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Anaerobic soil disinfestation (ASD) is a novel, eco-friendly method to improve soil

health. This method creates oxygen-free conditions by adding organic

amendments as a carbon source, saturating the soil to field capacity, and then

covering it with plastic. These anaerobic conditions reduce soilborne pathogens,

enhance microbial diversity, and increase crop productivity. This review provides

an overview of the different organic amendments used in ASD, their impact on

managing soilborne pathogens, the role of beneficial microbiomes, and the

challenges associated with adopting ASD. It also emphasizes the potential

benefits of ASD and the innovative approach to advancing it for

sustainable agriculture.
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1 Introduction

1.1 Anaerobic soil disinfestation concept and significance

For many years, pre-plant soil fumigation using methyl bromide 1, 3-dichloropropene,

chloropicrin, and methyl iodide has been the go-to method to manage several soilborne

plant pathogens in various crops (Theis and Fery, 2002; Martin, 2003; Velders et al., 2007;

Hanson et al., 2011; Panth et al., 2020). However, the phase-out of ozone-depleting

fumigants, including methyl bromide, in 2005 due to environmental pollution (Hanson

et al., 2011; Rosskopf et al., 2015; Strauss and Kluepfel, 2015) has led to the exploration of

alternative methods. Other soil fumigants such as trichloronitromethane, methyl

isothiocyanate, allyl isothiocyanate (AITC), and dazomet were also used to manage

soilborne pathogens (Martin, 2003). However, their use also has many drawbacks, such

as reduced efficacy and regulatory concerns. The major soilborne pathogens are

Verticillium spp., Fusarium spp., Pythium spp., Rhizoctonia spp., and Sclerotinia spp
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(Lamers et al., 2014), soil nematodes (Testen et al., 2021), and weeds

(Strauss and Kluepfel, 2015; Panth et al., 2020). These pathogenic

fungi can survive for long periods due to their ability to form

resilient structures (Katan, 2017; Priyashantha and Attanayake,

2021). Non-chemical soil disinfestation, particularly anaerobic soil

disinfestation (ASD), comes in as a potential integrated pest

management (IPM) tool for managing soilborne pathogens

(Rokunuzzaman et al., 2016). The potential of ASD to

revolutionize pest management is a promising prospect for

the future.

ASD, a unique approach that utilizes organic amendments as

carbon sources, is gaining popularity in agricultural practices

worldwide (Molendijk et al., 2009). This technique, known as

biological soil disinfestation (BSD), was initially developed in Japan

and the Netherlands (Blok et al., 2000; Momma et al., 2006). Unlike

traditional organic amendments that increase organic matter,

improve soil fertility, and enhance water-holding capacity, specific

carbon sources can induce ASD (Poret-Peterson et al., 2019). This

process stimulates the soil microbiome to efficiently break down and

utilize the carbon source (e.g., sugar) as its sole energy source. By

creating an oxygen-depleted environment within the soil, ASD

significantly, enhanced anaerobic beneficial microbiomes compete

with or suppress soilborne pathogens’ populations (Molendijk et al.,

2009; Lamers et al., 2014; Strauss and Kluepfel, 2015). For instance, a

strict anaerobic bacterium, Clostridia, was sharply increased in soil-

amended with wheat bran and cover crops such as Brassica juncea or

Avena sativa as a carbon source (Mowlick et al., 2013a, b). This

review aims to describe the current status of ASD and its potential
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impacts on crop production systems, emphasizing future research

directions regarding challenges and opportunities in using

ASD (Figure 1).
1.2 The key steps and organic amendments
used as a carbon source in ASD

ASD involves the addition of organic amendments to the topsoil

to serve as a carbon source (Shennan et al., 2014, 2018). The first

step is to till and moisten the soil to create optimal conditions.

Then, a readily degradable organic material, such as fresh manure

or compost, is incorporated into the soil to feed these beneficial

microbes. Next, the soil surface is sealed with an impermeable tarp

to create an oxygen-limited environment for 3 to 6 weeks,

depending on soil temperature and target organisms. Finally, the

tarp is removed, and the soil is tilled again to reintroduce oxygen

and break down the organic matter (Blok et al., 2000; Momma et al.,

2013; Shennan et al., 2014; Rosskopf et al., 2015; Strauss and

Kluepfel, 2015; Shennan et al., 2018; Priyashantha and

Attanayake, 2021; Lopes et al., 2022).

In recent years, three types of carbon sources have been utilized

in ASD (Strauss and Kluepfel, 2015). The usual solid organic

amendments used as carbon sources in ASD include rice bran,

wheat bran, dry molasses, and mustard meal in the cultivation of

fruits and vegetables (Shennan et al., 2014; Testen and Miller, 2018;

Wang and Mazzola, 2019). For example, ASD with rice and

wheat brans was used in strawberry fields in California
FIGURE 1

Overview of anaerobic soil disinfestation (ASD), which enhances soil structure, suppresses weeds, fosters microbial diversity, promotes plant health,
and improves crop yield (Blok et al., 2000; Butler et al., 2012a, b; Momma et al., 2013; Hewavitharana et al., 2019; 2021; Hewavitharana and Mazzola,
2016; Lopes et al., 2022; Priyashantha and Attanayake, 2021; Shennan et al., 2014; 2018; Rosskopf et al., 2015; 2020; Strauss and Kluepfel, 2015).
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(Shennanet al., 2014) and for tomato and melon cultivation in Japan

(Momma et al., 2013). Wheat and rice brans were both applied at a

rate of 10 t/ha in the fields, effectively suppressing Fusarium

oxysporum (Momma et al., 2010) and Verticillium dahliae

(Shennan et al., 2018), respectively. Furthermore, when ASD with

rice bran was applied at two rates (15.7 t/ha and 202.2 t/ha) to nut-

tree nurseries in California, both of these rates significantly

suppressed the populations of Agrobacterium tumefaciens and

Pythium spp. in the soil (Strauss and Kluepfel, 2015). Liquid

organic amendments, such as ethanol, liquid molasses, and

sucrose, were commonly utilized as carbon sources in ASD

(Strauss and Kluepfel, 2015; Lopes et al., 2022). For instance, a

blend of dry molasses on a soy hull carrier and cornstarch applied at

a 4 mg C/g soil rate with a carbon-to-nitrogen ratio of 30:1 has

shown promise (Swilling et al., 2021). The combination of dry and

liquid organic amendments used in ASD included composted

poultry litter and liquid molasses or compost with solarization,

significantly increasing soil inorganic N concentrations and

suppressing soilborne fungi and Meloidogyne spp. root galling

(Butler et al., 2012b, 2014; Strauss and Kluepfel, 2015).

In ASD application, the incubation period (anaerobic state) has

been observed to last up to 3 weeks (Momma et al., 2010; Shennan

et al., 2018). Several studies have investigated using various carbon

sources in ASD for different durations in multiple crops. For

example, fresh broccoli as a carbon source in ASD was studied

for 15 weeks (Blok et al., 2000), while perennial ryegrass and potato

haulms were used in potato cultivation for six weeks (Messiha et al.,

2007). Wheat and rice brans were used in ASD in tomatoes and

apples (Hewavitharana et al., 2014), and mustard was studied as a

substrate for spinach over three weeks (Mowlick et al., 2013b).

Grape pomace was used as a substrate in pepper cultivation for four

weeks (Serrano-Pérez et al., 2017), and apple substrates were

examined for two weeks (Mowlick et al., 2013a; Strauss and

Kluepfel, 2015).

The critical steps of ASD involve the decomposition of carbon

sources and changes in the soil microbiome and metabolome over

three distinct phases (Hewavitharana et al., 2019). Briefly, in phase 1

(0 to 12 hrs), there is rapid consumption of oxygen, amino acids,

and polysaccharides, with a dominance of aerobic and facultative

bacterial taxa such as Firmicutes (Bacillus spp.), Actinobacteria

(Streptomyces spp.), Proteobacteria (Pseudomonas spp.) and

fungal phylum such as Ascomycota (Trichoderma). During phase

2 (peak at 48 hrs), bacterial taxa such as Firmicutes, Actinobacteria,

Proteobacteria, and fungal phylum such as Zygomycota become

dominant due to strict aerobes consuming oxygen. Lactic acid levels

peak during this stage and strongly correlate with the rapid

multiplication of Bacillus spp (Hewavitharana et al., 2019).

Moreover, acetone, acetic acid, 1-butanol, and butanoic acid

accumulate as Clostridium spp. multiply. In phase 3 (up to 3

weeks), antipathogen compounds produced by strict anaerobes,

especially Clostridium spp., are frequently present in soil treated

with ASD. These compounds, including acetate, butyrate, volatile

acids, alcohols, volatile hydrocarbons, dimethyl di- and tri-sulfide,

and dimethyl sulfoxide, are released during the final stage of ASD

(Hewavitharana et al., 2019).
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1.3 History of ASD and
geographic application

In sub-tropical developing countries, reducing arable land due

to industrialization and rapid population growth poses a significant

threat to crop productivity (Priyashantha and Attanayake, 2021).

Other issues include small-scale farming, multiple cropping, year-

round crop cultivation, high crop and plant pathogen

diversity, limited access to new technology and drip irrigation,

and lack of knowledge among farmers (Phalan et al., 2013;

Priyashantha and Attanayake, 2021). Crop productivity in

developing subtropical countries is considerably lower than in

temperate countries (Thottathil et al., 2016). Therefore, it is

crucial to maximize soil health for sustainable agriculture

(Priyashantha and Attanayake, 2021).

To effectively implement ASD for managing soilborne plant

pathogens, it is crucial to understand its effectiveness in different

settings, such as varying times of the year, cropping systems, and

soil types (Poret-Peterson et al., 2019). Identifying the optimal

carbon they play a vital role in reducing production costs (Strauss

and Kluepfel, 2015; Shrestha et al., 2016). The effectiveness of ASD

largely depends on selecting easily applicable, locally available, and

easily degradable organic amendments or agricultural by-products

(Strauss and Kluepfel, 2015; Lopes et al., 2022). Most ASD studies

have been carried out in temperate and sub-tropical countries.

Among temperate countries, 63.3% of ASD work was done in the

United States (Priyashantha and Attanayake, 2021). However,

limited ASD research has been conducted in tropical

developing countries.

ASD has shown promise for high soil temperatures and sandy

soil. Based on a meta-analysis conducted by Shrestha et al. (2016),

in both laboratory and growth chamber conditions, a 61% pathogen

suppression was observed, while the field and greenhouse

conditions showed slightly higher suppression at 72%. The

authors suggested that at higher soil temperatures, the pathogen

reduction from ASD effect was about 10% higher than at moderate

and lower temperatures (Shrestha et al., 2016). Furthermore, the

ASD treatment in volcanic soil from Japan demonstrated a

significantly higher suppression of plant pathogens compared to

sandy soil (83% vs. 64%). At the same time, no significant difference

was observed between soil type and clay, gray lowland, and loam

soil (Shrestha et al., 2016). This is likely due to the suppression of

pathogens and weeds by lethal temperatures and adding organic

matter to the sandy soils (Strauss and Kluepfel, 2015; Shrestha et al.,

2016). ASD studies conducted in temperate countries like Ohio,

USA, showed that average soil temperatures ranged from 16.3 to

27.8°C for high tunnel tomato production in September and

October (Testen et al., 2021) or 23.6 to 30.8°C for summer

tomato production in muck soils (Testen and Miller, 2018).

Despite these lower soil temperatures, the loss of iron oxide paint,

which indicates soil-reducing conditions, was slightly lower in most

trials than in ASD trials conducted with warmer soil temperatures

(Testen and Miller, 2018; Testen et al., 2021). However, high soil

temperatures (20 to 25°C) are required for effectively managing the

tomato soilborne disease complex (Testen et al., 2021).
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ASD was first launched in Japan and effectively managed

soilborne fungal pathogens. The Netherlands followed and

modified the model, and ASD was later adopted in other

countries, including China (Ya’nan et al., 2019), Paraguay

(Sanabria-Velazquez, 2018; Quintino et al., 2023), the USA

(Butler et al., 2012a, b; Garcia Gonzalez, 2021; Shennan et al.,

2018), Sri Lanka (Priyashantha and Attanayake, 2021), and Nepal

(Bhandari et al., 2020; Khadka andMiller, 2021; Khadka et al., 2021)

to combat soilborne pathogens (Figure 2).
2 Impacts of ASD

2.1 Impact of ASD on soil physiochemical
properties and soil health

The success of ASD is influenced by both the physical and

chemical changes and the biological shifts in soils (Strauss and

Kluepfel, 2015; Shrestha et al., 2016), which may be related to the

carbon sources used to induce ASD (Hewavitharana et al., 2014;

Hewavitharana and Mazzola, 2016). ASD can influence individual

microbial species’ composition, functionality, and interactions,

making them valuable soil health indicators (Preece et al., 2019).

Additionally, it can significantly alter microbial composition and

diversity and improve soil health (Messiha et al., 2007; Mowlick

et al., 2013a; Poret-Peterson et al., 2019, 2020). Soil temperature,

water-holding capacity, soil type, and carbon sources contribute to

ASD (Strauss and Kluepfel, 2015; Shrestha et al., 2016; Shennan

et al., 2018).

Different organic amendments used as carbon sources are rice

straw, tobacco, rice bran, rapeseed meal, and sugarcane bagasse,

significantly influencing soil fertility and health (Lopes et al., 2022).

ASD can alter soil pH by producing organic acids and methane

through anaerobic microbiomes (Priyashantha and Attanayake,

2021). Decomposing organic matter in ASD produces acetic and
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n-butyric acids, lowering soil pH to around 5.5 and affecting soil-

dwelling nematodes (Momma et al., 2006, 2013). This could be

caused by anaerobic microbiomes consuming carbon sources,

generating organic acids, and releasing iron (Fe2+) and

manganese (Mn2+) ions, ultimately decreasing the soil pH

(Momma et al., 2006, 2013). Adding rapeseed meal and tobacco

stem in ASD significantly increased soil pH, lowered soil electrical

conductivity (EC) and redox potential (Eh), and improved soil

nutrient levels (Ya’nan et al., 2019). Additionally, using tobacco

stems significantly increased the available potassium and organic

matter levels in the soil. At the same time, rapeseed meals raised the

levels of total nitrogen, organic matter, available nitrogen, and the

activities of catalase and urease enzymes (Ya’nan et al., 2019). In

China, soil treated with ASD using composted chicken manure

showed a significant increase in ammonium nitrogen, nitrate-

nitrogen, and organic matter (Song et al., 2020). Additionally,

there was a substantial reduction in Fusarium spp. and

Phytophthora spp. colonies in the strawberry field due to

decreased oxidation-reduction potential (Song et al., 2020). The

use of different carbon sources in ASD, such as alfalfa, maize, and

rice straw, can result in an increase in NH4+-N content and a

decrease in NO3-N accumulation in the soil (Tan et al., 2019). This,

in turn, can reduce soilborne pathogens like Fusarium and

Aspergillus spp. Selecting carbon sources can also influence the C:

N ratio and the soil’s chemical and physical properties (Tan

et al., 2019).

The C: N ratio is a crucial indicator of decomposition rate

(Nicolardot et al., 2001). Shrestha et al. (2021) successfully used the

ASD with organic amendments, using C: N ratios between 10:1 and

40:1, to suppress Fusarium oxysporum f. sp. lycopersici in soils above

25°C. Soil treated with ASD using wheat bran showed lower levels of

water-soluble organic carbon and a higher C: N ratio compared to

soil treated with other carbon sources, presumably due to the

presence of recalcitrant carbon fractions such as cellulose,

hemicellulose, and lignin in wheat bran (Lee et al., 2020). Dried
FIGURE 2

Mapping the global landscape: ASD innovation and adoption strategies (Momma et al., 2010; 2013; Khadka et al., 2021; Khadka and Miller, 2021;
Priyashantha and Attanayake, 2021; Sanabria-Velazquez, 2018; Shennan et al., 2014; 2018; Quintino et al., 2023; Ya'nan et al., 2019).
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molasses rapidly dissolved in the irrigation water during ASD due

to its high water-soluble organic carbon fraction and C: N ratio (Lee

et al., 2020). Previous studies have suggested that adding organic

matter with a low C: N ratio to the soil could create the most

anaerobic conditions and that the substrate C: N ratio is inversely

related to the effectiveness of soil disinfestation (Blok et al., 2000;

Shrestha et al., 2016; Testen and Miller, 2018). However, different

substrates had various effects on the prokaryotic community, and

the decomposition rate of the carbon sources, particularly the

substrate’s C: N ratio and water-soluble organic carbon content

did not show a correlation with disinfestation efficiency (Lee

et al., 2020).

Soils treated with ASD contained high levels of microbial

communities capable of carrying out processes such as nitrogen

fixation, denitrification, and sulfur, potassium, and phosphorus

cycling, indicating that ASD may improve the availability of

nitrogen, potassium, and phosphorus in the soil (Di Gioia et al.,

2017; Poret-Peterson et al., 2019). Zhu et al. (2023a) found that the

properties of the carbon source, crop cultivation, and soil chemical

properties contributed to 66.2% and 39.0% of bacterial and fungal

community variation, respectively. The results also indicated that

factors such as the C: N ratio, crop cultivation, soil available

phosphorus, and potassium significantly influenced bacterial

community composition (Zhu et al., 2023b). Similarly, the C: N

ratio, oxidized carbon contents, and crop cultivation were identified

as crucial factors in shaping fungal community composition. The

authors suggested that the C: N ratio and oxidized carbon contents

of the carbon source were critical in soil microbiome

reestablishment, Fusarium reproduction, and pepper crop

performance in China (Zhu et al., 2023a).
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2.2 Impact of ASD on microbial community
composition and diversity

ASD with different carbon sources play a crucial role in

improving soil microbial functioning and communities (Van

Agtmaal et al., 2015; Shennan et al., 2018; Mao et al., 2022).

When the soil is saturated with water, adding an easily available

carbon source is thought to stimulate the rapid growth of aerobic

microbiomes (Messiha et al., 2007). For example, bacterial phyla,

such as Firmicutes and Proteobacteria, increased relative abundance

in anaerobic conditions (Ya’nan et al., 2019). These microbiomes

consume the remaining soil oxygen and create anaerobic soil

conditions. This shift to anaerobic conditions can happen quickly

and is influenced by factors such as soil water content, texture,

structure, quality and quantity of the carbon source, and soil

temperature (Butler et al., 2012a; Shennan et al., 2014). The

bacterial community structure shifted 2 to 15 days after ASD

initiation using ethanol (1% v/v) as the carbon source (Momma,

2015). However, Van Agtmaal et al. (2015) found a clear long-

lasting impact of previous anaerobic stress on bacterial community

composition three months after the ASD treatment. During the

ASD process, Firmicutes phyla, such as Bacillus, Clostridia, and

Paenibacillus, become the predominant bacterial population

(Mowlick et al., 2013a; Mowlick et al., 2014; Strauss and

Kluepfel, 2015).

The type of organic carbon source used can significantly

influence the dominant bacterial species. For example, ASD using

rice bran as a carbon source can increase the abundance of

Acidobacteria and Burkholderia (Strauss and Kluepfel, 2015). In

contrast, ASD with alfalfa as the carbon source can lead to
TABLE 1 Summary of the impact of anaerobic soil disinfestation (ASD) using common organic amendments as a carbon source on the composition of
the microbial community.

Key carbon source used
in ASD

Impact Microbial diversity
and composition

References

Wheat bran, blackstrap molasses,
and ethanol

It shifts composition, reduces diversity, and favors anaerobes Firmicutes (Testen and
Miller, 2018)

Sugarcane molasses and
poultry litter

Doubling molasses boosted acid production but lowered
microbiome diversity compared to a single application.

Firmicutes and Proteobacteria (Hong et al., 2018)

Brassica seed meal, rice bran,
composted steer manure, ethanol,
and orchard grass

In general, ASD treatments recruit microbial elements that persist
during the anaerobic phase of soil incubation, which may
contribute functionally to suppressing Rhizoctonia solani AG-5 and
Pratylenchus penetrans

Specific fungal taxa, such as
Ascomycota, and bacterial taxa, such
as Acidobacteria, Actinobacteria,
Chloroflexi, and Planctomycetes, were
more abundant

(Hewavitharana
and Mazzola, 2016;
Wang and
Mazzola, 2019)

Dune sand, glacial, organic
substrate addition, and
anaerobic incubation

The proportion of Firmicutes bacteria increased in the total
population and eradicated potato cyst nematode in all
ASD treatments

Firmicutes (spore-forming, involved
in fermentation)

(Runia et al., 2014)

Compared 100, 200, and 300 kg/ha
activated carbon + solar radiation
membrane with dazomet
and chloropicrin

Treatment caused less soil bacterial damage than chemicals,
showing promise as an alternative

Dominate phyla Proteobacteria,
Acidobacteria, Chloroflexi, and
Firmicutes (30.25 %)

(Yun et al., 2020)

Biochar + electron promoted
anaerobic soil interaction.

Dechlorination and methanogenesis reactions took place Chloroflexi increased by 11.3 % (Zhu et al., 2023b)
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Flavisolibacter, Rhodanobacter, and Ruminococcaceae becoming

dominant bacterial genera (Huang et al., 2016). After applying

ASD in vegetable production systems, the polyethylene tarp or

mulch can be either removed or punctured with holes for planting

(Shennan et al., 2014). This reintroduces oxygen into the soil, which

helps in restructuring the diversity of the microbial community

back to an aerobic state (Husson, 2013). The 16S amplicon

sequencing of post-ASD samples (three weeks before

transplanting) showed significant soil microbiome changes and

increased Firmicutes and Proteobacteria abundance compared to

non-treated controls (Hong et al., 2018). Various experiments with

different carbon sources have shown that ASD enhances specific soil

microbiomes (Table 1).

Temporal changes in the microbiome composition and

metabolome were observed in soil treated with ASD (Guo et al.,

2018; Hewavitharana et al., 2019, 2021). Hewavitharana et al. (2019)

found that Fermicutes were the most abundant bacterial

communities in the soil during the anaerobic period following

ASD treatment. Initially, Bacillus spp. dominated the Fermicutes

community, but as the ASD treatment progressed, anaerobic

Clostridia, specifically Clostridium intestinale and Clostridium

roseum, displaced Bacillus spp. Poret-Peterson et al. (2019) also

observed similar trends in the changes to Fermicute populations

during the incubation period. Lactic acid production was noted

during the aeration period between 21 and 32 days, attributed to

lactic acid bacteria such as Enterobacter hormaechei and

Enterobacter ludwigi (Hewavitharana et al., 2021). Carbon sources

such as rice bran, orchard grass, and wheatgrass are rich in

polysaccharides, monosaccharides, and amino acids, and serve as

ideal substrates for soil microbiomes (Miller and Chibnall, 1932;

Singh and Sogi, 2016). Several soil fungi (Christakopoulos et al.,

1989; Panagiotou et al., 2005) also utilize d-glucose and sucrose as

readily available and rapidly consumable substrates in ASD

treatments (Hewavitharana et al., 2021). After treating the soil

with ASD using a small amount of rice bran, the authors

discovered a rapid sugar decrease on the first day (Hewavitharana

et al., 2021). However, sugars in orchard grass and wheatgrass used

for ASD were broken down during the aeration phase. Rice bran is

readily digested by the soil microbiome (Hewavitharana et al.,

2019), while the slower consumption of grass substrates other

than rice bran may result from differences in cellulose

composition (Hewavitharana et al., 2021). Consequently,

increased beneficial microbial populations after applying ASD

leads to pathogen suppression, competition for substrate, and an

increase in the soil’s total microbial community, improving soil

health (Rosskopf et al., 2020).

ASD with rapeseed meal and tobacco stem significantly altered

the composition of bacterial communities and increased the

number of anaerobic bacteria (Ya’nan et al., 2019). When wheat

bran, sugar-contained diatoms, and dried molasses were used as

substrates in ASD in a greenhouse, the microbial communities were

significantly affected by variations in the substrate and disinfection

period (Lee et al., 2020). Likewise, using non-rice bran carbon

substrates revealed that specific types of bacteria positively respond

to ASD (Poret-Peterson et al., 2019). These bacteria can perform
Frontiers in Horticulture 06
crucial functions such as denitrification, nitrogen fixation, and

fermentation (Poret-Peterson et al., 2019).

ASD influences bacterial alpha diversity in clay-textured soils

(Stefan et al., 2021). Furthermore, they found that this characteristic

promotes microbial proliferation through enhanced aggregate

formation, increased water retention, and improved nutrient

preservation. Variations in soil microbial Shannon index

responses, phylogenetic diversity, and specialized microbial

Shannon index to organic amendments notably depended on the

initial soil pH (Shu et al., 2022). These indicators were more evident

in acidic soil, possibly due to the alkalinizing effects of organic

amendments (Chen et al., 2019).

Applying ASD with different carbon sources reduced microbial

diversity (Hewavitharana and Mazzola, 2016; Testen and Miller,

2018; Poret-Peterson et al., 2019, 2020). The shift from aerobic to

anaerobic conditions in soil reduces the available niche space for the

resident microbiome (Spietz et al., 2015; Strauss et al., 2017). In

addition to the fungal structure, Poret-Peterson et al. (2020) show

significant changes in fungal diversity when using different organic

substrates for soil disinfestation. This shift in fungal diversity was

mainly driven by how soil fungi compete for resources (Hanson

et al., 2008). Additionally, Poret-Peterson et al. (2020) discovered

that the overall fungal Chao1 richness, Shannon diversity, and

Pielou’s evenness were similar to those of the no carbon control

(NCC) communities. The Shannon diversity varied significantly

between the NCC and ASD treatments using rice bran, red grape, or

tomato pomace, and it changed over time (Poret-Peterson

et al., 2020).

The Shannon’s diversity index decreased on day 4 and remained

relatively constant. However, the density of Fusarium oxysporum in

tomato fields decreased after day 4 (Liu et al., 2016). Messiha et al.

(2007) found that microbial diversity did not differ between carbon

source-amended and non-amended soils after ASD treatment, but

their community structure differed. On the other hand, ASD

conducted using molasses did not alter the community structure

(Shennan et al., 2014). These studies collectively suggest that

microbial diversity, community structure, and soil redox potential

(Eh) are not correlated with disease incidence (Lee et al., 2020).

Testen and Miller (2018) examined the effects of ASD using

different carbon sources on soil bacterial composition and diversity

in two farms in Ohio, USA. They found that the alpha diversity of

bacterial communities in soil samples following ASD with wheat

bran was significantly lower than non-amended soils (Testen and

Miller, 2018). Similarly, the alpha diversity was significantly

reduced in soils following ASD with ethanol in both Highland

soils. However, no significant difference in alpha diversity was

observed when molasses was used in ASD compared to the

control soils on either farm (Testen and Miller, 2018). In another

study, a reduction in total organic carbon in the soil harmed fungal

community composition. This was evident in the significant

decrease in fungal Shannon and Chao1 diversity indexes, further

exacerbating Fusarium spp. reproduction (Saleem et al., 2019). In

China, Zhan et al. (2021) investigated the effects of ASD or

reductive soil disinfestation (RSD) using animal feces on soil

physicochemical properties, bacterial composition, and both alpha
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diversity and beta diversity. The results showed that the RSD-

treated soil had unique core microbiomes and diverse disease-

suppressive microbiomes. Additionally, changes in bacterial

structure were observed, with lower bacterial richness, diversity,

and evenness compared to untreated control soil (Zhan et al., 2021).
2.3 Impact of ASD on soilborne plant
pathogen suppression

ASD is an environmentally friendly and sustainable approach to

managing soilborne bacterial, fungal, and nematode plant

pathogens (Mao et al., 2022). Differential production of ASD

antipathogen factors may explain the differing soilborne pest

management. For example, wheat bran and ethanol created the

most effective soil-reducing conditions (Testen and Miller, 2018).

Consequently, a moderate correlation between iron oxide paint loss

and disease severity data suggests that wheat bran could influence

soilborne pathogen management compared to molasses (Testen and

Miller, 2018).

Compared to non-treated soil, changes in the prokaryotic

community in ASD-treated soil effectively reduced the Fusarium

oxysporum in tomatoes within three days (Lee et al., 2020). The

population of Fusarium oxysporum in tomatoes decreased during

the early stages of ASD due to a significant increase in the levels of

Clostridia and Bacilli (Lee et al., 2020). Additionally, Bacilli, such as

Bacillus and Paenibacillus, are well-known biocontrol agents for

Fusarium oxysporum in tomatoes (Ueki et al., 2018). Some

Clostridia can kill Fusarium oxysporum f. sp. lycopersici directly

by producing chitinase (Momma, 2008; Ueki et al., 2017). Some

Bacilli may contribute to the rapid decrease in soil Eh during the

initial stage of ASD treatment through oxygen consumption

(Mowlick et al., 2013b). Furthermore, the increase in clostridial

populations in ASD-treated soils may be associated with a higher

production of VFAs and could potentially be toxic to soilborne

plant pathogens (Momma et al., 2006; Mowlick et al., 2013a).

Using different carbon sources, such as peanut, rice, and wheat

brans, significantly reduced tomato bacterial wilt caused by

Ralstonia solanacearum (Mao et al., 2022). The disease incidence

was reduced by 83 to 100%, promoting tomato growth (Messiha

et al., 2007; Mao et al., 2022). This is likely due to improved soil

conditions, such as lower Eh, NO3−, SO42−, and increased pH, as

well as increased biological activity, such as higher dehydrogenase

and urease activities (Momma et al., 2006; Mowlick et al., 2013b).

Additionally, anaerobic treatments with carbon sources led to

elevated production of antagonistic compounds, including Fe2+,

Mn2+, citric acid, succinic acid, and ammonia (Lamers et al., 2014;

Ueki et al., 2018). Applying ASD with orchard grass, wheat, and rice

brans in strawberries has been found to alter the soil microbiome.

This results in changes in the presence of Clostridium spp. and

Bacillus spp. in the soil, reducing infections caused by

Macrophomina phaseolina and Fusarium oxysporum f. sp.

fragariae (Hewavitharana et al., 2021). Additionally, the

mechanisms of ASD-mediated disease suppression were

presumably due to the production of antifungal compounds such

as volatile organic acids, hydrocarbons, and sulfur (Hewavitharana
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et al., 2021). These compounds and acids can suppress Verticillium

dahliae in tomatoes and strawberries (Testen and Miller, 2018;

Washburn, 2018; Testen et al., 2021). Similarly, Sclerotinia minor,

Sclerotinia sclerotiorum, and root-knot nematodes suppressed

entirely in muck soils treated with ASD (Sanabria-Velazquez,

2018). Recent studies have shown that certain microbes, like

Clostridia and Zopfiella, found in soil treated with ASD, could

reduce disease occurrence (Momma, 2008; Ueki et al., 2017; Liu

et al., 2019). This suggests a specific microbiome may be essential

for suppressing disease through ASD.
2.4 Impact of ASD on
nematode suppression

There has been limited research on how ASD affects nematode

suppression in soil. Meloidogyne incognita extracted from tomato

root tissue and root gall ratings were generally low in all ASD using

cover crop, carbon source, molasses C source, or composted poultry

litter (Butler et al., 2012b). However, ASD combined with soil

solarization reduced tomato root-knot nematode populations

(Butler et al., 2012a). Another study examined the use of ASD

with composted poultry litter and two rates of molasses in

Immokalee and Citra, Florida (Di Gioia et al., 2016). ASD

effectively suppressed root-knot nematode (Meloidogyne spp.) in

both locations. The depth of the soil significantly influenced the

effectiveness of ASD. In deep and shallow soil profiles, nematode

populations decreased by 82% and 70%, respectively (Shrestha et al.,

2016). However, at a moderate depth, there was a near-significant

increase in nematode populations following ASD treatment. They

found that an incubation period of less than two weeks significantly

increased nematode survival, whereas an incubation period of 4 to 6

weeks significantly suppressed the nematode population (Shrestha

et al., 2016). Although both liquid and solid carbon sources equally

suppressed nematode populations, not mixing carbon sources was

more effective than combining those (Shrestha et al., 2016). In

Nepal, ASD with rice bran reduced root-knot severity in okra and

eggplant less effectively than mustard cake and molasses (Khadka

et al., 2019).

The efficacy of ASD with cover crops for their susceptibility to

three common root-knot nematodes, Meloidogyne arenaria, M.

incognita, and M. javanica, was tested on tomato cv. ‘Rutgers,’ a

susceptible host (Kokalis-Burelle et al., 2013). They found that most

cover crops tested were less susceptible to M. arenaria than

tomatoes. Additionally, these cover crops did not support high

populations of M. incognita in roots. Among the cover crops,

arugula, cowpea, and sorghum-sudangrass were found to have

low levels of all three Meloidogyne spp (Butler et al., 2012a, b).

However, the susceptibility of other crops varied, depending on the

specific species of Meloidogyne spp. tested (Kokalis-Burelle et al.,

2013). In general, the microbial community shifts toward facultative

and obligate anaerobes, the anaerobic decomposition of labile

carbon sources produces short-chain organic acids (such as acetic,

n-butyric, and propionic) and volatile compounds. These

compounds are likely toxic to plant-parasitic nematodes (Momma

et al., 2006; Momma, 2008).
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The Pratylenchus penetrans density in apple roots was reduced

based on the carbon source used for ASD (Hewavitharana et al.,

2014). The nematicidal activity of acetic and n-butyric acids, both

generated by ASD using wheat bran, was nearly equal, or additive

(Katase et al., 2009). Notably, volatile fatty acids (VFAs) increased

nematicidal activity as the pH decreased, suggesting their

effectiveness is closely tied to their ionization (Katase et al., 2009).

These findings underscore the crucial role of VFAs produced by the

soil microbiome in low-oxygen soil in suppressing Meloidogyne

incognita (Momma et al., 2006; Katase et al., 2009). ASD with

ethanol can lead to the accumulation of acetic acids (Momma

et al., 2010).

Plant-parasitic potato cyst nematodes (PCN) can be managed

through ASD, with over 99.5% inactivation achieved in various soils

(Runia et al., 2014). This high efficacy was attributed to the absence

of organic matter. The use of ‘arugula’ could serve as a trap crop for

Meloidogyne spp. (Melakeberhan et al., 2006) and may be more

economically feasible than cover crops in rotations immediately

preceding ASD treatments (Kokalis-Burelle et al., 2013).
2.5 Impact of ASD on weeds

Integrating ASD with cover crops can be an effective weed

management strategy (Khadka et al., 2021). The effectiveness of

ASD also depends on its ability to suppress weeds by accelerating

the decomposition of organic matter, producing toxic acids,

inhibiting seed respiration, and altering soil conditions to kill

weed propagules (Fujita et al., 2020). When combined with

carbon sources under anaerobic conditions, ASD has been shown

to reduce weed populations by up to 95% (Singh et al., 2022). ASD

treatment can eliminate weeds such as creeping yellow-field cress

and common chickweed, although the overall weed population may

remain unaffected (Molendijk et al., 2009; Shennan et al., 2018;

Vincent et al., 2024). In. organic farms, ASD was effective against

snow thistle (Molendijk et al., 2009). Although ASD is generally

effective in weed control, the control of annual weeds such as

Amaranthus retroflexus with ASD can vary. For instance, low

success rates or outright failure have been reported, especially

when using rice bran or molasses for ASD (Karimmojeni

et al., 2014).
2.6 Impact of ASD on plant health and
crop yield

The formation of soil aggregation and pore spaces contribute to

improved root development, nutrient absorption, and plant health

(Priyashantha and Attanayake, 2021; Lopes et al., 2022; Hu et al.,

2023). In Ohio, ASD with wheat bran significantly increased tomato

plants’ dry shoot and root biomasses compared to ASD with

molasses and ethanol (Testen and Miller, 2018). In China, ASD

with composted chicken manure significantly increased strawberry

plants’ height, stem thickness, and yield (Song et al., 2020). ASD did

not reduce the total fruit yield of crops compared to a fumigant

control. However, the yield was significantly higher than a non-
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mended control (Shrestha et al., 2016). Furthermore, the

application of manures and increased amendment rate led to an

increased yield of over 50% compared to fumigated and non-

amended controls (Shrestha et al., 2016).

ASD triggers several positive effects to suppress plant pathogens

through specific beneficial bacterial and fungal communities,

particularly those that produce antimicrobial substances and

siderophores and may produce plant growth-promoting

phytohormones and improve soil fertility (Lopes et al., 2022).

These microbiomes compete for resources, produce antibiotics,

and exhibit parasitic behavior, strengthening the soil’s defense

against soilborne pathogens (Zhang et al., 2022). ASD can reduce

soilborne pathogen, Thielaviopsis basicola, which can lead to

increased biomass yield in tobacco varieties (Haji and Brandle,

2001). Soilborne diseases such as Verticillium wilt and charcoal rot

can significantly reduce strawberry yields (Carpenter et al., 2000;

Hewavitharana et al., 2021). However, ASD-amended soils showed

significantly greater fresh strawberry biomass than non-treated

controls in a study involving wilt and charcoal rot. Specifically, in

the Fusarium wilt trial, ASD-amended plants exhibited twice the

fresh biomass compared to the control (Rosskopf et al., 2015;

Shennan et al., 2018; Hewavitharana et al., 2021).

When ASD with molasses was combined with solarization, the

ASD plots produced equal or higher marketable bell pepper and

eggplant yields than methyl bromide fumigation plots (Butler et al.,

2014). The effect of ASD using a combination of composted poultry

litter (22 t/ha) and two different levels of molasses (13.9 t/ha and

27.7 t/ha) on fresh-market tomato yields was assessed in two

locations: Immokalee and Citra, Florida (Di Gioia et al., 2016).

They found that in Immokalee, the ASD plots produced more

marketable tomatoes compared to the soil fumigation plots. In

contrast, the soil treatments did not affect the yield in Citra (Di

Gioia et al., 2016). Additionally, soil treatments did not significantly

influence the quality of the tomato fruits, although fruit mineral

content was similar or higher in ASD plots than in soil fumigation

plots (Di Gioia et al., 2016). The ASD treatments reduced redox

potential (Eh) and lowered pH (Momma, 2008). This may

significantly influence the soilborne plant pathogens and the

entire soil-microbiome-plant system (Strauss and Kluepfel, 2015;

Van Agtmaal et al., 2015).

Soil fumigation effectively suppressed nematodes in resistant

tomato cultivars, increased tomato fruit yield (Regmi and Desaeger,

2020), and improved marketability (Theis and Fery, 2002). In

contrast, ASD has less impact on managing soil nematode than

resistant cultivars grown in non-fumigated soil (Gullino et al.,

2022). An alternative method to chemical control involves using

chitin, ASD, and marigolds. These strategies were effective in

managing plant-parasitic nematodes and Verticillium dahliae, and

increased yield (65%) over six years (Korthals et al., 2014).
3 Mechanisms of ASD

Although the mechanisms of soilborne plant pathogen

suppression by ASD are not fully understood, available evidence

suggests that ASD alters soil microbial communities through three
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TABLE 2 Impact and mechanisms of anaerobic soil disinfestation (ASD) using various organic amendments as a carbon source on suppression of
specific soilborne pathogens and pests.

Pathogen ASD treatment Control mechanism Remarks References

Bacteria

Ralstonia solanacearum Methanol VOCs like dimethyl sulfide suppress
pathogen growth and mobility.
Anaerobic conditions starve oxygen-
dependent pathogens

ASD with methanol in tomato fields
reduces R. solanacearum
populations, improving crop health
and yield

(Shrestha et al.,
2016; Mao et al.,
2022;
Shikoli, 2022)

Agrobacterium tumefaciens Vermi-
compost

Changes in community composition,
total microbial abundance, and the
production of antibiotics

A. tumefaciens suppressed by
vermicompost decreased reliance on
MeBr or other soil
fumigants

(Strauss
et al., 2015)

Fungi

Rhizoctonia solani Composted rice bran VOCs like ethanol disrupt fungal
membranes. - Increased microbial
activity suppresses pathogen growth
during potato stem canker infection

ASD with composted rice bran in
potato fields reduces disease
incidence by up to 50%, leading to
increased tuber yield.

(Hewavitharana
and
Mazzola, 2016)

Sclerotinia sclerotium and
S. minor

Crop lettuce treated with ASD
combined with biocontrol
agent: Streptomyces spp.,
Bacillus spp., and
Pseudomonas spp.

Pseudomonas and Bacillus reduced
fungal sclerotia viability by >70% in
vitro, while ASD achieved
>80% reduction.

ASD-generated organic acids
harmed sclerotia viability.

(Sanabria-
Velazquez
, 2018)

Sclerotium rolfsii Organic soil amendments Volatile fatty acids (VFAs), such as
acetic and n-butyric acid reduce
pathogen viability.

Endemic soil populations of
Trichoderma spp. were intact.

(Swilling
et al., 2021)

Fusarium oxysporum Wood chips Lowered soil pH due to organic
matter decomposition inhibits
fungal growth. - Beneficial bacteria
compete with pathogens
for resources

ASD with wood chips in strawberry
fields suppresses F. oxysporum,
promoting plant growth and
fruit production

(Akhter et al.,
2015; Shrestha
et al., 2021)

Macrophomina phaseolina and
Fusarium ox-ysporum f.
sp. fragariae

Orchard grass, wheat, and rice
bran low rate' amendment
(approx. 24 0C)

Initial proliferation was followed by
a decline in soil density of the
Fusarium wilt pathogen, coinciding
with the generation of
antifungal compounds

Clostridium spp. population
increases were linked to metabolite
generation. Disease suppression was
significantly affected by carbon
input and incubation temperature
but not duration.

(Hewavitharana
et al., 2021)

Stromatinia cepivora Ethanol and sucrose at 5% ASD with ethanol or sucrose
reduced the viability of S.
cepivora sclerotia

ASD is anticipated to be more
effective in pathogen control than
soil saturation alone

(Quintino
et al., 2023)

Nematodes

Meloidogyne incognita Chopped grass Ammonia produced during organic
matter decomposition disrupts
nematode hatching and mobility.
Beneficial fungi and bacteria
parasitize nematodes.

ASD with chopped grass in tomato
fields reduces M. incognita
populations, improving root
development and plant growth.

(Butler et al.,
2012a;
Testen, 2017)

Meloidogyne hapla Organic amendments molasses,
wheat bran, or mustard greens
at 20.2 t/ha, or 2% ethanol

ASD performed in growth chamber
trials and ASD-treated soil
suppressed root-knot nematode,
regardless of carbon sources

Organic acid concentrations in ASD
varied based on the carbon source
used, with the highest recorded
for molasses.

(Sanabria
-Velazquez,
2018)

Meloidogyne javanica Ethanol and sucrose at 5% Ethanol-based ASD decreased J2
nematode numbers in soil and galls
in tomato roots by over 93%

ASD exhibited more potent
nematicidal effects compared to soil
saturation with water

(Quintino
et al., 2023)

Weeds

Cirsium arvense, Rorippa
sylvestris, Sonchus arvensis,
Calystegia sepium, Equestium
arvense, Tussilago farfara, Elymus

ASD treatments involved
incorporating weed biomass
with 40 tons/ha of fresh grass
into the plow layer (c. 25 cm)
or using weed biomass alone.

ASD alone reduced soil coverage by
at least 96%, but adding fresh grass
increased it to at least 98.5%,
surpassing the effect of plastic sheets
alone on all weed species

The grass was added to enhance soil
oxygen utilization, extending the
duration of anaerobic conditions

(Huiting
et al., 2011)

(Continued)
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primary mechanisms: (i) the decomposition of carbon sources that

enhance beneficial microbiomes, (ii) the production of

antimicrobial compounds or antagonism by anaerobic

microbiomes, and (iii) the absence of oxygen (Mowlick et al.,

2013a; Mowlick et al., 2014; Strauss and Kluepfel, 2015; Van

Agtmaal et al., 2015; Priyashantha and Attanayake, 2021).

Consequently, ASD effectively reduces the persistence of pathogen

inoculums in the soil and reduces infections by soilborne pathogens

and pests (Table 2).

The impact of ASD using various carbon sources in anaerobic

processes to manage soilborne pests (Ludeking et al., 2010; Arriaga

et al., 2011; Lamers et al., 2014; Runia et al., 2014). These specific

factors are low oxygen levels, accumulation of toxic products from

anaerobic decomposition such as organic acids, methyl sulfides,

CO2, NH3, H2S, CH4, and N2O, and antagonism by anaerobic

microbiomes (Momma et al., 2006; Runia et al., 2014; Shennan

et al., 2014; Momma, 2015; Guo et al., 2017; Hewavitharana et al.,

2019). The oxygen concentration in the soil decreases to below 1%

within the first few hours after covering it with impermeable plastic,

and this low oxygen level persists throughout the treatment period

(Hewavitharana et al., 2019). Consequently, a decrease in soil redox

potential (Eh) reduces the levels of oxygen, nitrate (NO3−),

manganese ion (Mn4+), ferric ion (Fe3+), and sulfate (SO4) and

even allows for methane production. Additionally, atmospheric

conditions of O2 concentration < 4% and CO2 > 19.2% favor the

production of organic acids acetate and butyrate (Runia

et al., 2014).
Frontiers in Horticulture 10
Prokaryotes, specifically Clostridium spp., degrade the fungal

cell wall, resulting in biological control of the spinach wilt pathogen

(Ueki et al., 2017). Researchers examined the use of cover crops in

ASD (Butler et al., 2012b; Hewavitharana et al., 2014); however,

their effectiveness in muck soil systems is still unknown. In this

context, cover crops could potentially be used as trap crops to

stimulate the germination of Plasmodiophora brassicae (club root

disease) resting spores before ASD (Friberg et al., 2006). ASD using

mustard seed meal releases antifungal volatile compounds upon the

hydrolysis of glucosinolates (Dassanayaka et al., 2023). Gases

produced during the anaerobic phase from soils treated with ASD

with ethanol, grass residues, or Brassica juncea seed meal effectively

inhibited the growth of Rhizoctonia solani AG-5, Pythium ultimum,

and Fusarium oxysporum (Dassanayaka et al., 2023; Hewavitharana

et al., 2014). Furthermore, several volatile compounds, including

dimethyl sulfide, carbon disulfide, di- and dimethyl tri-sulfide, are

produced by the soil microbiome during the anaerobic phase of

ASD (Hewavitharana et al., 2014).

Some of the sulfide compounds, such as dimethyl trisulfide,

have been reported to have antifungal properties (Blok et al., 2000;

Fernando et al., 2005) and nematicidal activities (Cabrera et al.,

2009). Specific organic acetic acid and butyric acid were produced,

reducing the survival of Fusarium oxysporum f. sp. lycopersici and

Ralstonia solanacearum populations in soil (Momma et al., 2006).

Changes in soil pH and nutrient availability also create an

unfavorable environment for specific pathogens (Ebihara and

Uematsu, 2014). In summary, the potential mechanisms for
TABLE 2 Continued

Pathogen ASD treatment Control mechanism Remarks References

Weeds

repens, Rumex obtusifolius, and
Polygonum amphibium

Nutsedge (Cyperus spp.) Mustard seed meals (MSM)
+ ASD

Decrease weed density in
comparison to the control group

A combination of composted broiler
litter and solarization proved more
effective than anaerobic
conditions alone

(Shennan
et al., 2018)

Yellow
nutsedge

Molasses at 8.2 t/ha for 3 weeks ASD performed: Molasses has been
administered both through irrigation
lines and as a diluted spray on the
soil surface

Reduced weeds along with RKN in
eggplant field

(Butler
et al., 2012a)

Yellow
nutsedge

Four cover crop residue
treatments (sorghum-
sudangrass, sunn hemp, both,
or none) in aerated or non-
aerated soil, with the cover
crops grown for 75 days

A decrease in yellow nutsedge
populations is linked to
phytochemicals produced by
anaerobic microbes during ASD,
with possible soil solarization effects
facilitated by clear plastic mulch

Highlights the effectiveness of ASD
with cover crops for yellow
nutsedge control in plasticulture
tomato production, revealing
synergistic effects

(Singh
et al., 2022)

Chenopodium album 10-week period and various
types of carbon amendments
were utilized, along with soil
saturation or flooding and soil
covering, typically with
polyethylene mulch

Outperformed ASD treatments in
weed control compared to
uncovered controls

Impact of sampling depth, with
shallow depths exhibiting
significantly higher weed
suppression, while moderate depths
favored weed populations

(Shrestha
et al., 2016)

Amaranthus viridis 6-7 weeks at > 40.9 - 47.1oC at
a 15 cm soil)

Olive processing waste (OPW) with
solarization exhibited the best result.

Demonstrating the efficacy of
different treatments for controlling
specific weed species in tomatoes
grown in a greenhouse

(Boz, 2009)
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suppressing specific soilborne pests include producing organic acids

through anaerobic decomposition of added carbon sources,

releasing volatile fatty acids (VFAs), and biocontrol by the

microbiome that thrives during the process (Momma et al., 2006;

Shrestha et al., 2016).
4 Combination of ASD with biological
control agents, fungicides,
and grafting

When integrating ASD with other disease management tools, it

is crucial to determine whether the effects are synergistic or

antagonistic. Trichoderma spp. are beneficial fungi (Singh et al.,

2014) and provide numerous benefits in crop production, such as

promoting growth, suppressing diseases, improving soil quality, and

enhancing nutrient availability in the soil (Harman et al., 2021;

Singh et al., 2014). Soil-treated with ASD reduced the viability of

Athelia rolfsii sclerotia in acidic soil conditions, with minimal

impact on native Trichoderma spp (Swilling et al., 2021).

Additionally, a significant increase of over 300% in Trichoderma

spp. populations were reported in ASD-amended soil compared to

non-amended soil. Available evidence suggests that Mucor spp.

colonize sclerotia post-ASD treatment, presumably due to the

potential mycoparasitic role of Mucor spp. against Sclerotinia

sclerotiorum (Harvey et al., 1995).

Certain Trichoderma strains exhibit average growth at high

temperatures (37 to 40°C), producing stress-protectant sugars such

as trehalose, mannose, and raffinose, which help them thrive in

extreme conditions (Poosapati et al., 2014). In Nepal, Khadka and

Miller (2021) found that combined ASD with wheat bran, molasses,

chicken manure, and mustard greens, along with Trichoderma

harzianum T22 and Trichoderma asperellum NT25 achieved the

lowest severity and incidence of Rhizoctonia root rot in radish

plants. They observed that combining Trichoderma harzianum T22

with ASD using molasses and Trichoderma asperellum NT25 with

ASD-wheat bran showed a synergistic effect in reducing disease

severity (Khadka and Miller, 2021). Conversely, Trichoderma

harzianum T22 with ASD-chicken manure showed an

antagonistic interaction (Khadka and Miller, 2021).

ASD treatments were compared with fungicides and found to

have significant impacts on managing Stevia stem rot and Septoria

leaf spot (Sanabria-Velazquez et al., 2023). ASD effectively reduced

the viability of Sclerotium rolfsii sclerotia in laboratory tests and

micro-plot in North Carolina. In contrast, in Mexico and Paraguay,

the viability of the sclerotia decreased significantly in soils treated

with ASD using cornmeal plus molasses or wheat bran plus

molasses in field trials (Sanabria-Velazquez et al., 2023).

Combining ASD with grafting could be a practical disease

management tool for specific soilborne disease complexes of

tomatoes. For instance, in Ohio, ASD using wheat bran and

molasses was used along with grafting tomato plants onto

‘Maxifort’-resistant rootstock to manage soilborne diseases such

as corky root (caused by Pyrenochaeta lycopersici), black dot root

rot (Colletotrichum coccodes), Verticillium wilt (Verticillium
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dahliae), and root-knot nematodes (Meloidogyne hapla and M.

incognita) (Testen et al., 2021). The ASD treatment generally

reduced the severity of root and taproot rot and root-knot galling.

Non-grafted tomato plants grown in untreated soils showed the

highest corky root rot severity, while the lowest levels were observed

in plants grafted with ‘Maxifort’ rootstock (Testen, 2017; Testen

et al., 2021).
5 Challenges and opportunities

ASD is a biological method that reduces the need for chemical

fumigation and promotes sustainability (Van Agtmaal et al., 2015).

However, the effectiveness of ASD can vary depending on several

factors, such as soil types, temperatures, target soilborne pests, and

carbon sources (Butler et al., 2012a; Zavatta et al., 2014; Rosskopf

et al., 2015; Hewavitharana and Mazzola, 2016; Hewavitharana

et al., 2021). Despite its benefits, ASD also presents challenges,

especially in managing weeds and plant-parasitic nematodes at

greater soil depths. Dry organic amendments used in ASD are

tilled to a depth of 15 to 20 cm, which may not effectively manage

soil nematodes. For instance, in Central California tree-crop

nurseries, nematodes have been found to migrate from depths of

over 1.5 m, exceeding the nematode management depth achieved by

ASD in fields (McKenry, 2002; Zavatta et al., 2014).

When implementing ASD, selecting a suitable carbon source is

crucial. Familiar carbon sources for ASD include cereal barns such

as rice and wheat bran, mustard meal, animal manures, and other

carbon-rich amendments (Priyashantha and Attanayake, 2021;

Lopes et al., 2022). However, one significant limitation of using

ASD is the high associated production costs. Thus, the cost-benefit

ratio of the ASD application for soilborne pest management in fields

is a critical consideration. For instance, the cost of ASD technology

can be high due to the use of large quantities of carbon sources and

costs of transportation, increased labor wages, application of

expensive virtually impermeable plastic films (VIF), and irrigation

facilities, thus making it less accessible for growers to adopt ASD

(Muramoto et al., 2020; Daugovish et al., 2021, 2023). Alternatively,

using locally available and renewable organic amendments or

agricultural bio-products could be cheaper and reduce production

costs. Recent studies have shown that carbon sources such as

tomato pomace and Gramineae used for ASD were effective and

altered the soil microbiome and metabolome (Poret-Peterson et al.,

2019; Hewavitharana et al., 2021; Daugovish et al., 2023).

Additionally, locally sourced agricultural by-products such as

almond hulls, sweet potato waste, brewer’s spent grains, grape

pomace, and orchard grass may offer promising carbon source

alternatives for ASD (Butler et al., 2012a; Zavatta et al., 2014;

Hewavitharana et al., 2021; Adhikari et al., 2023).

Agriculture in tropical developing countries includes small-

scale farming systems, multiple cropping patterns, high pathogen

diversity, the impact of climate changes (e.g., drought, increased

temperature), and lack of agricultural technologies. As a result, crop

productivity in these countries is lower than in temperate countries

(Priyashantha and Attanayake, 2021). Therefore, translational
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research should focus on finding biodegradable farm by-products as

carbon sources and utilizing durable and low-cost plastic mulch for

ASD in developing countries. Importantly, ASD will be more

beneficial for high-value crops such as strawberries and tomatoes

than low-value crops such as eggplant, okra, and spinach. Adopting

ASD technology provides a significant income from pesticide-free

products for resource-poor farmers and improves soil health.

Recently, the ASD strategy has been contemplated as an IPM tool

to manage soilborne pathogens of Stevia in Mexico and Paraguay

(Sanabria-Velazquez et al., 2023) and mitigate weed, root-knot

nematode and soilborne pathogens of vegetables in Nepal

(Khadka et al., 2019; Khadka, 2021; Khadka and Miller, 2021;

Khadka et al., 2021).

Adding carbon sources to the soil is a common practice in all

ASD treatments and provides a substrate for microbial activities

(Butler et al., 2012a, b; Daugovish et al., 2015; Rosskopf et al., 2015;

Hewavitharana and Mazzola, 2016; Rosskopf et al., 2020;

Hewavitharana et al., 2021). Different carbon sources in ASD can

affect microbial community composition and diversity

(Hewavitharana and Mazzola, 2016; Testen and Miller, 2018). For

instance, Clostridium spp. play a significant role in ASD by

producing by-products during anaerobic respiration (Mowlick

et al., 2013a; Strauss and Kluepfel, 2015; Ueki et al., 2017). ASD

treatments also increased the predominant bacterial phyla

Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes,

while Bacillus, Burkholderia, Enterobacter, and Pseudomonas were

the most common bacterial genera (Huang et al., 2015; Rosskopf

et al., 2015; Hewavitharana and Mazzola, 2016; Huang et al., 2016;

Poret-Peterson et al., 2019; Rosskopf et al., 2020; Hewavitharana

et al., 2021). Some bacterial endophytes are plant growth-

promoting rhizobacteria (PGPR) and may enhance plant growth

by producing phytohormones, antibiotics, and siderophores

(Lodewyckx et al., 2002).

Specific microbiome genes contributing to plant-beneficial

microbe interactions are crucial to identify them (Finkel et al.,

2017). Culturable beneficial bacterial and fungal strains can be used

to determine their biological functions (Armanhi et al., 2016, 2018).

This approach will involve isolating single colonies of strains or

multiple strains to establish community-based strains (Oberhardt

et al., 2015). In addition, utilizing ‘meta-omics’ approaches such as

metagenomics, metabolomics, metatranscriptomics, and

metaproteomics can aid in analyzing microbial diversity,

composition, and regulatory co-occurrence networks (Aguiar-

Pulido et al., 2016). This will also facilitate our understanding of

the interplay between plant-microbiome interactions. Additionally,
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engineering synthetic communities (SynComs) can improve plant

health and activate the plant’s immune system to combat plant

pathogens. This translation research aims to shift from using

chemicals to advancing a novel, eco-friendly, biologically-based

pest management (BBPM).

In conclusion, ASD offers promising opportunities for

sustainable agriculture, but it also presents challenges and

limitations that must be addressed for widespread adoption.

Continued research and innovation are crucial for maximizing

ASD’s potential in diverse agricultural production systems in

developed and developing countries.
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C., Martin, K., et al. (2015). “Anaerobic soil disinfestation and soilborne pest
management,” in Organic Amendments and Soil Suppressiveness in Plant Disease
Management. Eds. M. Meghvansi and A. Varma (Cham, Switzerland, Springer),
277–305.

Runia, W. T., Thoden, T. C., Molendijk, L. P. G., Van Den Berg, W., Termorshuizen,
A. J., Streminska, M. A., et al. (2014). “Unravelling the mechanism of pathogen
inactivation during anaerobic soil disinfestation,” in VIII International Symposium on
Chemical and Non-Chemical Soil and Substrate Disinfestation, Vol. 1044. 177–193.

Saleem, M., Hu, J., and Jousset, A. (2019). More than the sum of its parts:
microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol.
Evol. Syst. 50, 145–168. doi: 10.1146/annurev-ecolsys-110617-062605

Sanabria-Velazquez, A. D. (2018). Effects of anaerobic soil disinfestation combined
with biological control on root-knot nematode and lettuce drop. A Thesis submitted to
the Graduate School in partial fulfillment of the requirements for the Master of Science
degree in Plant Pathology, the Ohio State University. (Columbus, OH: Ohio State
University), 277.
frontiersin.org

https://doi.org/10.3389/fsufs.2021.645736
https://doi.org/10.1093/jipm/pmab027
https://doi.org/10.1093/jipm/pmab027
https://doi.org/10.1016/j.cropro.2019.104846
https://doi.org/10.1016/j.apsoil.2013.12.016
https://doi.org/10.1016/j.apsoil.2020.103632
https://doi.org/10.1016/j.biocontrol.2016.06.011
https://doi.org/10.1128/AEM.02992-18
https://doi.org/10.1080/0735-260291044377
https://doi.org/10.1016/j.apsoil.2022.104408
https://doi.org/10.1007/s11104-022-05452-y
https://doi.org/10.1007/s11104-022-05452-y
https://doi.org/10.1146/annurev.phyto.41.052002.095514
https://doi.org/10.1007/s10658-007-9109-9
https://doi.org/10.1042/bj0260392
https://doi.org/10.6090/jarq.42.7
https://doi.org/10.1007/s10327-015-0612-0
https://doi.org/10.1007/s00253-013-4826-9
https://doi.org/10.1007/s10327-010-0252-3
https://doi.org/10.1007/s10327-006-0274-z
https://doi.org/10.1186/2191-0855-3-46
https://doi.org/10.1016/j.cropro.2014.03.010
https://doi.org/10.1016/j.cropro.2013.08.012
https://doi.org/10.17660/ActaHortic.2020.1270.4
https://doi.org/10.17660/ActaHortic.2020.1270.4
https://doi.org/10.1023/A:1004813801728
https://doi.org/10.1038/ncomms9493
https://doi.org/10.1016/j.enzmictec.2004.07.009
https://doi.org/10.3390/agriculture10010016
https://doi.org/10.3390/agriculture10010016
https://doi.org/10.1371/journal.pone.0051759
https://doi.org/10.1186/2193-1801-3-641
https://doi.org/10.3389/fenvs.2018.00160
https://doi.org/10.1007/s00248-019-01477-6
https://doi.org/10.1007/s00248-019-01477-6
https://doi.org/10.1016/j.soilbio.2018.12.022
https://doi.org/10.3390/pathogens10020133
https://doi.org/10.3390/pathogens10020133
https://doi.org/10.4025/actascibiolsci.v45i1.64832
https://doi.org/10.1016/j.ejbas.2016.01.003
https://doi.org/10.1146/annurev-phyto-080516-035608
https://doi.org/10.1146/annurev-ecolsys-110617-062605
https://doi.org/10.3389/fhort.2024.1436782
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org


Meshram et al. 10.3389/fhort.2024.1436782
Sanabria-Velazquez, A. D., Enciso-Maldonado, G. A., Maidana-Ojeda, M., Diaz-
Najera, J. F., Ayvar-Serna, S., Thiessen, L. D., et al. (2023). Integrated pathogen
management in Stevia using anaerobic soil disinfestation combined with different
fungicide programs in the USA, Mexico, and Paraguay. Agronomy 13, 1358.
doi: 10.3390/agronomy13051358
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