induction medium (Nzama et al., 2024). Numerous media

formulations are available in the published literature and their

optimisation has been undertaken to enable the propagation of

various highly recalcitrant species such as cowpea (Reeves et al.,

2018). The nitrogen source is the most critical component of the

tissue culture medium that is usually adjusted or optimised during

the propagation of species (Li et al., 2022; Nzama et al., 2024).

Organic and inorganic nitrogen sources are the two types of

nitrogen source used in tissue culture medium. Organic nitrogen

sources are popularly bovine powdered milk referred to as

enzymatic casein hydrolysate (CH) and an amino acid such as L-

glutamine (L-gln) (Ageel and Elmeer, 2011; Daniel et al., 2018).

There are numerous types of amino acids used in plant tissue

culture, examples are asparagine, arginine, etc. The effectiveness of

amino acids in plant tissue culture depends primarily on their type

and concentration to enhance the morphogenesis of the explant to

maintain or produce advanced new in vitro cell fates (Duarte-Ake

et al., 2022). The mola ratios of the inorganic nitrogen components

of the medium are also the most critical to induce morphogenic

responses (Nzama et al., 2024). Most induction media comprise

ammonium nitrate and potassium nitrate as inorganic nitrogen

sources, and their molar ratios are responsible for the induction of

cellular morphogenetic responses such as the induction of somatic

embryogenesis and the proliferation of the resulting proembryos

(Carlsson et al., 2019). Ammonium- to- nitrate ion molar ratios of

1:1, 1:2, and 1:4 are often used for different stages of an SE process

(Nzama et al., 2024). The 1:1 and 1:2 molar ratios are used in the

early stages of the SE process, i.e., induction, proliferation, and

maturation of embryogenic somatic embryos, while 1:4 is used
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effectively for induction of roots and elongation of hypocotyls-

epicotyls to produce a physiologically normal plant ready for

acclimation. The improper balance between the two inorganic

sources would result in numerous anomalies that are tissue

culture-induced.

Organogenesis has been the most successful mode of

regeneration for cowpea using B5, BM and popularly MS basal

medium and its modifications (Manman et al., 2013). The

modifications of MS basal medium such as shoot induction,

elongation induction, root induction media are often used (Che

et al., 2021). Sometimes, the explants are maintained in MS medium

with no modifications except transferring to fresh medium until

shoot regeneration. The MS medium used can contain either

synthetic phytohormone or organic extracts and result in up to

90% regeneration efficiency (Bala, 2022; Markin et al., 2023). Just

recently, Markin et al. (2023) demonstrated the beneficial use of

plant fruit explants in promoting in vitro propagation of cowpea

through OG. This study showed the amenability of three cowpea

varieties (AGRAC 216, Tintinwa A and Asontem) to in vitro

propagation using MS basal medium with plant-derived explants

as sources of PGRs in the absence of synthetic PGRs (Table 1).

These extracts were banana, coconut water, orange juice, and

tomato juice.
Challenges encountered during
cowpea regeneration through SE
and OG

The phenotype and genotype of intact plants are used for the

evaluation of abnormalities. The appearance of regenerated plants is

used to differentiate between normal and aberrant phenotypes.

Aberrant phenotypes show tissue bleaching and tissue swelling

due to disturbed morphogenesis during development. The

discoloration of albino regenerants is readily visible in aberrant

phenotypes after regeneration by tissue culture (Alikina et al., 2016;

Gajecka et al., 2021; Hung et al., 2021). Plantlets with stunted

growth and waterlogged organs are also readily recognisable in

regenerants (Polivanova and Bedarev, 2022). Waterlogging or

hyperhydricity can be avoided by reducing the water potential in

the culture medium by using elevated concentrations of gelling

agents during tissue culture phases, such as maturation and

germination (Ivanova, 2009; Jan et al., 2021). Adsorption of

metabolites produced during the in vitro development of

regenerants by supplementing germination media with activated

charcoal can also be used (Thomas, 2008). Activated charcoal

adsorbs the remnants of PGRs used during the induction and

maturation phases of the SE process. Careful consideration of the

stage at which activated charcoal is used is important as it may

interfere with medium hormonal balance thereby affecting the

overall regeneration process. The culture environment is also

responsible for inducing anomalies experienced during in vitro

growth (Abdalla et al., 2022). The photoperiod during

development impacts the normal development of regenerants

(Ahmad et al., 2014). The early stages of development during the
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SE process take place in the dark, whereas germination takes place

in the subdued light for a few weeks and then open light at a specific

photosynthetic photon flux density (PPFD).

Molecular approaches are also used to determine the induced

changes in DNA sequence due to in vitro induced stresses.

Dedifferentiation during the explant transition from the original

explants to the callus stage is responsible for the induction of

changes in DNA sequences (Kumar and Mohapatra, 2021). New

genotypes are made during the transient in vitro propagation

pressures that explants undergo due to the use of PGRs. At

higher concentrations of PGRs, the genotypic instability is

observed where several polymorphisms are experienced and

detected using DNA-based molecular approaches such as

randomly amplified polymorphic DNA (RAPD), single-site

repeats (SSRs), single nucleotide polymorphisms (SNPs), among

others (Sivakumar et al., 2011). Karyotype- based approaches can

also be used to count the number of chromosomes and their

appearance could be used to infer the different appearance and

physiology of regenerants (Zhao et al., 2005). Flow cytometry is an

example of an approach used for cytological analyses of the

chromosomal structure of regenerants (Nunes et al., 2017).

Evaluation of anomalies in regenerants is based on molecular,

physiology, and physical characteristics (Chen et al., 1998; AI-

Zahim et al., 1999; Zhao et al., 2005). A thorough evaluation of

abnormal plants could be elucidated based on proteomic,

metabolomic, transcriptomic, and genomic levels. Existing

technologies enable the use of these techniques to reach a

conclusive decision about the genotype and phenotype of

the regenerant.

Tissue culture-induced variations are termed somaclonal

variations (SV) (Bairu et al., 2011; Sun et al., 2013). They could

be both desirable and undesirable, depending on the breeding

objective. When disease-susceptible plants suddenly start to show

tolerance after undergoing a change in DNA sequence compared to

their original explant genotype. This would be an example of a

beneficial occurrence of SV resulting in disease tolerance that would

prevent undesirable crop yield losses. An undesirable SV occurrence

would be when a disease-free explant produces disease-prone or

susceptible regenerants, which would eventually result in

devastating crop yield losses.

Prolonged culture of induced embryogenic tissue is known to

produce SV due to extended exposure to a mutagen, 2,4-D, which is

normally used for SE induction (Rival et al., 2013). Prolonged

culture is used to maintain highly prolific cultures of resultant cell

lines, however, shortening the subculture period reduces the rate of

in vitro-induced variation during plant regeneration (Farahani

et al., 2011; Sun et al., 2013). A tissue cryopreservation process is

used to prevent SV induction that would later result in aberrant

genotypes with abnormal physical appearances (Nunes et al., 2017).

Cryopreservation is the process of preservation of juvenile tissues at

ultralow temperatures such as -196°C or below for infinite periods

(Salaj et al., 2011). All metabolic processes are halted at such low

temperatures, and losses of cell lines due to SV are minimised.

However, it is also possible that cryopreservation could introduce
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SV, since the use of the cryoprotectant dimethylsulfoxide (DMSO)

could introduce changes in the DNA makeup of genotypes of

preserved cell lines (Nunes et al., 2017). This also highlights the

need to screen all genotypes for SV before commercial deployment.

DNA methylation is also a major cause of epigenetic changes in

regenerants (Kumar and Mohapatra, 2021). Such changes could be

either heritable or non-heritable. If a desirable change is passed

down several generations, the desirable traits get incorporated into

such germplasm and future regenerants could consistently express

it. On the contrary, an undesirable change could interfere with

breeding objectives and eventually affect the end product of the

breeding programs and commercialisation of the product.

Propagation of species by OG from cotyledonary nodes is

preferable compared to SE as the risks associated with the

production of chimeric plantlets due to the de novo regeneration

pathway are often very low (Tzfira et al., 1997; Belanger et al.,

2024). Formation of chimeric plants is due to a single plant tissue

containing a mixture of transformed and non-transformed sections

(Das Bhowmik et al., 2019). Transformation and regeneration of

cowpea by Che et al. (2021) produced no signs of chimerism and

this could reflect the incomplete transformation events during the

process resulting in both transformed and non-transformed

sections of the same tissue. Higher percentage of chimera

formation in cowpea and low transgenic plant recovery are major

problems encountered during plant regeneration (Das Bhowmik

et al., 2019). Some tissue-cultured propagules after regeneration fail

to induce root formation, and this is highly genotype- dependent

(Che et al., 2021). Leaf tissue necrosis and profuse callusing of the

regenerating shoots are often encountered and result in the death of

plantlets after growth cessation (Manman et al., 2013).
Summary and conclusion

To reach the optimal yield potential of 3 tons per hectare and

realise the highest potential economic returns in cowpea

production, it is without a doubt that the incorporation of NBTs

should be at the centre of cowpea improvement. The biotic and

abiotic stress factors that occur together with the existing narrow

genetic base pose challenges in improving cowpea yields. The

genetic background of wild relatives of cowpea offers alternatives

for cowpea improvement toward biotic and abiotic stress factors.

However, the level of cross-incompatibility between cultivated and

wild relatives that exhibit resistance or tolerance to biotic or abiotic

stress factors hinders progress in cowpea improvement through

conventional breeding strategies (Boukar et al., 2020). To

circumvent this, a transgenic approach has been applied that led

to the development of Bt-cowpea (Popelka et al., 2006). The recent

commercialisation of Maruca vitrata-resistant GM cowpea in

Nigeria is also a significant milestone in cowpea improvement

using technological approaches (Boukar et al., 2020). With

scepticism of the products developed from foreign DNA

(transgenic crops), these two interventions might not be fully

utilised for cowpea, further necessitating a look into the use of
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other NBTs such as CRISPR/Cas9 to develop cowpea resistance.

Similar to GMO technology, CRISPR/Cas9-mediated gene editing

faces a bottleneck of cowpea in vitro recalcitrancy, which is an area

of research interest for many scientists. To this end, there is no

available information on the release and commercialisation of

cowpea products of CRISPR/Cas9 and other non-transgenic

NBTs. Therefore, continuous research is needed to address the

challenges encountered with the in vitro propagation of cowpeas.

Significant progress has been made towards cowpea genetic

transformation and regeneration despite the low regeneration and

transformation rates using in vitro propagation technologies such as

SE and OG (Belanger et al., 2024). The most successful mode of

regeneration for cowpea cultivars has been OG using cotyledonary

node explants probably due to their easy availability and

amenability to transformation compared to other explants such as

those of embryonic origin that may be sensitive to handling and

processing (Manman et al., 2013). The possibility of producing

multitudes of somatic embryos through SE regeneration is very

promising for cowpea regeneration, as the production of potentially

high numbers of cowpea plantlets is possible given that the optimal

culture conditions that favour regeneration are established

(Chokheli et al., 2020). Another advantage of SE is the exposure

of the plant cell for easier permeability of gene targets to the host

compared to OG. However, researchers have been largely focusing

on the use of OG and improving the gene delivery to the host (Bett

et al., 2019). This is due to the direct usage of prepared explants for

transformation in the OG pathway compared to the development of

cells from the explants under SE. The low transformation

efficiencies remain an obstacle to be overcome in OG. The

generation of cells in SE also encounters some challenges.

Induction of SV due to prolonged passages of explants and the

use of high concentrations of phytohormones is generally one of the

main stumbling blocks in the SE pathway (Rival et al., 2013; Sun

et al., 2013). A solution would be to establish optimal

phytohormone concentrations and avoid prolonged time in

culture for proliferating tissue masses. The phase of transition of

the somatic embryo into cotyledonary plantlets is preceded by the

use of phytohormones that drive dedifferentiation during

proliferation. For successful plant regeneration, such

phytohormones should be withdrawn post-proliferation phase to

avoid their carryover, which popularly hinders further plant

regeneration and subsequently results in aberrant plant genotypes

often characterised abnormal physical appearances such as stunted

growth and albinism (Bernula et al., 2020; Alsafran et al., 2022).

Determining an optimal medium chemical formulation, such as

the balance of ionic molar ratios of inorganic and organic nitrogen

compounds, types and concentrations of phytohormones, could

improve the morphogenesis processes in cowpea (Li et al., 2022;

Nzama et al., 2024). Despite all the progress made in cowpea genetic

transformation and regeneration, there is still a long way to go

before optimal conditions are established and applied in a large-

scale plant regeneration and genetic transformation program.

Future studies should focus on optimising regeneration and
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genetic transformation protocols to produce genetically

engineered cowpea cultivars capable of withstanding biotic and

abiotic stresses while ensuring maximal yield production. For SE, it

has been evident that optimisation must focus on the concentration

of phytohormone and media composition. The explant type seems

to be providing the required cells in SE, but media composition and

phytohormone concentration determine regeneration efficiency

(Table 1), hence we propose their continued optimisation. For

OG, there is generally high regeneration efficiency, however, the

very low transformation efficiency limits the large-scale

incorporation of NBTs in cowpeas. Thus far the high

regeneration efficiency in OG is not benefitting the cowpea

improvement but rather micropropagation for multiplication and

conservation. Further optimisation of OG should focus on

establishing a high proliferating (high cell density) tissue type that

could allow high transformation efficiency of cowpea. That could

drive much-needed success in the development of resilient cowpea

varieties using NBTs instead of lengthy conventional approaches.
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