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Introduction: Chile pepper (Capsicum annuum L.) mechanization is a promising

alternative to traditional hand harvesting due to the costs associated with manual

harvest, as well as the increasing unavailability of skilled manual chile harvesters.

This study aimed to identify single nucleotide polymorphisms (SNPs) associated

with mechanical harvestability (MH) and yield-related traits using multi-locus

genome-wide association mapping approaches in a C. annuum association

mapping population.

Methods: A C. annuum association mapping panel for mechanical harvest was

manually direct seeded in an augmented block design in two locations. After

filtration, imputation, and quality control 27,291 single nucleotide polymorphism

(SNP) markers were used for association analyses. Six multi-locus GWAS models

were implemented to identify marker trait association.

Results and Discussion: Multi-locus GWAS models identified 12 major SNP

markers (R2 > 10) across nine chromosomes associated with plant architecture,

easy destemming traits, and yield parameters. The presence of a major QTL in

chromosome P2, dstem2.1, identified recently to be associated with destemming

force, was confirmed. Mature green and mature red yield shared three SNP

markers mapped on chromosome P3, P5, and P6 explaining 11.94% to 25.15% of

the phenotypic variation. Candidate gene analysis for the significant loci

identified 19 candidate genes regulating different phytohormone biosynthesis/

signaling, metabolic processes, transcription, methylation, DNA repair/

replication, and RNA splicing, with potential roles in controlling plant

architecture and morphology. The diverse positions of the associated SNPs

suggest the complex nature of these quantitative traits, involvement of
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multiple genetic factors, and novel significant marker-trait associations. Results

from this study will be relevant for genetic improvement of mechanical

harvestability traits in New Mexican chile pepper using molecular

markerassisted breeding and selection.
KEYWORDS

chile pepper mechanization, genome-wide association study, genotyping-by-
sequencing, quantitative trait loci, single nucleotide polymorphisms
1 Introduction

Chile pepper (C. annuum L.) mechanization is an advantageous

alternative to traditional manual harvesting that can reduce the

production costs by at least 40% and can minimize dependency on

manual labor (Funk et al., 2011). The efforts toward chile pepper

mechanization were intensified following the termination of the

Bracero Program in 1964 which was initiated in 1942 to deal with

the farm labor shortages by recruiting temporary workers from

Mexico (Walker and Funk, 2014). Ernest Riggs was the pioneer who

made the first known attempt with mechanical harvesting of chile

pepper in the US using an inclined, counter-rotating brush or flap

design employed to propel through the rows of chile plants to

dislodge the fruit (Marshall and Boese, 1998).

The efficiency of mechanical harvesting in chile peppers

is influenced by plant architecture and diverse fruit morphology

characterized by variations in length, width, and shape,

encompassing spherical, round, conical, and elongated fruit types

(Khokhar et al., 2022). Supporting production and harvesting

approaches need to be implemented for different types of pepper

with varying plant and fruit morphology. The Southwestern US is

dominated by New Mexican (NM) pod type (red and green) chile

peppers with at least 20 cultivars belonging to these types previously

released by the New Mexico State University (NMSU) Chile Pepper

Breeding Program (Coon et al., 2023).

Since the 1970s, mechanization efforts in the southwest US were

directed toward the NM- pod-type red chile peppers which resulted

in a nearly complete transition from manual to machine-driven

harvest for this type (Walker and Funk, 2014). However, NM pod

type green chile pepper mechanization is more challenging due to

issues including fruit breakage and the need for destemming

(removal of calyx and pedicel) for processed green chile.

Destemming without breaking the fruit is one of the most

important and challenging traits required for widespread

adoption of NM pod type mechanical harvest. The stem and

calyx of the fruit are considered foreign matter which can

compromise the quality and reduce the value of the finished

products (Wall et al., 2003). Due to the destemming requirement,

jalapeño harvesting has largely been displaced from the US with

almost 95% of the US processing demands currently being met by

importing jalapeños from the countries where fruits are manually
02
harvested and destemmed (Funk and Marshall, 2010). Considering

the differences in fruit quality and morphology, as well as plant

architecture, mechanization in green chile pepper requires a

“systems approach”, where varieties are bred, and production

practices are modified to accommodate mechanical harvesting

(Funk et al., 2011).

The objective of this study was to implement genome-wide

association studies (GWAS) to identify the genomic loci

underpinning plant architecture and destemming traits in New

Mexican chile pepper (Capsicum spp.). GWAS is one of the

molecular breeding approaches used to detect genomic regions

controlling complex quantitative traits using single nucleotide

polymorphism (SNP) markers (Tibbs-Cortes et al., 2021; Zhu

et al., 2008). This study employed multi-locus GWAS to

determine quantitative trait loci (SNP) and candidate genes

associated with complex quantitative traits such as plant

architecture, destemming traits, and yield-related parameters in

New Mexican chile pepper. Results will be relevant for genetic

improvement of current pepper germplasm for mechanical

harvestability traits using molecular marker-assisted breeding

and selection.
2 Materials and methods

2.1 Plant material and
experimental procedure

A C. annuum association mapping panel for mechanical harvest

(MH-CAMP; N= 90 genotypes) was manually direct seeded to a

flood-irrigated, furrowed field in an augmented block design in two

locations in May 2022: Leyendecker Plant Science Research Center

(LPSRC), Las Cruces, NM, and at the NMSU Los Lunas

Agricultural Science Center (LLASC), Los Lunas, NM, USA.

Direct seeding at the LPSRC, Las Cruces, NM, resulted in poor

germination, hence, this environment was excluded for data

collection and analyses. After germination, thinning (i.e., removal

of excess seedlings) was performed for the MH-CAMP at the

LLASC, Los Lunas, NM, to maintain the plant-to-plant distance

of ∼25 cm (10 inches) in 4.5 m (15 ft) plots with 1 m (3 ft) between

plots to maintain at least 15 plants per plot and genotype. Cultural
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and management practices for growing chile peppers in Southern

New Mexico were conducted according to Bosland and

Walker (2014).

The replicated checks in each block were used as a reference to

calculate the error and blocking effects (Federer et al., 2001). Un-

replicated test genotypes were considered random effects, whereas

the replicated checks were regarded as fixed effects (Federer, 1961)

in the model. Augmented design is one of the most flexible and

reliable experimental designs which can evaluate large diversity

panels with an unequal number of genotypes in each block without

compromising the critical differences among the tested treatments,

thus leading to efficient utilization of time, resources, and accurate

results (Federer et al., 2001; Burgueño et al., 2018). The MH-CAMP

consisted of 10 blocks, with blocks 3, 7, and 10 comprising of 10

genotypes each. Blocks 1, 2, 4, 5, 6, and 8 had 9 genotypes each, and

block 9 consisted of 7 genotypes. All blocks contained three checks,

all having New Mexican pod types, namely, ‘NuMex Odyssey’

(Walker et al., 2021), ‘NuMex Iliad’, and ‘PDJ BLK7–4’ (Curry

Chile & Seed Co., Pearce, AZ).
2.2 Collection and analysis of
phenotypic data

At maturity (after ~116 days (about 4 months) of manual direct

seeding; September 2022), five plants from each block were selected at

random to record plant architecture traits (Figure 1A), where the

average of five plants for each trait was accounted for analysis. Plant

morphology-related traits were measured in the field based on

Joukhadar et al. (2018). Briefly, plant height (PHT) was the
Frontiers in Horticulture 03
measurement from the bottom to the top of the plants. Plant width

(PWDT) was calculated by measuring the widest point across the

canopy of the plants. PHT and PWDTwere measured in centimeters.

Branches other than the main stem within 10 centimeters of the soil

line were counted as the total number of basal branches (NBB).

Height to first primary branch (HTFPB) was measured from the

bottom of the plant to the first bifurcation of main stem in

centimeters. Distance to first node (DTFN) was measured from the

bottom of the main stem to the first node in centimeters.

A total of 5–8 red and green fruits from each plot collected after

~150–157 days (about 5 months; October 2022) of direct seeding

were used to determine destemming rate and destemming force.

The destemming force was measured using a Mark-10 M4–200

Digital Force Gauge (Copiague, NY, US). The gauge was equipped

with a wire mesh Kellems grip (Hubbell Inc., Shelton, CT, USA) to

get a better grip of the fruit for accurate measurements. The digital

force gauge can simulate the force inserted by incline counter-

rotating double open-helix harvester during harvesting (Funk and

Walker, 2010; Hill et al., 2023). Five mature fruits (red and green)

randomly selected from five plants per genotype were used to

measure the destemming force. The destemming force (in

Newtons, N) was the force needed to remove the stem and calyx

from the mature red (DSFR) and mature green (DSFG) fruit

samples. A scoring system was used to rate the destemmed red

(DSRR) and green (DSRG) fruits, where 1= perfect separation of

stem and calyx from the fruit; 2= small breakage from the fruit;

3= medium breakage from the fruit; 4= large breakage from the

fruit; and 5= complete breakage of the fruit (Figure 1B). For yield

parameters, mature green yield (GRN) and mature red yield (RED)

were measured as the total weight of ten randomly selected fruits
FIGURE 1

(A) Plant architecture in chile pepper. PHT, plant height; PWDT, plant width; DTFPB, distance to first primary branch; DTFN, distance to first node;
and BB, basal branches. (B) Scoring system to rate the destemmed red (DSRR) and green (DSRG) fruits. Scale: 1= perfect separation of stem and
calyx from the fruit; 2= small breakage from the fruit; 3= medium breakage from the fruit; 4= large breakage from the fruit; and 5= complete
breakage of the fruit.
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from five individual plants from each genotype for green and red

samples, respectively.

Descriptive analysis of the traits was conducted using means,

standard errors, and maximum/minimum values. The genotypic

variances (GV), phenotypic variances (PV) and environmental

variances (EV) were obtained from ANOVA table using an

approach outlined by Federer (1961), whereas phenotypic

coefficients of variation (PCV) and genotypic coefficients of

variation (GCV) were calculated as described by Burton (1951).

Coefficient of variation (CV) was estimated according to Johnson

and Leone (1964). Similarly, broad-sense heritability (H2) was

calculated following the methodology proposed by Lush (1940).
2.3 DNA extraction and genotyping-
by-sequencing

Seeds were grown in standard greenhouse conditions for

cultivating chile peppers (Sharma et al., 2017) at the Fabián

Garcıá Science Center greenhouse, Las Cruces, NM, USA (32°16′
46.7″N, 106°46′24.7″W). After 30–45 days (about 1 and a half

months) of sowing, a tissue sample was taken from a single plant

per genotype in 1.2 mL Qiagen® collection microtubes. DNA

extraction and quantification were performed using the Qiagen

DNEasy® 96 plant extraction kits and Picogreen® (Thermofisher

Scientific, MA, USA), respectively at the University of Minnesota

Genomics Center (https://genomics.umn.edu/). Samples were

normalized to 10 ng/µL and genotyping-by-sequencing (GBS) was

performed using the Illumina NovaSeqTM 6000 sequencer

(Illumina, CA, USA) with single-end 1×100 sequencing (Lozada

et al., 2021). The raw FASTQ files were demultiplexed using

Illumina ‘bcl2fastq’ software. Burrows-Wheeler Aligner was

employed to align these FASTQ files to the ‘Zunla-1’ (C. annuum

L.) reference genome (Qin et al., 2014). Freebayes Bayesian genetic

variant identifier was used for variant calling across all samples

(Garrison and Marth, 2012). Variant call format (VCF) files were

processed using VCFtools, where variants with minor allele

frequency <1% were removed. The VCF files were converted to

the HapMap format and data imputation using the LD k-nearest

neighbor genotype imputation function was performed using

TASSEL v.5.2.77 software (Bradbury et al., 2007).
2.4 Analysis of linkage disequilibrium

Linkage disequilibrium (LD) analysis was performed using

TASSEL v.5.2.89 (Bradbury et al., 2007). A sliding window

approach with a window size of 50 (0.05 kb) was implemented to

calculate LD coefficients (r2) for pairwise intrachromosomal

markers. To examine the relationship between LD and physical

distance of genome-wide SNP markers, a non-linear regression

model was fitted to the LD coefficients values (r2) against physical

distance (in Mb) using a custom R script to identify the intersection

point between the regression curve and critical value of r2 at which

LD started to decay (Hill and Weir, 1988; Remington et al., 2001).
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2.5 Genetic diversity and
population structure

The genetic diversity parameters including minor allele

frequency (MAF), expected heterozygosity (He), SNP density and

polymorphism information content (PIC) were calculated using an

R script (https://github.com/mohsinali1990/My_scripts/blob/

462dbd14cb99397aceee97789de77861cd28a59 f /Tas se l

DiversityOut.R). STRUCTURE v.2.3.4 (Pritchard et al., 2000) was

employed to investigate genetic stratification for the MH-CAMP,

where an admixture model was implemented with burn-in of 1000

iterations, and 1000 Monte Carlo Markov Chain (MCMC)

replicates and number of clusters (K) were set between 1 and 5.

The POPHELPER 2.3.1 package (Francis, 2017) in R4.1.2 was used

in identifying the optimal number of K as per Evanno method

(Evanno et al., 2005) that best represent the MH-CAMP.
2.6 Genome-wide association mapping
and candidate gene analysis

Muti-locus GWAS models were implemented to identify the

marker-trait association for plant architecture, destemming traits,

and yield parameters using the multi-locus random-SNP effect Mixed

Linear Model (https://cran.r-project.org/web/packages/mrMLM/

index.html) package in R (Zhang et al., 2020). Multi-locus GWAS

models were preferred over single-locus models due to their efficient

computational approach of using less stringent thresholds of

significance for the initial screening of the markers followed by a

likelihood test to confirm the true quantitative trait loci (Lozada

et al., 2022; Vikas et al., 2022). A total of six GWAS models, viz., (1)

mrMLM (Wang et al., 2016), (2) ISIS EMBLASSO (Tamba et al.,

2017), (3) pLARmEB (Zhang et al., 2017), (4) FASTmrEMMA

(Wen et al., 2018), (5) pKWmEB (Ren et al., 2018), and (6)

FASTmrMLM (Tamba and Zhang, 2018) were implemented for

association analyses. Phenotypic traits and BLUP values were

calculated using a custom R script (https://github.com/mighster/

BLUPs_Heritability/blob/master/BLUP_Tutorial.R). A kinship-

principal component (K-PC) model was used to perform GWAS,

where the first two principal components were included as

covariate. The K-PC model minimizes the confounding effects of

population structure that could lead to the identification of false

positive marker-trait associations (Price et al., 2006). An LOD score

of > 3.0 was set as a threshold for significant marker-trait

association (Zhang et al., 2019).

EnsemblPlants (Bolser et al., 2016) was used to perform candidate

gene analysis where genes within 0.5 Mb proximity of the SNP marker

were considered as candidates. Annotation file for ‘Criollo de Morellos

334’ (CM-334; Genome assembly (GA): ASM512225v2) (C. annuum

L.) (Kim et al., 2014) was downloaded from the EnsemblPlants website

(https://plants.ensembl.org/index.html). Genes were annotated based

on biological process and molecular function for major SNP

associated with plant architecture, destemming rate, destemming

force, and yield parameters.
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3 Results

3.1 Phenotypic variation for mechanical
harvestability traits

Analysis of variance (ANOVA) revealed significant statistical

differences (P ≤ 0.01) among the means of plant architecture and

destemming traits, and yield parameters (Table 1). The coefficient of

variation (CV) ranged between 11.04 (DSFG) and 64.95 (NBB).
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Phenotypic coefficient of variation (PCV) was higher compared to

genotypic coefficient of variation (GCV). Low to high broad-sense

heritability (H2) values ranging between 0.06 (DSRG) and 0.87

(DSFG) were reported (Table 2). A moderate to weak Pearson

correlation was observed between plant architecture traits, whereas

destemming rate and destemming force were negatively correlated

with plant architecture. PHT, PWDT, and NBB were negatively

correlated with DSFG, DSFR, DSRR, DSRG, GRN, and RED

(Figure 2). The DSFR and DSFG were positively correlated with
TABLE 2 Summary statistics and genetic variability components of plant architecture, destemming traits, and yield parameters.

Trait Mean
Std.
Error Min Max PV GV EV GCV PCV ECV H2 CV

PHT 43.13 0.88 19.48 65.31 73.71 38.32 35.40 14.35 19.91 13.80 0.52 13.64

PWDT 32.28 0.71 12.81 54.24 50.52 12.78 37.74 11.07 22.02 19.03 0.25 18.93

NBB 0.98 0.08 0 3.79 0.71 0.35 0.35 60.90 86.14 60.92 0.50 64.95

HTFPB 15.20 0.44 0.41 25.74 18.15 NA 20.12 NA 28.02 29.50 NA 28.38

DTFN 3.47 0.14 0.04 7.04 2.21 1.62 0.59 36.61 42.81 22.19 0.73 22.98

DSFR 42.81 1.63 5.28 82.18 220.50 133.92 86.58 27.03 34.69 21.74 0.61 20.33

DSFG 46.33 1.53 12.64 88.47 226.14 196.94 29.20 30.29 32.46 11.66 0.87 11.04

DSRR 4.21 0.10 0.75 5.78 0.67 NA 0.90 NA 19.44 22.57 NA 23.33

DSRG 4.18 0.11 1.48 6.36 0.68 0.04 0.65 4.66 19.78 19.22 0.06 20.55

GRN 0.46 0.03 0 1.52 0.09 0.07 0.02 55.20 63.97 32.34 0.74 29.94

RED 0.42 0.03 0 1.67 0.08 0.07 0.01 61.82 68.20 28.82 0.82 25.98
fron
PHT, plant height; PWDT, plant width; NBB, number of basal branches; DSFG, destemming force for green; DSFR, destemming force for red; DSRR, destemming rate for red; DSRG,
destemming rate for green; GRN, mature green yield; RED, mature red yield; PV, phenotypic variance; GV, genotypic variance; EV, environmental variance; GCV, genotypic coefficient of
variation; PCV, phenotypic coefficient of variation; ECV, environmental coefficient of variation; H2, broad sense heritability; CV, coefficient of variation; NA, not available.
TABLE 1 Analysis of variance for plant architecture, destemming traits, and yield parameters in the Capsicum population.

Source Treatment:
Check

Treatment: Test
vs. Check

Treatment: Test Block
(eliminating
Treatments)

Residuals

Degree of freedom 2 1 90 9 18

PHT 11.47 176.32 * 73.71 * 45.34 35.40

PWDT 20.49 45.28 50.52 45.77 37.74

NBB 1.17 1.49 0.71 * 1.02 * 0.35

HTFPB 27.86 206.11 ** 18.15 33.09 20.12

DTFN 2.17 * 3.85 * 2.21 ** 2.54 ** 0.59

DSRG 15.56 ** 28.15 ** 0.68 1.21 0.65

DSRR 7.69 ** 9.53 ** 0.67 0.83 0.90

DSFG 276.38 ** 3566.77 ** 226.14 ** 14.87 29.2

DSFR 1382.59 ** 3864.06 ** 220.5 * 154.16 86.58

GRN 0.01 1.07 ** 0.09 ** 0.03 0.020

RED 0.01 1.25 ** 0.08 ** 0.01 0.01
*Significant at the 0.05 probability level. **Significant at the 0.01 probability level.
PHT, plant height; PWDT, plant width; NBB, number of basal branches; DSFG, destemming force for green fruits; DSFR, destemming force for red fruits; DSRG, destemming rate for red fruits;
DSRG, destemming rate for green; GRN, mature green yield; RED, mature red yield.
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GRN and RED. The principal component (PC) biplot further

supported the weak phenotypic correlation between the plant

architecture traits (Figure 3). Destemming traits and yield

parameters formed separate clusters indicating a strong phenotypic

correlation for respective parameters. The first two principal

components, PC1 and PC2, were associated with 33.1% and 18%,

of variation, respectively. BLUP values represented the estimated

random genetic effect of each genotype on plant architecture, fruit

destemming and yield parameters (Supplementary Table S1). Traits

such as PHT, PWDT, and DTFN showed moderate variability,

whereas DSFR and DSFG displayed higher values for variances.

The average PHT BLUP was 43.31; PWDT had a mean BLUP

value of 32.45, whereas DTFN had an average BLUP of 3.41. Traits

with lower standard deviations (NBB, GRN, RED) were relatively

stable across genotypes, whereas DSFR and DSFG showed higher

values for standard deviation.
3.2 Genome-wide SNP markers

Single nucleotide polymorphism (SNP) markers (N= 404,188)

were obtained using genotyping-by-sequencing (GBS). After

filtration, imputation, and quality control in TASSEL 5.2.89

software (Bradbury et al., 2007), 27, 291 SNP markers across 12

chromosomes were retained for further analyses. Chromosome P3
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had the highest number of SNP (3,554) followed by P1 (2,927), P2

(2,739), and P6 (2,438) whereas lowest number of SNP was reported

for chromosome P5 (1,700), P7 (1,702), and P11 (1,771). The

marker density across 12 chromosomes ranged between 7.66 (P7)

and 15.51 Mb (P8). The whole genome SNP density was 10.31

markers per Mb (Supplementary Table S2). Adenine (A) and

Thymine (T) were the most common nucleotides, each

representing 24% of occurrence across the SNP sites, whereas

Guanine (G) and Cytosine (C) each represented 23% of the

observed nucleotides (Supplementary Table S3). Transition

substitution (52%) was higher than the transversion substitution

(48%). The ‘C/T’ and ‘G/A’ type transition substitution were

predominant, each accounted for 14% of the substitutions,

whereas, ‘A/T’, ‘T/A’, and ‘G/T’ transversions, had an equal

frequency of 7%.
3.3 Genetic diversity analysis and
population structure

Genetic diversity parameters such as MAF, He and PIC were

estimated for the MH-CAMP (Supplementary Table S4). The MAF,

He, and PIC were higher in the pericentromeric regions of all 12

chromosomes (Figure 4). The MAF values ranged between 0.20 and

0.24 with an average of 0.22. The observed range of He was between
FIGURE 2

Pearson correlation coefficients between plant architecture (PHT, PWDT, NBB, HTFPB, DTFN), destemming force (DSFG, DSFR), destemming rate
(DSRG, DSRR), and yield parameters (GRN, RED). PHT, plant height; PWDT, plant width; NBB, number of basal branches; HTFPB, height to first
primary branch; DTFN, distance to first node; DSFG, destemming force for green; DSFR, destemming force for red; DSRG, destemming rate for
green; DSRR, destemming rate for red; GRN, mature green yield; RED, mature red yield. *Significant at the 0.05 probability level. **Significant at the
0.01 probability level. ***Significant at the 0.001 probability level. ns, Non-significant.
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FIGURE 4

The Circos plot demonstrates SNP density, minor allele frequency, expected heterozygosity, and polymorphic information content of the 27,291 SNP
markers used for multi-locus GWAS. The numbers outside the Circos plot represent the chromosome number for C. annuum L. (chromosomes 1–
12). Please refer to Supplementary Table S4 for the values of the different diversity parameters.
FIGURE 3

Principal component analysis (PCA) biplot for plant architecture (PHT, PWDT, NBB, HTFPB, DTFN), destemming force (DSFG, DSFR), destemming rate
(DSRG, DSRR) and yield parameters (GRN, RED). Length and angle of the vectors represent the correlation and corresponding principal component
(PC), contributing more to its variation. cos2 refers to the squared cosine of the angle between the original variables and the PCs. PHT, plant height;
PWDT, plant width; NBB, number of basal branches; HTFPB, height to first primary branch; DTFN, distance to first node; DSFG, destemming force
for green; DSFR, destemming force for red; DSRG, destemming rate for green; DSRR, destemming rate for red; GRN, mature green yield; RED,
mature red yield.
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0.29 to 0.33, with an average of 0.31. The PIC had a mean of 0.25.

We inferred two subpopulations for MH-CAMP according to the

Evanno method, where maximum value was reported for DK=2
(Figures 5A, B). Cluster 1 consisted of 64 genotypes, whereas 24

genotypes were grouped in cluster 2 (Supplementary Table S5).
3.4 Linkage disequilibrium

Analysis of linkage disequilibrium revealed 1,349,251

intrachromosomal pairs for the MH-CAMP, with a mean coefficient

of LD (r2) of 0.15 (Supplementary Table S2). Among these

intrachromosomal pairs, 452,533 (33%) were in significant (P < 0.05)

LD, whereas 62,751 (5%) pairs were in complete LD (r2 = 1.0). The r2

for intrachromosomal pairs in significant LD across 12 chromosomes

ranged between 0.33Mb (P12) and 0.42Mb (P1). Chromosome P3 had

themaximumnumber of significant intrachromosomal pairs (P < 0.05)

in LD (55,080), followed by P1 (51,722), P2 (50,108), and P9 (42,973).

Average distance between the pairs in significant LD (~2.64 Mb) was

lower than the pairs in complete LD (~4.19 Mb). Chromosome P12

(10.59 Mb) has the highest average markers distance for the pairs in

complete LD, followed by P4 (5.46 Mb), P7 (4.34 Mb), P10 (4.16 Mb),

and P11 (4.16 Mb). The LD for MH-CAMP reported a decline at a

physical distance of ~0.12 Mb as indicated by the critical value of r2 =

0.20 across the genome (Figure 5C).
3.5 Significant marker-trait associations
and candidate genes

Multi-locus GWAS models identified 87 SNP markers associated

with plant architecture, destemming traits, and yield parameters
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(Supplementary Table S6). Among these, 25 SNP markers were

significant across at least two multi-locus GWAS models. Across the

different traits, NBB had a maximum number of SNP (14), whereas

PHT and HTFPB had equal number of SNP (8), followed by PWDT

(6) and DTFN (4). For the destemming traits, DSFG (13) had the

maximum number of significant SNP followed by DSRG (7), DSRR

(6), and DSFR (1). A total of 11 SNP markers were associated with

GRN, whereas nine were identified for RED yield. No multi-trait SNP

were found for plant architecture and destemming traits. However,

mature GRN and RED yield shared three common SNP

(SCM002814.1_260456773 , SCM002816.1_1749348 , and

SCM002817.1_210746241) mapped on chromosomes P3, P5, and P6,

respectively (Table 3; Figure 6). SCM002817.1_210746241 (P6)

explained 25.15% of phenotypic variation for both GRN and RED

(Table 3; Figure 6). For PHT, SCM002822.1_1169164 on chromosome

P11 explained 12.69% of phenotypic variation, whereas

SCM002820.1_20749917 on chromosome P9 explained 10.50% of

variation for PWDT. SCM002814.1_248773989 on chromosome P3

was linked with NBB, explaining 10.09% of phenotypic variation.

SCM002816.1_186377753 (P5) and SCM002818.1_219380408 (P7)

each explained approximately 13% of phenotypic variation and were

associated with HTFPB and DTFN, respectively. For destemming rate,

SCM002822.1_177952684 and SCM002821.1_2290233 were linked

with DSRG and DSRR with R2 values of 19.27% and 24.34% at

177.95 Mb and 2.29 Mb on chromosomes P11 and P10, respectively

(Table 3; Figure 6). For destemming force, two SNP markers

(SCM002813.1_140023085 and SCM002814.1_261284271) were

mapped on chromosome P2 and P3, associated with DSFR and

DSFG, explaining over 10% of the phenotypic variation for the

trait, respectively.

A total of 242 genes across seven chromosomes (P2, P3, P5, P6,

P9, P10, P11) were found to be associated with major SNP for plant
FIGURE 5

Population structure and linkage disequilibrium (LD) of the MH-CAMP. (A) Identification of the optimal number of clusters using the Evanno method
revealed K = 2 as the highest value for DK. (B) Subpopulations inferred by K-means structure analysis. (C) The critical value for LD (r2 = 0.20) was
represented by the red dashed line, whereas the blue solid line is the non-linear regression curve. The intersection between the critical value and the
curve for non-linear regression is the LD decay distance for the population (~0.12 Mb).
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architecture, destemming rate, destemming force, and yield

parameters (Supplementary Table S7). Out of 242, ~34% of the

candidate genes were accounted for GRN and RED (n= 83). DSFG

(n= 47) and DSFR (n= 33) accounted for ~33% of the candidate

genes, whereas ~20% of the genes were identified for DSRG (n= 5)

and DSRR (n= 44). PHT, PWDT and NBB combined had the lowest

number (n= 29) of candidate genes. The candidate genes were

related with diverse biological processes and molecular functions. A

total of 19 candidate genes were found to be associated with

phytohormone biosynthesis/signaling, metabolic processes,

transcription, methylation, DNA repair/replication, RNA splicing

and defense response among others (Supplementary Table S7).
4 Discussion

Breeding and selection for plant architecture and destemming

traits can improve the machine harvest potential of chile pepper.

Selection of taller plants with fewer basal branches, greater distance

to the first primary branch, and easy destemming are the

fundamentals of developing chile pepper cultivars that are

amenable to mechanization. In major cereals, the modification of

plant architecture had significant impact in wheat (Triticum

aestivum L.), where yield was improved after selection for shorter

and sturdier stem conferred by the reduced height genes (Peng

et al., 1999; Hedden, 2003), resulting in the ‘Green Revolution’ in

the 1960’s (Evenson and Gollin, 2003). Likewise, efforts were

successful in redesigning tomato (Solanum lycopersicum L) for

modified plant architecture amenable for mechanized production
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(Webb and Bruce, 1968). Chile pepper mechanization is more

complex and requires a “systems approach”, integrating plant

breeding, production practices, harvester and processing plant

machinery design (Funk et al., 2011) to select for taller genotypes

with strong stems, and easy destemming. This study aimed to

dissect the genetic architecture of machine harvestability traits

using a C. annuum association mapping population evaluated in

New Mexico, USA. The genetic diversity of the Capsicum panel was

explored, and significant marker-trait associations were mapped

using multi-locus GWAS approaches. Finally, candidate genes with

roles related to controlling plant morphology and architecture were

identified for the significant SNP markers.
4.1 Phenotypic diversity and linkage
disequilibrium in the Capsicum germplasm

Phenotypic diversity was detected among a panel of 90

genotypes for machine harvestability traits, in agreement with

previous observations (Usman et al., 2014; Rosmaina et al., 2016;

Saisupriya et al., 2022) on chile pepper germplasm. We reported a

higher difference between PCV and GCV with moderate

heritability, indicating a fair proportion of genetic variance for

plant architecture, destemming, and yield traits. Our findings

indicate that variation among genotypes were also influenced by

genotype × environmental interactions, in contrast with other

studies (Ahmed et al., 2022; Bhutia et al., 2015; Vyas et al., 2021),

where the genetic variance was documented for plant height, quality

and yield parameters in chile pepper. These discrepancies in the
frontiersin.org
TABLE 3 Major marker-trait associations (R2 > 10%) identified for plant architecture, destemming, and yield-related traits in the MH-CAMP using
multi-locus GWAS models.

Marker Trait Model Chromosome Position
(Mb)

LOD
score

R2 (%)

SCM002822.1_1169164 PHT FASTmrMLM, pLARmEB P11 1.169 3.46 12.69

SCM002820.1_20749917 PWDT FASTmrMLM, pLARmEB P9 20.74 3.57 10.52

SCM002814.1_248773989 NBB FASTmrEMMA, pLARmEB P3 248.77 4.35 10.09

SCM002816.1_186377753 HTFPB ISIS EM-BLASSO, FASTmrEMMA P5 186.37 5.03 13.31

SCM002818.1_219380408 DTFN FASTmrMLM, FASTmrEMMA P7 219.38 3.40 12.89

SCM002822.1_177952684 DSRG FASTmrMLM, FASTmrEMMA P11 177.95 3.86 19.27

SCM002821.1_2290233 DSRR mrMLM, FASTmrEMMA, pLARmEB P10 2.29 3.59 24.34

SCM002813.1_140023085 DSFG ISIS EM-BLASSO,
FASTmrMLM, pLARmEB

P2 140.02 6.61 13.90

SCM002814.1_261284271 DSFR FASTmrEMMA, ISIS EM-BLASSO P3 261.28 3.20 16.68

SCM002814.1_260456773 GRN,
RED

ISIS EM-BLASSO,
pLARmEB, FASTmrMLM

P3 260.45 10.29 20.91

SCM002816.1_1749348 GRN,
RED

FASTmrMLM, pLARmEB P5 1.75 3.01 11.94

SCM002817.1_210746241 GRN,
RED

ISIS EM-BLASSO,
FASTmrMLM, pLARmEB

P6 210.74 10.88 25.15
PHT, plant height; PWDT, plant width; NBB, number of basal branches; HTFPB, height to first primary branch; DTFN, distance to first node; DSFG, destemming force for green; DSFR,
destemming force for red; DSRR, destemming rate for red; DSRG, destemming rate for green; GRN, mature green yield; RED, mature red yield.
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estimation of genetic effects controlling various quantitative traits

might be due to the differences in the genetic makeup of the

genotypes under study, environmental factors affecting the

phenotypic expression of the traits, and variation in the statistical

methods used for data analysis and data acquisition (Bhutia et al.,

2015). We further evaluated the genetic diversity parameters such as

He and PIC to assess the genetic variation in the MH-CAMP. The

genetic variability expressed by He and PIC is instrumental for

understanding the molecular characterization of the population

occurred due to selection forces on the chile pepper germplasm (Liu

et al., 2019). Akyavuz et al. (2018) reported moderate genetic

diversity based on the He and PIC for Turkish pepper (C.

annuum L.) germplasm evaluated using SNP markers. Our

findings agreed with the observations made by Naegele et al.

(2016) where genetic differentiation was assessed for fruit
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morphology in chile pepper diversity panel using He and PIC.

The MH-CAMP includes breeding lines, cultivars, landraces, and

heirlooms contributing toward a rich genetic landscape of the panel

to ensure robust association studies leading into valuable insights

about plant architecture, destemming, and yield parameters.
4.2 Significant marker-trait associations for
machine harvestability and yield-
related traits

GWAS is one of the recent advances in the field of molecular

breeding implemented in different crops (Malik et al., 2021;

Yoosefzadeh-Najafabadi et al., 2021; Khan et al., 2022; Lozada

et al., 2022) to identify genetic variations associated with complex
FIGURE 6

Manhattan plots showing genome-wide SNP markers associated with plant architecture, destemming traits, and yield parameters using multi-locus
models in the MH-CAMP. All dots above the dotted horizontal line were significant marker-trait associations (LOD score > 3.0). The SNP significant
across at least two multi-locus GWAS models were represented by pink dots.
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traits. Large diversity panels can improve the statistical power of the

GWAS results by providing better mapping resolution because of

higher recombination events occurring within the population

(Brachi et al., 2011). A number of previous studies in different

crops have demonstrated the potential of performing association

mapping even under relatively small population sizes: C. annuum L.

(Nimmakayala et al., 2016), wheat (Triticum aestivum L.) (Ahmed

et al., 2022; Neumann et al., 2011), cucumber (Cucumis sativus L.)

(Kumar et al., 2022), and sequoia (Sequoia sempervirens L. and

Sequoiadendron giganteum L.) (De La Torre et al., 2022), where the

association mapping population size ranged between 78 and 96

genotypes. The current study employed a panel of 90 lines to find

marker-trait associations (MTAs) for plant architecture,

destemming traits, and yield parameters. A small population size

might lead to the detection of significant marker-trait associations,

if such are, under the influence of a single gene or small set of genes

with large effects (Otyama et al., 2019). Only a small number of

major effect SNP markers for the evaluated traits were identified

using the Capsicum population (Table 3), a potential consequence

of the population size used for genome-wide mapping

(Nimmakayala et al., 2016). In the current study, utilizing the

MH-CAMP resulted in the identification of previously mapped

marker-trait association in chromosome 2 (dstem2.1; Hill et al.,

2023) for easy destemming, which demonstrated the robustness of

using multi-locus models for association mapping of a highly

heritable trait even under a relatively small population size.

4.2.1 Marker-trait associations for easy
destemming and yield-related traits

Destemming force and destemming rate are one of the most

important traits for chile pepper mechanization. Chromosomes P11,

P12 and P2, P3 hosted SNP markers for destemming rate and

destemming force, respectively, consistent with the identification

of SNP on similar chromosomal regions (Hill et al., 2023). Multi-

locus GWAS identified the association of a SNP marker,

SCM002813.1_140023085 with destemming force, thus confirming

the presence of a major QTL, dstem2.1, recently reported by Hill et al.

(2023) on the long arm of chromosome P2. The location of the other

identified SNP for destemming force and destemming rate were ~150

to 250 Mb from the locus identified by Hill et al. (2023), indicating

that potential novel loci for Capsicum destemming were identified.

We have observed the similar trend for yield parameters, where SNP

markers for GRN and RED were detected on chromosomes P5 and

P6, which agreed with observations made on New Mexican diversity

panel of chile pepper (Lozada et al., 2022).

4.2.2 Marker-trait associations for plant
architecture and morphology

Multiple SNP markers associated with PHT at chromosome

P11 were previously detected and found to be related with fruit

length and plant width (Yarnes et al., 2013; Lozada et al., 2022). We

identified highly significant SNP for PHT at chromosome P11

which was found ~59 Mb away from the reported coordinate;

however, the SNP detected for PWDT in our study was found on

chromosome P9, possibly a consequence of ascertainment bias
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arising from smaller population size (Lachance and Tishkoff,

2013). Our findings for NBB agreed with the observations of

Solomon et al. (2019), where SNP markers were reported on

chromosome P3 (between 225–227 Mb) for this trait.

The associated SNPs implicated the complex nature of these

quantitative traits suggesting involvement of multiple genetic factors

in phenotypic trait variation, making it difficult to select for these

complex traits. For the improvement of complex traits under the

influence of unique SNP markers, more advanced tools such as

genomic selection are required. Genomic selection predicts the

breeding values of the complex trait using whole-genome marker

profiles without relying on the effects of individual SNP giving

comprehensive overview of the traits, whereas multi-trait GWAS

accounts for the correlation and pleiotropic effects while analyzing

multiple traits simultaneously (Ibrahim et al., 2020). These tools can

significantly contribute to optimizing the breeding methodologies for

the traits associated with unique SNPs with large effects.
4.3 Candidate genes for the significant
marker-trait associations

A total of 19 candidate genes regulating phytohormone

biosynthesis/signaling, metabolic processes, transcription,

methylation, DNA repair/replication, RNA splicing associated with

major SNP were identified for plant architecture (PHT, PWDTH,

HTFPB, DTFN and NBB), destemming (DSFR, DSFG, DSRR and

DSRG), and yield parameters (GRN and RED). Of the 19 candidate

genes, one was associated with the auxin transport, two were affiliated
TABLE 4 Candidate genes with known biological functions associated
with the major SNP markers identified for plant architecture,
destemming, and yield parameters.

Gene
function

Candidate genes Total
number
of genes

Traits

Phytohormone
biosynthesis/
signaling

T459_10058,
T459_28010, T459_13654

3 PHT, DSRG,
DSFR,
GRN, RED

Metabolic
processes

T459_09643, T459_09652,
T459_10042, T459_13648,
T459_13658,
T459_13650, T459_13658

7 NBB, DSFR,
GRN, RED

Transcription T459_28006, T459_05525,
T459_10020,
T459_24717, T459_17293

5 PHT, DSRG,
DSFG, DSFR,
DSRR,
GRN, RED

Methylation T459_10020 1 DSFR,
GRN, RED

DNA
repair/
replication

T459_10025, T459_10024 2 DSFR,
GRN, RED

RNA splicing T459_13671 1 RED, GRN
PHT, plant height; NBB, number of basal branches; DSFG, destemming force for green; DSFR,
destemming force for red; DSRR, destemming rate for red; DSRG, destemming rate for green;
GRN, mature green yield; RED, mature red yield.
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with cytokinin-activated signaling pathway, seven were linked with

metabolic processes, five were tied with transcription, two with DNA

repair/replication, and one each was associated with RNA splicing

and methylation (Table 4). Auxin and cytokinin are two important

phytohormones and their regulation can play a crucial role in

controlling overall plant architecture. Cytokinin is associated with

the development and growth of overall plant shape (Kyozuka, 2007;

Gao, 2020). Shoot meristem activity which is regulated by cytokinin

signaling affects plant height and branching patterns. On later growth

stages, cytokinin signaling also influences the lateral bud outgrowth

that makes plants bushy with more basal branches, therefore

regulating the plant width and branching density (Werner et al.,

2003; Azizi et al., 2015). Different mutant genes for cytokinin showed

abnormal branching pattern and poor reproductive growth in rice

(Oryza sativa L.) (Kurakawa et al., 2007), pear (Pisum sativum L.)

(Ward and Leyser, 2004), and Chrysanthemum spp (Dierck et al.,

2016), indicating the influence of cytokinin signaling on vegetative

and reproductive growth in different crop species.

We also identified candidate genes for auxin transport. Auxin is an

important phytohormone that can regulate plant growth and

development including cell elongation, cell division and

differentiation (Teale et al., 2006). The movement of auxin from

dormant buds to other parts of the plant can promote their

outgrowth. Auxins stimulate strigolactone biosynthesis for the

overexpression of TB1/BRC1 which act in axillary buds, inhibiting

the branching in pea plants (Braun et al., 2012). Accumulation of auxin

in axillary bud regulated by the expression of different proteins was

found to alter the shoot structure in cucumber (Shen et al., 2019) and

sweet crabapple (Malus coronaria L.) (Zhao et al., 2020) suggesting the

role of auxin in regulating plant shoot architecture. Plants produce new

organs throughout their life cycle using stem cells that are regulated by

thousands of genes controlled by key transcriptional regulators which

control developmental processes (Kaufmann et al., 2010).

The upregulation and downregulation of genes are influenced

by transcription factors indicating their important role in regulating

important hormones affecting the expression of plant architecture

and morphology-related traits. Down regulation of novel

transcription factor, SlGT-26 confer dwarfing and salt tolerance

(Li et al., 2023), whereas overexpression of the MADS-box

transcription factor, SlMBP22 influence auxin and gibberellin

signaling in tomato (Li et al., 2020). Overexpression of

PagKNAT2/6b transcription factor altered the plant architecture

in Poplar 84K (Populus alba × P. glandulosa) (Song et al., 2021).

Candidate genes for epigenetic factors such as methylation were

also identified. Methylation can contribute toward the growth and

development of plants by regulating gene expression, integrity, and

mobility of the genome (Chachar et al., 2022). Although the role of

epigenetic factors in regulating the expression of the genes

associated with plant architecture and destemming is not fully

established, denser methylation profile has been reported for chile

peppers compared to potato (Solanum tuberosum L.) and tomato

(Ramchiary and Kole, 2019). Our results demonstrated that

epigenetics could play a role in controlling plant architecture and

morphology in Capsicum.
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5 Conclusions

Mechanical harvesting offers a cost-effective solution for boosting

chile pepper production. Our study identified 87 SNP markers across

12 chromosomes linked to plant architecture, destemming, and yield

parameters. Twelve major markers were detected, with three

common SNP markers shared among yield parameters. A SNP

marker for DSFG was confirmed at chromosome 2. A moderate

correlation was observed between plant architecture traits, whereas

destemming rate and destemming force were negatively correlated

with plant architecture. Candidate gene analysis revealed 19 potential

genes regulating different phytohormone biosynthesis/signaling,

metabolic processes, transcription, methylation, DNA repair/

replication, and RNA splicing. The findings of this study will

contribute toward the development of molecular markers for

marker-assisted selection and genomic prediction of plant

architecture and destemming traits in New Mexican chile pepper.
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