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Cactus pear fruits are rich sources of nutritional (essential vitamins, amino acids

and minerals) and antioxidant compounds (flavonoids, carotenes, betalains,

ascorbic acid and quercetin). The fruit is cultivated for fresh markets and also

serves as nutraceutical and functional food, finding application in various forms

such as juice, jam, wine, syrup and in dairy products. However, short postharvest

life and negative perception has contributed to its underutilization in the local

context. Total titratable acidity (TTA) and total soluble solids (TSS) are among the

desirable attributes used to assess postharvest quality of Cactus pears. A portable

near-infrared spectrometer (NIRS) can non-destructively determine the internal

quality of Cactus pears’ thus reducing postharvest losses. This study evaluated the

potential of a handheld NIRS coupled with chemometrics of partial least square

regression (PLSR) for rapid, non-destructive, and simultaneous determination of

TTA and TSS in intact Cactus pear fruits. Cactus pears at different stages of maturity

were sampled from Laikipia county, in Kenya, and immediately subjected to

spectral data acquisition and wet-chemistry analyses. The PLSR was used to

train and validate predictive models for the determination of TTA and TSS

content in intact Cactus pears. The prediction model for TTA gave an R-squared

(R2) of 0.73, rootmean squared error of prediction (RMSEP) of 0.28% citric acid, and

residual predictive deviation (RPD) of 1.97. Additionally, the TSS model resulted in

R2 of 0.75, RMSEP of 1.60° Brix, and RPD of 2.06. Overall, these findings highlight

the effectiveness of NIRS in non-destructive measurement of TTA and TSS levels in

whole Cactus pears. However, with further refinement and optimization of these

models, the full potential of this technique for swift and precise assessment of

these parameters in whole Cactus pears can be realized. This would greatly benefit

farmers and processors by reducing expenses associated with quality assessment

and facilitating market entry of Cactus pear derived food products.
KEYWORDS

chemometrics, total titratable acidity (TTA), total soluble solid (TSS), fruit maturity, non-
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1 Introduction

The cactus pear (Opuntia ficus-indica L.) plant, belongs to the

Cactaceae family, and is known for its succulent and spiny cladodes

and its adaptability to arid and semi-arid regions (Al-Naqeb et al.,

2021; Ramıŕez-Rodrıǵuez et al., 2020; Sipango et al., 2022). The fruit is

found across several regions including Asia, Europe, Australia, Africa,

the Middle East, North America, and South America (Feugang et al.,

2006). In Mexico, cactus pear constitutes one of the most valuable

natural resources, being a source of delicious and nutrient-rich fruits

and vegetables for human consumption (Vigueras and Portillo, 2018).

The berry-like fruit is characterized a fleshy pulp and a thick skin, with

an average fruit weight of 100-200 g and varying considerably in terms

of color (purple to orange), size, and flavor (Yahia and Sáenz, 2011).

The cactus pear fruit is a source of nutritionally important vitamins

(vitamin C, E, K, and beta-carotenes), carbohydrates and proteins,

although it has low caloric content compared to other fruits (Ramıŕez-

Rodrıǵuez et al., 2020). The fruit is a also a rich source of antioxidants

(carotenes, flavonoids, betalains, ascorbic acid and quercetin) essential

amino acids (arginine, tyrosine, and glutamic acid) and minerals

(magnesium, calcium, and potassium) and fiber in the form of pectin

(Van Uytvanck et al., 2014; Cota-Sánchez, 2015; Feugang et al., 2006;

El-Mostafa et al., 2014; Hailu, 2020; Guevara-Figueroa et al., 2010;

Mutwa et al., 2015; Daniloski et al., 2022). The fruit pulp is also

characterized by a high level of reducing sugars (12 to 17%), low level

of titratable acidity (Cota-Sánchez, 2015), pigments (Felker et al.,

2008; Butera et al., 2002), and mucilage (Sepúlveda et al., 2007).

However, the fruit is very perishable with a life span of about two

weeks depending on the ecotype (Cota-Sánchez, 2015; Amaya-Cruz

et al., 2019). The Cactus pear fruit is consumed fresh and also

exported to the European markets (Ramıŕez-Rodrıǵuez et al., 2020).

Multiple uses of Cactus pear fruits have resulted in the domestication

of the plant in Mexico (Vigueras and Portillo, 2018). The Cactus pear

fruit is cultivated for the fresh market but also serves as nutraceuticals

and functional food, with applications in various forms such as juices,

syrup, dairy products ingredients and as jam. However, short

postharvest life and negative perception especially due to the

presence of spines has contributed to the underutilization in the

local context.

In Kenya and other African countries, despite their nutritional

potential, Cactus pear fruit remains underutilized (Aregahegn et al.,

2013). Local communities often perceive the Cactus pear plant as a

problematic weed due to its aggressive invasion of agricultural lands,

posing threats to both the land, domestic animals, and native

vegetation (Bakewell-stone, 2023; Van Uytvanck et al., 2014). This

perception has led to efforts to eradicate the plant from farms,

contributing to the fruit’s underutilization. Limited knowledge of the

fruit’s nutritional potential, coupled with the lack of processing

facilities, further diminishes the potential utilization of the Cactus

pear fruits (Sipango et al., 2022; Hailu, 2020). However, efforts have

been made to promote their utilization through research and

publication of articles highlighting their nutritional, nutraceutical,

and functional properties. Consequently, Cactus pear fruits have

been partially incorporated into African cuisine and processed into

various products such as juices, jams, concentrates, marmalades, oil,

and cosmetic products.
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The organoleptic quality of fruits is normally determined through

parameters such as total titratable acidity (TTA), total soluble solids

(TSS), and other attributes (Chen and Opara, 2013). The TTA is an

important element of fruit quality assessment as it greatly influences the

overall sensory perception of the fruits (Velardo-Micharet et al., 2021).

TTA is determined by exhaustive titration of intrinsic acids with a

standard base to endpoint and then expressing the acidity in terms of

the predominant organic acid present in the sample such as malic,

citric, and tartaric acids and is (Zhang et al., 2023). Due to its evolution

during the maturation and ripening of fruits, TTA is normally used to

indicate the harvesting time for fruits (Velardo-Micharet et al., 2021).

The TSS content, representing the total dissolved content in fruits, is an

indicator of the maturity, sweetness, and overall quality of fruits

(Magwaza and Opara, 2015). It is usually determined by a

refractometer and expressed as a percentage or degree brix (%/°Brix).

The TTA and TSS provide valuable information about the quality of

fruits and are normally used when sorting and grading Cactus pear

fruits (Mutwa et al., 2015). However, the methods for determining

these parameters are destructive, time-consuming, require specialized

equipment and personnel, and are sometimes impractical in certain

contexts (Ncama et al., 2017; Amuah et al., 2019). Therefore, it is

necessary to find a non-invasive technique for determining the quality

of Cactus pear fruits that are non-destructive and provide real-time and

accurate information on-site.

Near-infrared spectroscopy (NIRS) is an emerging and

powerful technology for probing the composition of organic

matrices like biological samples (Magwaza and Opara, 2015). It

has gained significant recognition as a non-invasive tool of choice in

various fields (Ozaki et al., 2018). It relies on the fact that organic

molecules in the sample absorb near-infrared radiation at specific

wavelengths. The absorbed radiation is linked to specific chemical

bonds within the sample matrix and by analyzing the absorption

pattern, the chemical composition and properties of a sample can be

obtained (Beć et al., 2021). The NIR spectral region typically

extends from approximately 800-2500 nm and is associated with

overtones and combination bands related to hydrogen-bonded

molecules (O-H, C-H, and N-H) (Amuah et al., 2019;

Hasanzadeh et al., 2022). The primary advantages of NIRS are;

green, non-polluting, wide applicability, rapid, requires little or no

sample preparation, and its ability to simultaneously determine

several parameters with just a single scan (Li et al., 2019).

Recent advancements in NIR spectroscopy have led to the

emergence of miniaturized NIRS systems which offer additional

speed, convenience, cost-effectiveness, simplicity, and sensitivity

(Beć et al., 2021). This advancement in NIR spectroscopy has

seen an increasing literature on the use of smartphone or tablet-

connected miniature spectroscopy for rapid assessment of quality

indices of several agricultural produce (Amuah et al., 2019;

Munawar et al., 2021; Shen et al., 2022; Wang et al., 2022b).

Additionally, the accuracy of portable NIR spectroscopy is

comparable to that of benchtop instruments (Kartakoullis et al.,

2019; Savoia et al., 2021; Yegon et al., 2023). Therefore, this study

aimed to evaluate the potential of portable NIRS coupled with

multivariate analysis for rapid, accurate, and simultaneous

determination of total titratable acidity and total soluble solids in

intact Cactus pear fruits.
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2 Materials and methods

2.1 Sample collection

Cactus pear fruit samples were collected from the Il Ngwesi I-

Mayianat Community Ranch at Makurian in Laikipia County,

Kenya. Laikipia is one of the counties in Kenya known for fast-

growing and highly invasive cactus plants (Mutwa et al., 2015). To

capture variation in fruit’ properties, three stages of ripeness were

considered for sampling; mature green, pre-ripe, and ripe fruits.

Figure 1 shows different stages of Cactus pears collected for this

study. Samples then were transported to Jomo Kenyatta University

of Agriculture and Technology (JKUAT), postharvest laboratory,

and immediately subjected to spectral data acquisition and wet-

chemistry analyses.
2.2 Spectral data acquisition

This study used a miniature NIR spectrometer model (NIR-S-G1,

Tellspec, Toronto, Canada) to acquire spectral data. The instrument

is incredibly small and lightweight, measuring only 77g, 75 mm in

length, 58 mm in width, and 26 mm in height. It uses a digital light

processing (DLP) technique to filter specific wavelengths and InGaAs

detector for transforming light into signal (Crocombe, 2018). This

spectrometer operates in a wavelength range of 900-1700 nm, with

256 continuous wavelengths and a resolution of 3.51 nm.

A dedicated spectral collection and management mobile

application was installed on a smartphone, according to the

manufacturer’s instructions. The connection between the

smartphone and the spectrometer was achieved through

Bluetooth. The pre-installed application was used to command

the sensor, manage and export acquired spectra to analytical

software for multivariate analysis. Before spectral acquisition,

dried sodium chloride salt (oven-dried at 105°C for 4 hours) was

scanned to obtain reference value for determining the actual

reflective measurement of the sample.
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Before spectral data acquisition, dried sodium chloride salt was

scanned to obtain reference values for determining the sample

reflectance values

Spectral data were acquired by placing the Cactus pear on top of

a scanning window before commanding the spectrometer to scan

the sample (as shown in Figure 2). Three spectra were collected

from each fruit along the equatorial line while rotating it at 120°. An

average spectrum was then computed for each sample and raw

intensity values were converted into absorbance values (A = log I0
I ),

where I0 is the raw intensity of reference and I is the raw intensity

of sample.

The resulting data were transferred to the Unscrambler X

software (Version 10.4) and OriginPro for pre-processing and

multivariate analysis.
2.3 Reference measurements

2.3.1 Total titratable acidity and total
soluble solids

Reference measurements are precisely taken values for a

parameter and are used together with spectral data to train

predictive models. In this study, the TTA and TSS for 262 Cactus

pear fruit samples were determined according to (Mutwa et al.,

2015) with little modification. A Cactus pear was horizontally cut

into two halves and the pulp squeezed out. Approximately 2 g of the

pulp was weighed (weighing scale model no: AEG-220, Shimadzu

Corporation, Japan) and diluted with 50 ml of distilled water. From

the solution, 10 ml were measured into a 250 ml conical flask, and

added 2-3 drops of Thymol blue indicator. The solution was then

titrated against 0.1N NaOH until a permanent blue color persisted.

The volume of the titer was recorded and used for calculating the

amount of TTA in Cactus pears. The concentration of TTA was

then expressed as a percentage of citric acid. The concentration of

TTA was calculated according to Equation 1 below.

%  TTA =
Titre  �  Conversion   factor  �  Dilution   factor

Weight   of   the   sample
(1)
FIGURE 1

Cactus pears sampled at different stages of maturity.
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The conversion factor for citric acid is 0.064.

The TSS was measured by squeezing out the juice from the

other half of the Cactus pear fruit into the sample holder of a hand

refractometer (ATAGO model ATC-1, Tokyo, Japan), and reading

taken. The resulting measurements were expressed as °Brix. The

TTA and TSS were determined in triplicate for every sample and the

average values were used for calibration purposes.
2.4 PLSR model development

2.4.1 Data partitioning
As a norm in PLSR modeling, the dataset was divided into two

subsets; the calibration set and the prediction set. The calibration set

was used to train the models while the prediction set was used to

evaluate the performance of the models. The sorting division

method was used to split the dataset. This was adopted since it is

simple and ensures that the range in values is well captured in both

prediction and calibration sets. This was carried out as follows; the

dataset was separated based on the parameter and individually

sorted from the lowest to the highest, then the middle in every four

samples were picked for the prediction set and the remaining three

samples were assigned to the calibration set. The resulting ratio was

3:1, i.e., 196 samples picked for the calibration of models and the

remaining 66 samples for evaluating the performance of

constructed models.

2.4.2 Spectral data pre-processing
The NIR spectra can be negatively affected by several factors

such as surface irregularities (scratches, bruises, or uneven textures),

path length variation, and skin thickness, among others (Olmos

et al., 2018). To minimize these interferences, pre-processing

techniques are applied to raw spectra to remove artifacts,

background noise, and interferences caused by these factors.

Spectral pre-processing also improves the quality and usefulness
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of spectral data before modeling (Olmos et al., 2018). Here, linear

baseline correction (LBC) was used to pre-process raw spectra and

then mean centered (MC). The LBC was used to improve the

accuracy of spectral data by removing the underlying trends or

baseline drift that is not related to the chemical properties of the

sample (Rinnan et al., 2009). The MC was used for offset removal

and resolution enhancement (Iacobucci et al., 2016).

2.4.3 Construction and evaluation of models
The PLSR is a typical linear modeling approach for spectroscopic

data. It determines components in spectral data that have the

greatest correlation with reference data (Berrueta et al., 2007). To

be specific, the PLSR approach models both spectral and reference

data simultaneously and identifies latent variables in spectral data

that best describe the latent variables in reference data. The

determination of an optimum number of latent variables or factors

is crucial during the training of models (Christensen and Amemiya,

2002). This ensures a balance between capturing the most relevant

information contained in the dataset and avoiding overfitting or

underfitting the model (Christensen and Amemiya, 2002).

In this study, leave-one-out cross-validation (LOOCV)

technique was employed to determine the optimum number of

factors. That is, the number of factors corresponding to the lowest

prediction error. The PLSR models were constructed using the

independent variables (spectral data) and the dependent variables

(reference data). The spectral data from the wavelength 950-1650 nm

were used for modeling as the remaining variables were considered

irrelevant or noisy (Fan et al., 2018). The performances of trained

models were then evaluated both internally and externally.

For internal validation, R-squared (R2) of calibration (Equation 2)

and root mean squared error of cross-validation (RMSECV)

(Equation 3) were used. For external validation, external sets of

data were subjected to the models, and their performance was

evaluated based on R-squared (R2) of prediction (Equation 2), root

means square error of prediction (RMSEP) (Equation 4), bias
FIGURE 2

The setup for spectral data acquisition on Cactus pear fruit samples.
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(Equation 5) and residual predictive deviation (RPD) (Equation 6)

(Amuah et al., 2019; Wang et al., 2022a).

R2   = 1  −   o
 (ycal  −   yact)

2

o (ycal  −   ymean)
2 , (2)

RMSECV =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o (ycal − yact)

2

n

s
, (3)

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o (ypred − ycal)

2

n

s
, (4)

Bias =  
1
n
 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o (ypred −   yact)

2
q

, (5)

RPD =
SD

RMSEP  
, (6)

where n is the total number of samples,   ycal is the predicted

values, yact is the reference value from wet chemistry, ymean is the

mean of predicted values, and ypred is the predicted value of the fruit

parameter, SD is the standard deviation of reference data.
3 Results and discussion

3.1 Reference measurements; TTA and TSS

The TTA and TSS results are shown in Table 1. The TTA

ranged from 0.21-3.70% citric acid with an average value of 1.39%

citric acid. These results indicate that the pulp of a Cactus pear is

moderately acidic. However, the mean of TTA expressed as % citric

acid reported in this study was slightly above 0.32% citric acid

reported by Mutwa et al. (2015) and outside the range of 0.72-0.83%

citric acid reported by Roghelia and Panchal (2016). The possible

reason for this discrepancy is that samples belonging to three

different maturity stages were collected (i.e., mature green, pre-

ripe, and ripe) and analyzed in this study. Varietal differences and

the geographical location of Cactus pear fruit might have also

contributed to the observed differences (Shewfelt, 1990).

The TSS ranged from 0.3-10.9°Brix with a mean of 5.4°Brix.

However, the range of TSS reported by this study was below 11.25-

13.50° Brix and 11.6-13.7°Brix reported by El-Samahy et al. (2006)

and Mokoboki et al. (2009), respectively. The mean of TSS in this

study was low by almost half the mean reported by Mutwa et al.

(2015) (10.13° Brix) for Opuntia monacantha variety. The TSS

results for this study slightly varied from those in the literature and

the main reason for this variation was the different maturity stages

samples analyzed by this study.
3.2 Cactus pear fruits’ NIR spectra

Figures 3, 4 show raw spectra for Cactus pear fruits. In Figure 3,

spectral variation for green, pre-ripe, and ripe samples was

consistent from 950 to 1400 nm. Beyond 1450 nm, the mean
Frontiers in Horticulture 05
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spectrum for green Cactus pears significantly deviated from the

other samples. Even though there were differences in the intensities

of absorbances, all spectra portrayed similar trends and shapes

throughout the entire wavelength. Also, there were three common

absorption peaks, one prominent at around 1450 nm and two

minor peaks at around 1180 nm and 960 nm. The major band at

around 1450 nm is associated with the first overtone O-H stretch in

water molecules (Liang et al., 2018; Li et al., 2019). The absorption

signal at 1180 nm is likely due to a blend of two stretching

vibrations; one is associated with C-H stretching of CH3 and the

other one is the first overtone O-H stretching (Shen et al., 2022).

The peak at around 960 nm is associated with the second overtone

O-H and C-H (Workman and Weyer, 2007).

Considering the penetration depth of NIR radiation which is up

to 3 mm (Huang et al., 2016), the spectral signals acquired were a

combination of the contributions from both the skin and the pulp of

the fruit. The hydroxyl (O-H) groups represented by the absorption

signals at 1445 nm, 1000 nm, and 800 nm for the first, second, and

third overtone O-H stretch (Workman and Weyer, 2007) are

associated with sugars, organic acids (Amuah et al., 2019),

vitamins (Borba et al., 2021), water (Guan et al., 2019) and the cell
Frontiers in Horticulture 06
wall components (cellulose, hemicellulose and pectin) (Fang, 2015).

Citric acid belongs to the carboxylic acid functional group. It is

characterized by the presence of a carboxyl group which consists of a

carbonyl group (C=O) and a hydroxyl (OH) group (Wilhelm and

Gardette, 1994). Citric acid is a predominant organic acid in Cactus

pear (Mutwa et al., 2015). Water, glucose, sucrose, and cellulose of

Cactus pears contain O-H and C-H chemical bonds in their chemical

structures. The TSS and TTA are organic molecules that typically

contain C-H, O-H, C-O, and C-C bonds in their structure (Amuah

et al., 2019) and NIR spectroscopy could be a suitable tool for rapid

screening of these parameters in Cactus pears non-invasively.
3.3 Characterization of cactus pear fruits

Principal component analysis (PCA) was used to reduce the

complexity of the dataset while retaining as much as possible the

variation within the datasets. Figure 5 shows a PCA score plot with

clusters of Cactus pears based on the different ripening stages. Three

distinct groups corresponding to green, pre-ripe, and ripe stages of

Cactus pears are observed. Along the PC1 axis, the green and pre-ripe

groups overlap slightly while pre-ripe and ripe clearly separate. The

amount of total explained variations were 81% and 15% for PC1 and

PC2, respectively. The PC1 explained a substantial amount of

variation which relates to the progression of ripening of Cactus pears.
3.4 Quantification models

The performance of the PLSRmodels trained for predicting TTA

and TSS in intact Cactus pear samples are shown in Figure 6.

Measured and predicted values are displayed by the x-axis and y-

axis, respectively. The blue points represent the training set while the

red points correspond to the independent set of data used for the

internal validation. Apart from internal validation using LOOCV,

model’s performance was also assessed using an independent set of

samples (prediction set) that was not part of the training set. The

prediction set was meant to test the model’s performance on new set

of samples and evaluate its predictive power. Table 1 provides the

statistical results of the models.

The TTA model showed reasonably fair performance as it

presented an R2 of 0.65 and an RMSEC of 0.31% citric acid. This

meant that the model was able to explain about 65% of the total

variation in TTA content in cactus pears. However, considering a range

of 0.21-3.70% citric acid within the samples, an error of ±0.31% citric

acid suggests that the model may not be reliable in predicting TTA in

Cactus pears. Despite that, the model resulted in improved statistics

upon validation with an external set of samples. The model resulted in

an R2 and RMSEP of 0.73 and 0.29% citric acid, respectively.

The TSS model resulted in an R2 and RMSEC of 0.72 and 1.64°

Brix, respectively for the calibration set. Additionally, it also

returned an R2 and RMSEP of 0.75 and 1.60°Brix, respectively for

the prediction set. The TTA and TSS models presented better

results when subjected to an external set of samples. This proved

the models’ potential of providing estimates of TTA and TSS

content on new cactus pear samples.
FIGURE 4

Stacked spectra for all sampled Cactus pears in all different stages
of maturity.
FIGURE 3

Raw spectra for green, pre-ripe, and ripe Cactus pears fruits.
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FIGURE 6

PLSR scatter plots for; (A) TTA model and (B) TSS model.
FIGURE 5

A PCA score plot for three ripening stages of Cactus pears.
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The mean of predicted TTA (1.32% citric acid) and TSS (5.73°

Brix) (Table 1) were so close to the mean of conventionally

measured TTA (1.39% citric acid) and TSS (5.4° Brix) (Table 1).

This suggested that both PLSR models performed well in explaining

the overall patterns of TTA and TSS in Cactus pears and provided

an estimate that aligned well with the average values of measured

parameters. The standard deviation for predicted TTA and TSS

were slightly lower than that of the actual values. This meant that

the predicted values were closer to the mean when compared with

the reference data. It was a good trend because predicted samples

deviated normally from the mean. It also indicated that there were

very low chances of predicting samples as outliers since their actual

values were close to the mean.

The predicted % CV was smaller than the actual %CV except for

TTA. This confirmed that the TSS model was able to accurately

predict TSS values in new samples with reduced variability

compared to the original data. Since all predicted values were

lower than the actual measurements, it resulted in a bias of -0.01

and -0.09 for the TTA and TSS models, respectively. This was a

confirmation of the underestimation of predictions made by the

models. Another parameter that was used to validate the models

was RPD. It is a metric for evaluating the practical usefulness of a
Frontiers in Horticulture 08
PLSR model in a real-world scenario (Bellon-Maurel et al., 2010).

This parameter affirmed that the TSS model was more precise in

predicting the TSS content in Cactus pears as it presented an RPD

of 2.06. According to (Bellon-Maurel et al., 2010), a model with an

RPD of above 2.00 is considered excellent and reliable.

In addition to statistical metrics of PLSR models, scatter plots are

necessary for the visualization of the relationships between the

predictor variable (spectral data) and the response variable

(reference data). Scatter plots indicate patterns, clusters, similarities,

and differences among the samples. Figure 6 shows the scatter plots

for TTA and TSS calibration models. The data points for both

predicted and conventionally measured values were distributed

along the regression line. This suggested that predicted and actual

values were so close and NIR spectroscopy could be used for non-

invasive determination of TTA and TSS in intact Cactus pears.

Figures 7, 8 shows factor 1 spectral loading weights for models

predicting TTA and TSS in cactus fruits, respectively. Spectral loading

weights for a model predicting TTA explained 76% and 22% of

variance in spectra data and measured TTA, respectively, while the

model predicting TSS was responsible for 55% and 24% variance in

spectral data and measured TSS, respectively. These spectral loading

weights demonstrates how well the wavelengths were considered by
FIGURE 8

Factor 1 X-loadings plot for PLSR model predicting TSS in cactus fruits, showing contribution of wavelengths (900-1700 nm), which explains 55%
of variance.
FIGURE 7

Factor 1 X-loadings plot for PLSR model predicting TTA in cactus fruits, showing contribution of wavelengths (900-1700 nm), which explains 76%
of variance.
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the models. Figures 7, 8 shows several peaks at different wavelengths

that were responsible for prediction of TTA and TSS in cactus fruits.

Particularly, peaks at around 1050-1110, 1240, 1400, 1450, 1600-1650

nm and 1040-1100, 1270, 1400, 1450, 1550, and 1650 nm were

responsible for prediction of TTA and TSS in cactus fruits. These

wavelengths contributed significantly to the formation of latent

variables responsible for predicting TTA and TSS in cactus fruits,

with those from 1400 nm onwards being the most influential. In

addition, these wavelengths correspond to the vibrational modes

belonging to C-H, O-H, and N-H chemical bonds (Workman and

Weyer, 2007; Liu et al., 2015; Amuah et al., 2019) which are normally

found in carbohydrates, organic acids and proteins, and contributes

to TTA and TSS in cactus fruits (Cota-Sánchez, 2015; Hernández

Garcıá et al., 2020).

4 Conclusion

This study assessed the feasibility of a portable NIR spectrometer

(wl 900 – 1700 nm) for rapid and non-destructive determination of

total titratable acidity (TTA) and total soluble solids (TSS) content in

cactus fruits. Partial least squares regression (PLSR) algorithm was

adopted for training and validating predictive models. While the TTA

model achieved an R2 of 0.73, RMSEP of 0.29% citric acid, and RPD

of 1.97, its accuracy in terms of prediction error, was low considering

a small range of TTA reported in this study. Conversely, the TSS

model performed better with an R2 of 0.75, RMSEP of 1.60° Brix, and

RPD of 2.06. Nonetheless, these results demonstrated the potential of

a portable NIR spectrometer for non-invasive and rapid

quantification of TTA and TSS content in cactus fruits.

Implementation of this technique by farmers or processors would

greatly improve quality assessment of cactus fruits, specifically in

terms of TTA and TSS. It would also help in reducing expenses

associated with quality assessment and promote utilization of cactus

fruits by facilitating market entry of cactus derived food products.
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Hernández Garcıá, F., Andreu Coll, L., Cano-Lamadrid, M., López Lluch, D., A.
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Ozaki, Y., Huck, C. W., and Beć, K. B. (2018). Near-IR spectroscopy and its
applications. Mol. Laser Spectroscopy: Adv. Applications. 24, 4370. doi: 10.1016/B978-
0-12-849883-5.00002-4
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