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Microclimate monitoring in
commercial tomato (Solanum
Lycopersicum L.) greenhouse
production and its effect on
plant growth, yield and

fruit quality
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Kristof Holsteens?, Bert Verlinden?, Marlies Huysmans®,

Bram Van de Poel*** and Bart Nicolai****

Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems, KU Leuven,
Leuven, Belgium, ?Flanders Centre of Postharvest Technology, Leuven, Belgium, *Division of Crop
Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium, “Research group Fruit
Vegetables, Proefcentrum Hoogstraten, Meerle, Belgium, °KU Leuven Plant Institute (LPI), Leuven,
Leuven, Belgium

Introduction: High annual tomato yields are achieved using high-tech
greenhouse production systems. Large greenhouses typically rely only on one
central weather station per compartment to steer their internal climate, ignoring
possible microclimate conditions within the greenhouse itself.

Methods: In this study, we analysed spatial variation in temperature and vapour
pressure deficit in a commercial tomato greenhouse setting for three
consecutive years. Multiple sensors were placed within the crop canopy, which
revealed microclimate gradients.

Results and discussion: Different microclimates were present throughout the
year, with seasonal (spring — summer — autumn) and diurnal (day — night)
variations in temperature (up to 3 °C, daily average) and vapour pressure deficit
(up to 0.6 kPa, daily average). The microclimate effects influenced in part the
variation in plant and fruit growth rate and fruit yield — maximum recorded
difference between two locations with different microclimates was 0.4 cm d™* for
stem growth rate, 0.6 g d™* for fruit growth rate, 80 g for truss mass at harvest.
The local microclimate effect on plant growth was always larger than the bulk
climate variation measured by a central sensor, as commonly done in
commercial greenhouses. Quality attributes of harvested tomato fruit did not
show a significant difference between different microclimate conditions. In
conclusion, we showed that even small, naturally occurring, differences in local
environment conditions within a greenhouse may influence the rate of plant and
fruit growth. These findings could encourage the sector to deploy larger sensor
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networks for optimal greenhouse climate control. A sensor grid covering the
whole area of the greenhouse is a necessity for climate control strategies to
mitigate suboptimal conditions.
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tomato, microclimate, temperature, vapour pressure deficit, yield, fruit quality

1 Introduction

For the last 15 years, Belgian tomato production efficiency has
been stable, producing around 500 tha’l, one of the highest yields in
the world (FAOSTAT, 2020). In comparison, the average yield of
the biggest producer, China, was just below 60 t ha™ in 2019 and the
world average production in the same year was just below 40 t ha™
(FAOSTAT, 2020). While the environmental conditions in Belgium
are not perfect for tomato cultivation, high yields are achieved
because production is taking place in high-tech greenhouses.
Advanced climate control inside these greenhouses allows
approaching ideal plant growth conditions, in turn optimising
fruit production and quality. Moreover, selected cultivars with
indeterminate growth in combination with artificial illumination
and substrate with liquid fertilisers permit year-round production.
Despite the high-tech nature of these greenhouse systems, the
greenhouse climate is typically only recorded by one central
weather station, ignoring possible microclimate effects within the
greenhouse. In practice, it often means that less than one sensor per
hectare is used, due to the large area of a typical Belgian
greenhouse unit.

The microclimate inside a greenhouse, i.e., the spatial variability
in environmental conditions, is determined mainly by the
greenhouse design, the outside climate and the greenhouse
climate control system (Jewett and Jarvis, 2001). As Kittas and
Bartzanas (2007) and Bojaca et al. (2009) reported, several studies
have considered the greenhouse climate to be uniform.
Temperature, relative humidity and light intensity are the main
factors that make up the greenhouse climate, which all, to a certain
extent, depend on external weather conditions. Although in theory
a greenhouse can be completely isolated from outer environmental
factors influencing the internal climate, in practice this is not the
case (Jewett and Jarvis, 2001). On top of that, climate control
systems are far from ideal for managing defined environmental
conditions instantly and uniformly on a greater scale. All these
factors cause a microclimate to be present within a greenhouse
(Bojaca et al., 2009; Kempkes et al., 2000; Qian et al., 2015). Making
abstraction of microclimate effects limits our understanding of the
effect on underlying plant processes and hampers proper

Abbreviations: EC, electric conductivity, (dS m™); GDD, growing degree days, (°C
day); RH, elative humidity, (%); T, temperature, (°C); VP, vapour pressure, (kPa);
VPD, vapour pressure deficit, (kPa).
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greenhouse management (Zhao et al., 2001). Important
environmental factors affecting plant growth are temperature,
relative humidity, light intensity and nutrient and water
availability (Bertin and Génard, 2018; Panwar et al., 2011; Qian
et al,, 2015) and their interactions with each other (Greer and
Weedon, 2012; Hwang et al., 2020). Modern greenhouses ensure
water and nutrients are never limited (by means of automated
fertigation). Light tends to have less horizontal differences, with
diftusing surfaces in the greenhouse structure providing even more
homogenous light distribution, as a concurring study in the same
greenhouse concluded (Holsteens et al., 2020). Therefore this study
focussed on temperature (T), relative humidity (RH) and their
derived variable vapour pressure deficit (VPD), as the main drivers
of plant development. Temperature and relative humidity are also
considered to be one of the most important external factors
influencing tomato fruit growth and quality (Bertin and Geénard,
2018; Bertin et al., 2000; Guichard et al., 2001; Riga et al., 2008).

The precise monitoring of the local microclimate belongs to
the emerging field of smart farming and precision agriculture
(Bhujel et al., 2020). Wireless sensor networks (WSN) and the
Internet of Things (IoT) enable connectivity and sensor
interactions to monitor spatial variation in the microclimate
(Bhujel et al., 2020). These sensor networks are not just limited
to physical monitoring but their measurements can be used to also
precisely predict climate trends that allow feedback to the central
climate control unit. The predictive power of climate control relies
on advances in the field of mathematical modelling, machine
learning and computational fluid dynamics (Bhujel et al., 2020;
Muiioz et al., 2019; Pawlowski et al., 2009).

Despite the recent progress in these fields, using only one
weather station per greenhouse compartment is still standard
practice in many modern greenhouses (Balendonck et al., 2010;
Kutta and Hubbart, 2014; Pawlowski et al., 2009). This causes
possible microclimate conditions to remain undetected, which
could have an impact on fruit yield and quality (Adams et al,
2001; Chen et al., 2015; Shamshiri et al., 2020), growth rate (Adams
et al., 2001; Ferentinos et al., 2017), disease spreading (Shamshiri
etal., 2018) and crop homogeneity (Balendonck et al., 2014; Kimura
et al., 2023). Furthermore, the spatial and temporal variability of a
greenhouse microclimate has been poorly described. In the past,
some efforts have been made to monitor and understand the vertical
microclimate gradient present in a greenhouse (Jerszurki et al,
2021; Legast et al., 2019; Qian et al., 2015; Zhao et al., 2001). Thanks
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to the recent progress in the fields of WSN and IoT, real-time
monitoring of the horizontal differences (i.e., over the greenhouse
surface) in microclimate has become possible. However, studies on
horizontal microclimate variability are often only focussing on
WSNs, ignoring effects of microclimate on crop physiology and
productivity (Ferentinos et al., 2017; Kutta and Hubbart, 2014;
Lamprinos et al., 2015). Other studies only deployed a relatively low
number of sensors (Ferentinos et al., 2017; Rezvani et al., 2020) or a
short measuring period (Shamshiri et al., 2018, 2020; Suay et al,
2008). Furthermore, possible differences between greenhouse
designs, management strategies and geographical locations, also
influence the greenhouse microclimate and should be considered.

The objective of this study was to identify and quantify
horizontal microclimate variability in temperature and VPD in an
industry-standard commercial tomato greenhouse in Belgium for
three consecutive years using a dense sensor network. We
hypothesise that potential differences in microclimate could lead
to physiological differences in plant growth, fruit yield and
fruit quality.

2 Materials and methods
2.1 Plant growth conditions

Growth of tomato (Solanum Lycopersicum L.) plants of cultivar
Merlice (De Ruiter) (rootstock cultivar Maxifort (De Ruiter)) was
monitored in 2018, 2019 and 2020. Plants were planted just before
or at the start of each calendar year and grown until October -
November (Table 1). The greenhouse at the experimental research
station (Proefcentrum Hoogstraten, Belgium) is 7 m high, with a
floor area of 1588 m”. Plants were grown along a crop wire at a
height of 4 m from a gutter placed at a height of 0.8 m above
ground. The plants were grown in Rockwool slabs (Grodan,
Roermond, The Netherlands) with 3.33 stems per square meter
final density, having a distance of 0.25 m between each stem within
a row and 1.60 m between pairs of rows. Two variations of the

TABLE 1 Technical properties of the greenhouse compartments and
details of the growing seasons.

Season 2018 2019 2020
Compartment A B B
Size 32x50m  32x50m @ 32x50m
Number of T & RH sensors 39 20 15
Planting date 02.01.2018 = 18.12.2018 = 07.01.2020
Stem growing tip removal 10.09.2018 = 07.08.2019 = 14.09.2020
End of season 16.11.2018  01.10.2019 = 01.11.2020
CO, setpoint 800 ppm 800 ppm 800 ppm
Ethylene treatment - start 30.10.2018 = 18.09.2019 | 07.10.2020
Ethylene treatment - concentration 08Lha' 08Lha' 08Lha'
Target electric conductivity (EC) 3dSm™ 3dSm™t 3dSm™
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standard leaf pruning strategy were present in 2018 and 2019:
cutting the leaf above the truss versus leaving it on the plant. Fruit
trusses were pruned to 5 flowers per truss. Fruit on the truss were
numbered starting from the plant stem. For different seasons, two
different adjacent compartments of the same size were monitored.
All plants received the same fertigation, climate control and disease
management treatments, according to commercial tomato

production standards.

2.2 Climate conditions and monitoring

General greenhouse climate was monitored by one central
weather station (Electronic Measuring Box, Priva, De Lier, The
Netherlands) just above the crop canopy in the middle of each
compartment, logging T and RH every 5 minutes. The temperature
regime from the time when fruit were present on plants was set to
be 20 °C during the daytime, 16 °C from sunset until midnight and
18 °C for the rest of the night with slight variations in setpoints
during the year. Roof ventilation started when the temperature
reached 2 °C above the setpoint. No active cooling (other than
opening roof windows) and shadowing management were present.
More details about the growing conditions are presented in Table 1.

During 2018 and 2019, T and RH sensors (SHT31 Smart Gadget,
Sensirion, Stifa, Switzerland) logged values every 15 minutes
(accuracy T + 0.2 °C, RH * 2 %). In the 2020 season, monitoring
devices developed in the GROW! project (Interreg VI-NI') with
build-in T and RH sensors (SHT31, Sensirion, Stifa, Switzerland)
were used (Singh et al., 2020). Sensors were placed at the top of the
canopy at the height of the upper leaves. During all seasons, sensors
covered a large part of the greenhouse compartment area and were
located in proximity to plots used for monitoring plants (Figure 1). In
2018 sensors were distributed across the compartment to determine
its microclimate (Figure 1A). In 2019 (Figure 1B) and 2020
(Figure 1C) sensors were placed mostly in a priori identified
microclimate zones. Two light sensors (SQ 300, Apogee
Instruments, Santa Monica, USA) measuring photosynthetically
active radiation (PAR) were placed at the top of the canopy,
logging values every 10 minutes (Figure 1). All measured
environment data are available in the accompanying repository
(Salagovic et al., 2024).

Sensors were either stationary or moved along with the plants
when they got bigger. For the 2018 and 2019 seasons, plants and
their accompanying sensors were rehanged within the column after
reaching the maximum wire height, changing their y position in
directions as shown in Figure 1. Sensor movement thus resulted in a
dynamic spatial grid, changing over time, but always linked to one
particular plant. The maximum distance each sensor moved from
its original position was approximately 7 meters, limited by
maximum plant stem length at the end of a season. In the 2020
season, sensors were kept at their original position during the whole
season, while plants were rehanged in a regular way.

1 https://www.grensregio.eu/projecten/grow
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FIGURE 1

Column

Spatial organisation of the sensors in the compartments of the greenhouse in seasons 2018 (A), 2019 (B), and 2020 (C). Dotted lines represent plots
with plants, circles represent Sensirion T+RH sensors, the triangle is a central weather station, stars are light sensors. Arrows schematically show the
direction of movement of plants (and in 2018 and 2019 also sensors) within columns of odd and even numbers moving in the same direction as for

the first two shown.

2.3 Microclimate calculation

VPD was calculated by the Buck equation (Buck, 1981) as the
difference between the water vapour pressure of saturated air (RH =
100 %) and the actual water vapour pressure, corresponding to the
measured RH and T.

To obtain climate information for every position in the
greenhouse, the Akima interpolation algorithm (Akima, 1978)
implemented in R (R Core Team, 2013; Akima et al., 2016) was
used to calculate the horizontal distribution of T'and RH in 2018.
The algorithm uses continuously differentiable spline interpolation
working with an irregular grid of x and y coordinates on a plane
with the z dimension representing climate values (T or VPD). Only
values inside the area defined by the convex hull of available sensors
were used to create a regular grid inside the convex hull by
interpolation. In 2019 and 2020 only the recordings from
individual sensor locations were used without interpolation.

The day period was defined as a period when light sensors
measured values above a defined threshold of 10 pmol m~2 s, while
the other time points were defined as the night period. To
investigate the daily behaviour of microclimate evolution of a
single day over 3 years in more detail, September 23™
selected as a case study.

was
The use of degree-days models is widely accepted for building

phenology models (Edey, 1977; Roltsch et al., 1999). Here, the
growing degree days (GDD) model as described by Pathak and
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Stoddard (Pathak and Stoddard, 2018) was used with a base
temperature of 10 °C and cutoff temperature of 30 °C, commonly
used to describe tomato growth. GDD values were calculated for
each day separately for up to 84 days prior to harvest (upper limit
for fruit development of cv. Merlice), calculating a cumulative GDD
value for each day.

2.4 Plant and tomato fruit measurements

Stem growth rate and fruit yield were monitored on a weekly
basis during seasons 2018 and 2019. The stem growth rate was
calculated as an increment of the previously labelled position and
the top of the stem over the time between measurements. Fruit
appearance rate was monitored by keeping track of the timing of the
most recently appearing truss with fruit. The number of the highest
truss was incremented with each new truss throughout the whole
season, with the oldest truss being number 1. For yield monitoring,
trusses were harvested according to industry specifications,
empirically based on fruit size and colour. The fresh weight of the
whole truss was measured on the day of harvest. Early in autumn,
the growing tip of each plant was removed (Table 1), omitting apical
stem growth and truss initiation from that moment onwards.

Fruit growth was monitored weekly during two periods in 2020
by following the growth of selected trusses from flower anthesis until
red ripe fruit. Trusses were labelled at the beginning of anthesis on

frontiersin.org
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June 5% 2020 and August 31° 2020. Labelled trusses had, therefore,
flowers in the same development stage (i.e., fully open flowers). Three
trusses per microclimate zone were harvested each week. On the day
of harvest, the equatorial maximum diameter and fresh weight of
each fruit were measured. Dry weight was determined after drying at
70 °C until a constant weight was reached (1 week).

For quality assessment, additional trusses were harvested for a
period from April 14™ to October 5" 2020 according to industry
specifications. Tomatoes were transported from the greenhouse to
the laboratory (Flemish Centre for Postharvest Technology, Leuven,
Belgium) and stored at T' = 18 °C and RH = 80 %. The next day
firmness, colour, weight and ethylene production were monitored.
Firmness was measured with a texture analyser (TA.XT Plus, Stable
Micro Systems, Godalming, UK) fitted with a 3.5 mm diameter
probe attachment. Firmness was assessed by compression over a
distance of 2 mm at a speed of 2 mm s* at two sides of the equator
of the fruit.
spectrophotometer (CM-2500d, Minolta, Kontich, Belgium) twice

Colour was measured with a handheld

on opposite sides on the equator of the fruit. Colour was quantified
by measurements of hue angle (°) and lightness (on a scale of 0-
100). Ethylene measurements were done with a Compact GC (MEB
07061594, Interscience, Louvain-La-Neuve, Belgium) after fruit
weight was recorded. Individual tomatoes were placed in glass
jars for 2 hours at 18 °C, allowing ethylene to accumulate in the
headspace. Soluble solid content was measured by extracting a few
droplets of tomato juice and placing it on a digital refractometer
(Atago PR-101 alfa, Analis, Gent, Belgium).

A principal component analysis (PCA) was performed on
quality data. Principal components were retained on the basis of
eigenvalues greater than 1. The PLS_toolbox (version 8.9.1,
Eigenvector, Manson, USA) in Matlab (Matlab R2021b, The
Math-Works, Natick, USA) was used for this analysis.

2.5 Statistical analyses

To test if tomatoes from different conditions (e.g., different
climate conditions, different pruning strategies) were having
different properties (e.g., fresh weight), analysis of variance
(ANOVA) with a level of significance o = 0.05 was used. Data
were assumed to be independent. Prior to ANOVA, homoscedasticity
was tested by Levene’s test (Levene, 1960) and normality by the
Shapiro-Wilk test (Shapiro and Wilk, 1965).

To assess the effect of microclimate on tomato growth, we used
separate datasets of temperature history accumulated by a plant
(from GDD) through a growing period and average daily VPD as
independent variables. The dependent variables were truss weight
and stem growth rate. For independent variables, we used a list of n
values representing n days prior to measurement. We tested
different values of n ranging from 7 to 84 days for the highest
explained variance across all datasets. For example with GDD, the
lowest used value, n = 7, implies a dataset of 7 GDDs of the last 7 d
before the harvest day as 7 predictor variables (GDD of day 1 before
harvest, GDD of day 2 before harvest, etc.). The upper limit of n =
84 was selected based on the time from anthesis until harvest for
this cultivar, which ranges between 10 to 12 weeks. The number of

Frontiers in Horticulture

10.3389/fhort.2024.1425285

predictors (n) could, therefore, exceed the number of observations
(harvested trusses for the selected period). Moreover,
multicollinearity is naturally present in the dataset, as is generally
the case of highly correlated predictor variables (Alin, 2010), as
daily temperatures tend to be highly correlated to the temperatures
XX| " <10"°° was close to

zero for predictor variable set X and therefore confirms

of the previous day. The determinant

multicollinearity in the dataset (Farrar and Glauber, 1967). Linear
ridge regression was used to determine a relationship between local
microclimate and tomato growth as it takes multicollinearity and
datasets with a higher number of observations into account (Hoerl
and Kennard, 1970; Marquardt and Snee, 1975).

To reach more uniform effects of other variables (e.g., plant age)
and limit seasonal effects of climate, measurements were also
analysed for a shorter time period, not just over the whole season.
To minimise the effect of other known conditions (e.g., sunny vs
shaded canopy side) data were processed to have an equal
representation of each of these known factors.

3 Results

3.1 Average greenhouse climate conditions
show seasonality

We observed a seasonal trend for temperature and VPD data for
each year (Figure 2). The average monthly temperature increased
from spring months (e.g., January 2020: 16.8 + 2.7 °C), reaching a
maximum in summer (August 2020: 22.4 + 4.2 °C) and decreasing
in autumn (October 2020: 20.0 * 2.1 °C) (Figure 2A). Temperature
variation over time was the highest in summer, and the lowest in the
colder months of winter and autumn. Seasonal trends between
observed years were similar with only a few periods each year with
climate varying from other years.

The average monthly VPD followed a different trend compared
to temperature: a slow drop from January to March, a sharp increase
to peak in April, followed by a slow decrease until the end of the
season (Figure 2B). During the period from June to September, the
average VPD across all seasons equalled 0.47 + 0.34 kPa. The lower
VPD in February and March was, except for lower temperature,
caused by a higher relative humidity. The RH in 2019 and 2020 for
that period was respectively on average 6.1 and 5.3 percentage points
higher than for the rest of the year. VPD variation over time was
following a similar trend as temperature with high variance during
the summer months, but unlike temperature, being the highest in
April and May (Figure 2B). Results for both temperature and VPD
showed seasonal effects matching the outside climate and revealed
possible sub-optimal growth conditions for some periods, especially
for VPD (Shamshiri et al., 2018).

3.2 ldentification of microclimate zones
across the greenhouse

A sensor grid within the greenhouse revealed the existence of a
local microclimate throughout all seasons. Variations between
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FIGURE 2

Average monthly greenhouse temperature (A) and VPD (B) throughout the seasons measured by the central weather station. Error bars show

standard deviation over time.

different positions were present in all months (Figure 3). In 2019,
the highest daily differences oscillated around 1.5 °C, with peak
differences in August increasing up to 7.17 °C (Figure 3B). Extremes
with higher average local temperatures were reached only for
isolated days, probably caused by direct solar heat radiation.
Microclimate variation was not only present in summer but also
during colder months of spring and autumn, presumably caused by
non-uniform heating, as the main determining factor that controls
the inside climate during these periods. Light measurements at the

top of the canopy did not show significant differences in weekly
average irradiation between the two monitored locations.

Seasonal and daily changes were not only affecting the mean
temperature and vapour pressure deficit, but also their spatial
distribution profiles. The observed microclimate was, therefore,
not static but was changing over time. During the 2018 season,
the difference between the warmest and coldest positions in the
greenhouse during one day was largest in warmer summer months
(up to 4.8 °C) and smallest in autumn (down to 0.8 °C). Similarly, in
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T T T T
1.2.2019 1.4.2019 1.6.2019 1.8.2019

Differences in the average daily temperatures measured by the sensor grid at different positions in 2018 (A) and 2019 (B). The red line represents the
average temperature over all positions, black lines are temperatures at different positions. Displayed are daily averages for all positions inside the
convex hull during season 2018 (A) and for all sensors available in season 2019 (B).
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2019 the highest differences were recorded in summer (up to 5.5 °C)
and the lowest in autumn (down to 0.3 °C). The largest average
monthly temperature differences were observed during the day
(Figure 4) and not during the night. The temperature difference
between the warmest and coldest recorded positions was
lower during colder months at the beginning and the end of the
year (Figure 4). The opposite trend was present for night
temperature differences.

To localise regions with high and low T and VPD variability, the
microclimate of the whole greenhouse compartment area was
analysed using heatmaps (Figure 5). In August 2018 (Figure 5A),
the highest difference in average monthly temperatures from all
positions was 1.1 °C. The temperature distribution pattern shows
most of the variation during the day (Supplementary Figure S1A) with
almost uniform night temperatures (Supplementary Figure S1C). The
VPD, shows a similar pattern as the temperature heatmaps, with
deviations caused by different RH profiles. In August 2018, the average
monthly spatial difference in VPD was between 0.6 to 0.8 kPa
(Figure 5B). Spatial VPD differences during that month were more
pronounced during the day than during the night (Supplementary
Figures S1E, G). The main source of greenhouse climate variation in
summer was the outside weather condition. During warmer nights,
heating was less needed.

A different spatial microclimate gradient was observed, especially
towards the end of the season. In October 2018, a linear gradient in
temperature was present, increasing with the row number
(Figure 5C), with a maximal difference of 1.4 °C. This higher
difference in comparison to the month of August was caused by
the greater differences in the night microclimate (Supplementary
Figure S1D) in combination with a similar temperature distribution
pattern that was present during the day (Supplementary Figure S1B).
The VPD gradient increased with row number (Figure 5D) which
corresponds to the temperature microclimate distribution. This
spatial trend in T and VPD was also present when the
microclimate data were analysed for the whole period from August
until November (Figures 5E, F). In conclusion, we noticed that there

10.3389/fhort.2024.1425285

mainly was a temperature and VPD gradient present along the rows,
but less so along the columns. Based on these gradients, we defined
two zones: zone 1 (in the upper third region, rows 21 - 30) was the
warmer and drier zone, while zone 2 (in the lower third region, rows
1 - 10) was the cooler and more moist zone. Next, we analysed the
microclimate effect of these two zones in more detail, for the seasons
2018 - 2020.

3.3 Diurnal microclimate differences
between two zones

In 2018, zone 1 was on average warmer than zone 2, especially
in autumn when the average daily temperature was below 23 °C
(Figure 6A, Supplementary Figure S2A). The difference between
zones steadily oscillated around 1 °C from late September. In 2019,
the temperature difference was highest from January to March
when the daily average temperature was rarely above 20 °C
(Figure 6C, Supplementary Figure S2C). A similar trend was
present in 2020 (Figure 6E). In general, during summer periods
with higher temperatures, spatial temperature differences were
fluctuating around zero with a few extremes, while in colder
months, spatial variability between the two zones was more
pronounced. VPD varied more between the zones on days with a
higher maximal VPD, both in 2018 (Figure 6B, Supplementary
Figure S2B) and 2019 (Figure 6D, Supplementary Figure S2D).
During colder months of all years, there was an average difference of
0.1 kPa between zone 1 and 2, while other periods oscillated around
0 kPa (Figures 6B, D, F). Both temperature and VPD showed a
similar spatial variability throughout the season.

For a selected day, September 23", different diurnal profiles
were observed between the years for both temperature and VPD
(Figure 7). The overall climate profiles and microclimate differed
from year to year based on the actual outside weather and the
corresponding greenhouse management practices. An unusually
warm evening in 2020 (Figures 7E, F) was responsible for the
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FIGURE 5
Heat maps of the microclimate inside the greenhouse in 2018, whole day
and the period of August-November (E, F).

highest microclimate difference (up to 2 °C and 0.2 kPa) between
the two zones, and showed an uncommon climate evolution
throughout the day versus other years. Microclimate differences
between zones during the night were relatively stable, while
microclimate differences during the day showed greater variation
between the zones.

3.4 The local microclimate influences plant
growth and fruit yield

To study the eftect of the local microclimate on fruit production,
we analysed crop growth and fruit yield in the two zones. However,
we first analysed the effect of the different leaf pruning strategies
using ANOVA, but did not discover any significant difference for
stem growth and fruit yield between the different pruning strategies
(data not shown). Therefore, we ignored the pruning variable and
pooled the data for the subsequent microclimate analysis.

Plant growth and truss weight were significantly affected by the
microclimate conditions. Both in 2018 (Figure 8A) and 2019
(Figure 8B), the truss weight was on average higher in zone 1
compared to zone 2. However, this difference was only significant in
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May and September 2019 (Figure 8B). Plant growth variables such
as stem growth rate and highest truss number on a plant were
showing the same trend in 2019, with plants growing faster in zone
1. The differences between the zones in 2019 were significant in
May, but not in July (Figures 8C, D). In general, a warmer
microclimate (zone 1) leads to a higher stem and plant growth
rate, which leads to a higher fruit truss weight, during certain
periods of the year.

3.5 Tomato quality is not affected
by microclimate

We investigated the hypothesis that tomato fruit quality would be
affected by the microclimate in a similar way as was shown for plant
growth and truss weight (Figure 8). The variation in quality between
tomatoes was analysed by PCA. Most of the variability in quality was
caused by variability in colour, as hue and lightness were closest
related to PCI (46.28 %) (Supplementary Figure S3A). Differences in
ethylene production and fruit weight were more closely associated
with variability caught in PC2 (23.41 %). Overlapping point clouds
indicate no differences between fruit quality and their position in the
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Comparison of temperature and VPD profiles between different zones (zone 1 and zone 2 identified in Figure 5). Average daily temperature
difference (A, C, E) and VPD difference (B, D, F) between zones 1 and 2 in 2018 (A, B), 2019 (C, D) and 2020 (E, F). Missing data points are due to

sensor failures or dead batteries.

truss (Supplementary Figure S3B). The microclimate did not have a
significant effect on fruit quality on day 1 after harvest, as the point
clouds also intersect. Likewise, this was the case for tomatoes
harvested in different months (Supplementary Figure S3C),
although tomatoes harvested in June tended to weigh slightly more
versus those harvested in April or October. The lack of any detectable
microclimate effect on fruit quality is likely caused by the large
heterogeneity of harvested fruit, as they are manually picked based on
a visual inspection of colour.

3.6 The local microclimate conditions
predict differences in tomato plant and
fruit development

To expand our analysis beyond the predefined microclimate
zones and to evaluate the effect of local climate conditions on plant
growth and fruit yield, we used a ridge regression model with local
microclimate dataset. Interestingly, the ridge regression model
could explain the greatest variance across all datasets at a time
period of 70 days of fruit development (analysis not shown). This
period approximates the time from fruit anthesis until full ripening
(although this can vary throughout the season).

Frontiers in Horticulture 09

Comparing measurements and predictions of the model for
different climate datasets on the input (e.g., collected from one
central weather station vs from local sensors) can reveal which one
explains the most of the observed differences in dependent variables
(e.g., stem growth rate). By using only data from the central weather
station we were able to explain 79.8 % of the variance for average
daily stem growth in 2019 (Figure 9C, Table 2). When incorporating
local microclimate data, the explained variance increased to 84.9 % in
2019 (Figure 9D, Table 2). The dataset from 2018, covering a shorter
growing period, had an explained variance of 79.1 % based on the
central weather station (Figure 9A, Table 2) and 93.3 % when using
microclimate sensor data (Figure 9B, Table 2).

Applying the same ridge regression model approach to truss
weight from 2019, we were able to increase the explained variance
from 28.3 % when using one GDD value per harvest date from the
central weather station to 30.4 % when using local microclimate
data (Figure 10, Table 2). In the smaller dataset of 2018, we obtained
an explained variance of 32.1 % when using GDD from the central
weather station and 37.7 % when using microclimate. For most of
the harvest dates, the mean of the predicted truss weight is close to
the ideal model fit with evenly distributed points around the mean
when using GDD from the central weather station (Figure 10A).
This means that despite a relatively low explained variance, the
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prediction for the average truss weight of each harvest date
corresponded to the measurements (Figure 10A). Results using
local microclimate GDD data show a slightly better fit (Figure 10B),
as quantified in Table 2. Using local microclimate data increased the
explained variance for both stem growth rate and truss weight in
all seasons.

The ridge model using for input data the VPD microclimate as a
predictive variable outperformed the model with GDD
microclimate on input only for the prediction of stem growth rate
in 2018 (Table 2). In all other scenarios, the explained variance was

TABLE 2 Explained variances of the ridge regression model’s predictions
for 2018 and 2019 seasons using different inputs (GDD and VPD, from
weather station — central or using microclimate — local) with dependent
variables being separately stem growth rate and truss weight.

2018 2019

STEM GROWTH RATE

GDD central 79.1 % 79.8 %
GDD local 93.3 % 84.9 %
VPD central 78.0 % 78.7 %
VPD local 94.6 % 79.1 %
GDD & VPD local 96.0 % 91.6 %
TRUSS WEIGHT

GDD central 32.1 % 283 %
GDD local 37.7 % 30.4 %
VPD central 30.9 % 282 %
VPD local 37.7 % 28.8 %
GDD & VPD local 38.6 % 38.6 %
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higher with GDD data for input. For all scenarios, the best results
were achieved by a model that uses both GDD and VPD as input
data (Table 2). Using local microclimate data compared to using
data obtained from the central weather station, the explained
variance for truss weight in 2019 rather increased for all months
(Table 3). The exception was the prediction for August, where the
explained variance increased only by 0.1 percentage points.

3.7 Long-term effects of the microclimate
on growth rate

To unravel the effect of microclimate on tomato fruit growth rate,
two experiments were conducted during which fruit growth was
followed up weekly, by labelling trusses at anthesis. Trusses from the
warmer zone 1 showed a higher fruit growth rate versus the cooler
zone 2 for both experiments (Figure 11). Fruit fresh weight for both
zones had at a similar initial value, but fruit from zone 1 grew faster
than the ones in zone 2. The final average weight was not significantly
different between both microclimate zones. The analysis indicated
that the main effect of the microclimate differences was on fruit
growth rate rather than final fruit mass. The microclimate effect on
fruit growth rate was present in both a warmer (summer) and a
colder (autumn) period. In the period from June to August, the GDD
difference between both zones was 14 °C days, while for the period
from September to November it was 81 °C days.

Truss growth rate can affect the total number of trusses harvested
per plant per year, especially when correlated to the truss appearance
rate. In 2018, the average amount of trusses harvested per plant was
29.83 and 29.04 for zones 1 and 2, respectively. In 2019, a slightly
shorter season, the number of trusses harvested were 27.69 and 25.56
for zones 1 and 2, respectively. Long-term microclimate effects
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accumulated throughout the season resulted on average in a
difference of 8 % for the number of trusses harvested per plant
between the two zones.

4 Discussion

4.1 Temperature and VPD conditions are
often suboptimal in a
commercial greenhouse

The environmental conditions of the greenhouse changed
dynamically throughout the season (Figure 2) but also during
individual days (Figure 7). The temperature during three
consecutive seasons was mostly within the recommended optimal
range of 15 °C to 30 °C [27], with only a few daily average
temperatures above the upper limit (Figures 2A, 3). Temperature
variation between days was greatest in summer (Figures 2A, 3)
when the effect of warm weather could not be compensated for by
the greenhouse regulatory system other than opening windows.
Unlike heating, which uses relatively well-established technology,
greenhouse cooling still presents challenges (Kutta and Hubbart,
2014; Sethi and Sharma, 2007). Temperature variation between days
during colder months was less pronounced because the outside
temperature was often below the lower temperature setpoint set by
the greenhouse management system. In this case, the average
greenhouse temperature was maintained relatively stable by the
heating system, with little ventilation from outside.

TABLE 3 Explained variances for truss weight of the ridge regression
model’s outputs for different months of season 2019 when using one
central sensor (global) and when using microclimate data (local).

Period Global, Local,
explained variance  explained variance

May 16.5 % 17.6 %

June 6.4 % 355 %

July 0.4 % 263 %

August 0.4 % 0.5 %

September 33.0 % 40.4 %
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The vapour pressure deficit was for most of the months of all
three seasons at the lower optimal boundary of 0.3-0.4 kPa
(Figure 2B). When using T and RH data measured at plant-level
(top of the canopy), VPD was most of the time within the
recommended optimal range (Supplementary Figure 52)
(Shamshiri et al., 2018). Still, these values were more often
deviating from the optimum range in comparison to the
temperature. Even though opinions on optimal conditions vary,
the optimal VPD values with little or no effect on plant growth and
physiology can be considered between 0.2 kPa and 1.3 kPa (Grange
and Hand, 1987; Picken, 1984; Shamshiri et al., 2018). For a few
days the daily VPD reached values outside of this range. A more
precise hourly dataset for specific days showed that suboptimal
VPD levels are more frequent, especially during the night (Figure 7).
On some days, plants could even experience VPD fluctuation from
too low (below 0.2 kPa) to too high (above 1.3 kPa) suboptimal
values (Figure 7D). By simply measuring/recording the average
climate information throughout a day (e.g., the daily average), a
large part of crucial climate variation information is lost. For
example, the average daily VPD of September 23™ 2019 and
September 23" 2020 of zone 1 was 0.55 kPa and 0.58 kPa
respectively, but their daily profiles differ drastically up to 0.6 kPa
for certain hours (Figures 7D, G). The VPD has a direct effect on
transpiration and plant growth and has recently been used more
often to control the greenhouse environment (Inoue and Yamori,
2021; Lu et al,, 2015; Shamshiri et al., 2018). However, systems that
only use stable setpoints of relative air humidity for defined periods
of the day, still prevail in commercial greenhouses. Combined with
greenhouse climate regulation driven by heating and opening
windows, substantial suboptimal levels of VPD are present
throughout many periods of the growing season.

4.2 A local microclimate is present during
all seasons

We documented the presence of horizontal microclimate
variation in a tomato greenhouse over the course of three
subsequent years. The maximum daily difference between the two
zones was 3 °C in summer, while in colder months the difference
oscillated around 1 °C (Figure 6). Similar results were obtained by
Ferentinos et al. (2017) with the highest heterogeneity of daily
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averages during summer days (up to 3.3 °C), with nights and winter
periods having much lower maximum temperature variation
(around 1 °C). However, these results were obtained from trials
without any crop present in the greenhouse. Ogunlowo et al. (2021)
found horizontal temperature differences of 1.03 °C between the
central location and the sides of a multi-span greenhouse with
strawberries. Balendonck et al. (2014) identified a difference of
1.2 °C on average for a short-term experiment with tomatoes. This
shows that the magnitude of horizontal microclimate difference that
we observed in our study is in the same range of what was reported
in the past. While there exist recommended intervals of T, RH and
VPD for tomato growth (Shamshiri et al., 2018), there is no
agreement on acceptable horizontal differences (Balendonck et al.,
2010). A common practice to avoid suboptimal climate conditions
in any part of a greenhouse is using wider setpoint margins for
climate control (Balendonck et al., 2014).

Our sensor network was able to observe a systematic long-term
difference in the local microclimate within a greenhouse
compartment over 3 years (Figure 5E). We recorded a warmer
zone (zone 1) and a cooler zone (zone 2) (Figures 5, 6) (Balendonck
et al,, 2010). calls this type of microclimate difference static, caused

by the greenhouse design and its climate regulation system. In our
case, the observed differences were most likely caused by the layout
of the compartment and the conditions of adjacent compartments.
The colder zone 2 faced a hall passage a few meters wide with a
concrete floor. This unheated thermal mass could evoke a local
cooling effect on the nearby plants. The warmer zone 1 was at the
outer end of the plant rows, nearby a slightly warmer compartment
(for bell pepper production). There was no deterministic variation
in temperature in the other horizontal dimension of the
compartment, which confers with the above. On top of the
observed static microclimate, a dynamic component of
microclimate was also present throughout all seasons (Figures 3,
4) caused by other factors changing in time such as outside climate
or plant-climate interaction (Su and Xu, 2017). No greenhouse
compartment is completely homogenous in its design, crop and
boundary conditions, a microclimate is thus expected to be present
across the horticulture production.

Explaining differences in VPD is more complicated, as this variable
is more affected by the dynamics of plant transpiration, humidification,
ventilation, and weather conditions on specific days. The VPD
distribution was correlated to temperature (e.g., Figures 6A, B).
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However, according to our heat maps of 2018 and T and RH profiles of
the two different microclimate zones (Figures 5, 6), VPD seemed to
vary from temperature microclimate distribution, especially during
warmer months. It would require a more detailed analysis to better
understand the variability of the VPD. Computational flow dynamics
(CFD) models are designed to obtain spatial climate distribution in a
defined mesh over time. Predictions of airflow and T and RH
distribution in 3D space are inherent in CFD methods and can solve
the problem of microclimate identification (Alvarez-Sanchez et al,
2014; De la Torre-Gea et al., 2011; Guzman et al., 2018; Kittas et al.,
2005; Reichrath and Davies, 2002). However, the complexity of several
greenhouse factors and incorporating actual transpiration of the plants
pose a challenge for CFD models (Choab et al., 2019; Su and Xu, 2017).

The greenhouse environment is a result of a combination of
several factors, such as location, structure, air conditioning and plant
canopy (Rodriguez et al., 2015) and its optimisation can be divided
into three main areas — construction (e.g., orientation, size), control
(e.g., sensor networks, climate control approach) and climate
management (e.g., heating, ventilation) (Badji et al., 2022). In
existing greenhouses, variations in microclimate can be reduced by
climate management, such as optimising ventilation design (Badji
et al., 2022; Jerszurki et al., 2021), with emerging new technologies
allowing for low-energy airflow generation with several compact
units distributed in the greenhouse unit (Rubinetti et al,, 2023). To
mitigate suboptimal conditions, modifications in the control area are
essential — sensor networks with advanced control (e.g., taking action
when suboptimal conditions are detected at any location). The
conclusions are not limited to the setting of this study and can be
universally applied to any greenhouse type with control mechanisms
and to crops other than tomato.

4.3 Microclimate variation affects plant
and fruit growth

Linking microclimate data recorded by the sensor network, with
actual plant and fruit measurements throughout a full season,
allowed us to reveal that a local microclimate affects plant growth
and truss development. Differences in plant growth and truss
weight between the two microclimate zones were only significant
during the periods of the year when the static microclimate was
more prevalent (Figure 8). Climate differences of higher magnitude
but shorter duration during warmer summer months (Figure 6)
were not connected to significant differences in plant growth or
yield (Figure 8). This can be explained by the fact that the climate
was within the optimal range for tomato production for both zones
during this period (Shamshiri et al., 2018), with limited cumulative
effects since climate differences between the zones oscillated around
0 (Figure 6).

Splitting the season into intervals of one month allowed us to
minimise the effects of seasonality. There were other underlying
factors besides temperature and VPD variation - as Figure 12 shows,
the average truss weight followed a different trend than temperature
and VPD. In the first weeks, the increasing trend of truss weight can
be attributed to better climate conditions with longer and warmer
days (together with more mature plants). However, when analysing
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the last weeks of the season (weeks 41 — 46) the relationship between
temperature and truss weight is counterintuitive: the lower the
temperature (Figure 3A), the higher the observed truss weight
(Figure 12). At this stage in the growing season, the plants were
topped (i.e., had their growing apex cut) to stop indeterminate growth
of new trusses that cannot ripe on time and to promote the growth
and ripening of trusses already present on the plant (Nkansah et al,,
2021). Approximately one month after topping (Table 1), an ethylene
treatment was applied to accelerate fruit ripening (Saltveit, 1999).
More mature plants with suppressed vegetative growth and the
external ethylene treatment might explain why a greater truss
weight was observed, despite the lower temperatures during this
period. Other factors, such as pruning strategies (Kim et al., 2014) or
the photoperiod (Demers et al., 1998) were also present and varied
during the whole period of all seasons.

Our regression models showed an increased explained variance to
predict tomato growth when using microclimate GDD compared to
using the GDD value from the central weather station (Table 2,
Table 3, Figure 9, Figure 10). The output of the ridge model was
precise for the average truss fresh weight per harvest day, but with a
low explained variance due to variation within individual harvest days
(Figure 10A). Various reasons can explain this. There were other
environmental factors than temperature and VPD affecting fruit
growth, that were not included in the analysis, such as light
irradiance (Gautier et al., 2008), CO, concentration (Jerszurki et al.,
2021) or fertigation (Wang and Xing, 2017). Although we assumed
uniformity of these factors, local (spatial and temporal) differences
most probably exist for them, similar as for the microclimate of
temperature and VPD (Critten, 1991; De Rijck and Schrevens, 1998).
Apart from environmental factors, a different (micro)climate history
accumulated by plants throughout the season might also play a role.
Furthermore, management practices also have an effect on plant and
fruit growth (Bertin and Genard, 2018). All the mentioned factors are
dynamic during the season. The whole-season effects of the
environment can be unravelled using mathematical models
(Heuvelink, 1996; Jones et al., 1991), which by design allow
horizontal microclimate. Observed variability on each harvest day
can be either explained by stochastic models (Cooman and Schrevens,
2006; Hall and Gandar, 1995; Tijskens et al., 2016), or by deterministic
models with additional factors other than temperature and VPD.
Using microclimate data in a PLS analysis did not result in a higher
explained variance for fruit quality properties.

4.4 Microclimate differences impact
whole-season fruit yield

The fruit growth rate plays an important role when looking at the
final yield of the whole season, which is one of the most important
elements from a growers’ perspective. The observed difference in fruit
growth rate between a warmer and a cooler zone (Figure 11) was
present both in summer and autumn with a similar magnitude. This
was the case, despite the fact that GDD differences were higher in the
autumn period. This can be caused by seasonal differences together
with difference in plant properties (e.g., leaf area), accumulated
throughout the season, due to variations in microclimate
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conditions. A similar effect of temperature on fruit growth rate was
observed in other studies, however for more pronounced temperature
differences — (Adams et al.,, 2001) up to 12 °C; (Hurd and Graves,
1985) up to 8 °C; (Pearce et al., 1993) up to 10 °C.

In experiments monitoring fruit growth rate (Figure 11) fruits
were followed until fully ripe, often beyond the moment of typical
harvest. That can explain no significant difference in final weight
between microclimate zones, while the opposite was observed when
comparing truss weight at harvest (Figure 8). While quality attributes
of the harvested fruit were similar between different zones, the local
microclimate does affect the number of harvested trusses and thus
impacts final yield. Difference in the fruit development rate also
affects the homogeneity of harvests.

5 Conclusion

Our study revealed a variable horizontal microclimate within a
commercial greenhouse for tomato production. The microclimate
distribution was not static but changed during the season,
influenced by several factors such as the outside weather or the
greenhouse management. The observed variation in temperature
and vapour pressure deficit resulted, despite the nature of climate
control of a commercial greenhouse, for some periods and locations
in suboptimal conditions for plant growth.

A model incorporating these horizontal microclimate effects
was able to predict plant stem growth rate and fruit truss weight
better, in comparison with a model only using climate data from
one central weather station — an indication that the local
microclimate impacts plant and fruit development. We found that
relatively small, naturally occurring, microclimate differences
present in a commercial greenhouse can result in differences in
tomato plant and fruit growth, and thus final yield. We did not
observe significant differences in fruit quality attributes from
different microclimate zones.

Knowledge of a greenhouse’s microclimate is relevant for
optimising production. When abandoning the assumption of the
presence of a uniform climate within a greenhouse, the use of
wireless sensor networks in addition to the central weather station,
is an essential and affordable first step to visualize and anticipate
microclimate effects. Both vertical and horizontal microclimate
should be accounted for.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: Microclimate monitoring in
commercial tomato (Solanum Lycopersicum L.) greenhouse
production and its effect on plant growth, yield and fruit quality
dataset: https://data.mendeley.com/datasets/tkbkzdt5nr.

Frontiers in Horticulture

10.3389/fhort.2024.1425285

Author contributions

JS: Data curation, Formal analysis, Investigation, Methodology,
Visualization, Writing — original draft, Writing — review & editing. DV:
Data curation, Formal analysis, Investigation, Methodology, Writing -
review & editing. PV: Conceptualization, Supervision, Writing — review
& editing. KH: Data curation, Investigation, Writing — review &
editing. BV: Conceptualization, Data curation, Writing — review &
editing. MH: Conceptualization, Investigation, Methodology,
Resources, Writing — review & editing. BVP: Conceptualization,
Project administration, Resources, Supervision, Writing — review &
editing. BN: Conceptualization, Resources, Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This
research was funded by Interreg VI-NI project GROW project. JS
acknowledges funding by Research Foundation -Flanders (FWO) as
a PhD fellow (project nr. ISE1921N & 1SE1923N).

Acknowledgments

We would like to thank Tong Guan for her help with data
collection for 2020 fruit growth rate measurements.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/thort.2024.1425285/
full#supplementary-material

frontiersin.org


https://data.mendeley.com/datasets/tkbkzdt5nr
https://www.frontiersin.org/articles/10.3389/fhort.2024.1425285/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fhort.2024.1425285/full#supplementary-material
https://doi.org/10.3389/fhort.2024.1425285
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org

Salagovi¢ et al.

References

Adams, S. R., Cockshull, K. E., and Cave, C. R. J. (2001). Effect of temperature on the
growth and development of tomato fruits. Ann. botany. 88, 869-877. doi: 10.1006/
anbo.2001.1524

Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for
irregularly distributed data points. ACM Trans. Math. Software (TOMS). 4, 148-159.
doi: 10.1145/355780.355786

Akima, H., Gebhardt, A., Petzold, T., and Maechler, M. (2016). Package ‘akima’,
version 0.6. 2.

Alin, A. (2010). Multicollinearity. Wiley Interdiscip. reviews: Comput. statistics. 2,
370-374. doi: 10.1002/wics.84

Alvarez-Sanchez, E., Leyva-Retureta, G., Portilla-Flores, E., and Lopez-Velazquez, A.
(2014). Evaluation of thermal behavior for an asymmetric greenhouse by means of
dynamic simulations. Dyna. 81, 152-159. doi: 10.15446/dyna.v81n188.41338

Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., and Hasrane, I. (2022). Design,
technology, and management of greenhouse: A review. J. Cleaner Production. 373,
133753. doi: 10.1016/j.jclepro.2022.133753

Balendonck, J., Os, E. A. V., Schoor, R., Tuijl, B., and Keizer, L. C. P. (2010).
Monitoring spatial and temporal distribution of temperature and relative humidity in
greenhouses based on wireless sensor technology. In Proceedings of the International
Conference on Agricultural Engineering—AgEng, France: Clermont-Ferrand, 6-8.

Balendonck, J., Sapounas, A. A., Kempkes, F., Van Os, E. A., Schoor, R., Van Tuijl, B.
A.7J., et al. (2014). Using a wireless sensor network to determine climate heterogeneity
of a greenhouse environment. Acta Hortic. 1037, 539-546. doi: 10.17660/
ActaHortic.2014.1037.67

Bertin, N., and Génard, M. (2018). Tomato quality as influenced by preharvest
factors. Scientia Horticulturae. 233, 264-276. doi: 10.1016/j.scienta.2018.01.056

Bertin, N., Guichard, S., Leonardi, C., Longuenesse, J. J., Langlois, D., and Navez, B.
(2000). Seasonal evolution of the quality of fresh glasshouse tomatoes under
Mediterranean conditions, as affected by air vapour pressure deficit and plant fruit
load. Ann. Botany. 85, 741-750. doi: 10.1006/anbo.2000.1123

Bhujel, A, Basak, J. K., Khan, F., Arulmozhi, E., Jaihuni, M., Sihalath, T, et al. (2020).
Sensor systems for greenhouse microclimate monitoring and control: a review. J.
Biosyst. Engineering. 45, 341-361. doi: 10.1007/542853-020-00075-6

Bojaca, C. R, Gil, R, Gomez, S., Cooman, A., and Schrevens, E. (2009). Analysis of
greenhouse air temperature distribution using geostatistical methods. Trans. ASABE.
52, 957-968. doi: 10.13031/2013.27393

Buck, A. L. (1981). New equations for computing vapor pressure and enhancement
factor. J. Appl. Meteorology (1962-1982) 20, 1527-1532. doi: 10.1175/1520-0450(1981)
020%3C1527:NEFCVP%3E2.0.CO;2

Chen, R,, Kang, S., Hao, X,, Li, F,, Du, T., Qiu, R,, et al. (2015). Variations in tomato
yield and quality in relation to soil properties and evapotranspiration under greenhouse
condition. Scientia Horticulturae. 197, 318-328. doi: 10.1016/j.scienta.2015.09.047

Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., and Jamil, A.
(2019). Review on greenhouse microclimate and application: Design parameters,
thermal modeling and simulation, climate controlling technologies. Solar Energy.
191, 109-137. doi: 10.1016/j.solener.2019.08.042

Cooman, A., and Schrevens, E. (2006). A Monte Carlo approach for estimating the
uncertainty of predictions with the tomato plant growth model, Tomgro. Biosyst.
engineering. 94, 517-524. doi: 10.1016/j.biosystemseng.2006.05.005

Critten, D. L. (1991). A review of the light transmission into greenhouse crops. Int.
Workshop Greenhouse Crop Models 328, 9-32. doi: 10.17660/ActaHortic.1993.328.1

De la Torre-Gea, G., Soto-Zarazua, G. M., Lopez-Cruz, L, Torres-Pacheco, 1., and
Rico-Garcia, E. (2011). Computational fluid dynamics in greenhouses: A review. Afr. J.
Biotechnol. 10, 17651-17662. doi: 10.5897/AJB10.2488

Demers, D.-A., Dorais, M., Wien, C. H., and Gosselin, A. (1998). Effects of
supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.)
plants and fruit yields. Scientia Horticulturae. 74, 295-306. doi: 10.1016/S0304-4238
(98)00097-1

De Rijck, G., and Schrevens, E. (1998). Distribution of nutrients and water in

rockwool slabs. Scientia Horticulturae. 72, 277-228. doi: 10.1016/S0304-4238(97)
00144-15

Edey, S. N. (1977). Growing degree-days and crop production in Canada. (Ottawa:
Agriculture Canada)

FAOSTAT (2020). Production: crops. Available online at: http://www.fao.org/
faostat/en/data/QC (Accessed 18 March, 2024).

Farrar, D. E,, and Glauber, R. R. (1967). Multicollinearity in regression analysis: the
problem revisited. Rev. Economic Stat 49, 92-107. doi: 10.2307/1937887

Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., and Kittas, C. (2017).
Wireless sensor networks for greenhouse climate and plant condition assessment.
Biosyst. engineering. 153, 70-81. doi: 10.1016/j.biosystemseng.2016.11.005

Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F,, et al.
(2008). How does tomato quality (sugar, acid, and nutritional quality) vary with
ripening stage, temperature, and irradiance? J. Agric. Food Chem. 56, 1241-1250.
doi: 10.1021/jf072196t

Frontiers in Horticulture

10.3389/fhort.2024.1425285

Grange, R. I, and Hand, D. W. (1987). A review of the effects of atmospheric
humidity on the growth of horticultural crops. J. Hortic. Science. 62, 125-134.
doi: 10.1080/14620316.1987.11515760

Greer, D. H., and Weedon, M. M. (2012). Interactions between light and growing
season temperatures on, growth and development and gas exchange of Semillon (Vitis
vinifera L.) vines grown in an irrigated vineyard. Plant Physiol. Biochem. 54, 59-69.
doi: 10.1016/j.plaphy.2012.02.010

Guichard, S, Bertin, N., Leonardi, C., and Gary, C. (2001). Tomato fruit quality in
relation to water and carbon fluxes. Agronomie. 21, 385-392. doi: 10.1051/
agro:2001131

Guzman, C. H., Carrera, J. L., Duran, H. A., Berumen, J., Ortiz, A. A., Guirette, O. A.,
et al. (2018). Implementation of virtual sensors for monitoring temperature in
greenhouses using CFD and control. Sensors. 19, 60. doi: 10.3390/s19010060

Hall, A. J., and Gandar, P. W. (1995). Stochastic models for fruit growth, IV
International Symposium on Computer Modelling in Fruit Research and
Orchard Management. Acta Horticulturae. 416, 113-120. doi: 10.17660/ActaHortic.
1996.416.13

Heuvelink, E. (1996). Tomato growth and yield: quantitative analysis and synthesis
(Wageningen: Wageningen University and Research).

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: applications to
nonorthogonal problems. Technometrics. 12, 69-82. doi: 10.1080/00401706.1970.
10488635

Holsteens, K., Moerkens, R., Van de Poel, B., and Vanlommel, W. (2020). The effect
of low-haze diffuse glass on greenhouse tomato and bell pepper production and light
distribution properties. Plants. 9, 806. doi: 10.3390/plants9070806

Hurd, R. G., and Graves, C. J. (1985). Some effects of air and root temperatures on the
yield and quality of glasshouse tomatoes. J. Hortic. Science. 60, 359-371. doi: 10.1080/
14620316.1985.11515640

Hwang, H., An, S., Pham, M. D., Cui, M,, and Chun, C. (2020). The combined
conditions of photoperiod, light intensity, and air temperature control the growth and
development of tomato and red pepper seedlings in a closed transplant production
system. Sustainability. 12, 9939. doi: 10.3390/5u12239939

Inoue, T., and Yamori, W. (2021). Minimizing VPD fluctuations maintains higher
stomatal conductance and photosynthesis, resulting in improvement of plant growth in
lettuce. Front. Plant Science. 12. doi: 10.3389/fpls.2021.646144

Jerszurki, D., Saadon, T., Zhen, J., Agam, N., Tas, E., Rachmilevitch, S., et al. (2021).
Vertical microclimate heterogeneity and dew formation in semi-closed and naturally
ventilated tomato greenhouses. Scientia Horticulturae. 288, 110271. doi: 10.1016/
j.scienta.2021.110271

Jewett, T., and Jarvis, W. (2001). Management of the greenhouse microclimate in
relation to disease control: a review. Agronomie. 21, 351-366. doi: 10.1051/
agro:2001129

Jones, J. W., Dayan, E., Allen, L. H.,, Van Keulen, H., and Challa, H. (1991). A
dynamic tomato growth and yield model (TOMGRO). Trans. ASAE. 34, 663-0672.
doi: 10.13031/2013.31715

Kempkes, F. L. K., Van de Braak, N. J., and Bakker, J. C. (2000). Effect of heating
system position on vertical distribution of crop temperature and transpiration in
greenhouse tomatoes. J. Agric. Eng. Res. 75, 57-64. doi: 10.1006/jaer.1999.0485

Kim, S. E.,, Lee, M. Y., Lee, M. H,, Sim, S. Y., and Kim, Y. S. (2014). Optimal
management of tomato leaf pruning in rockwool culture. Horticulture Environment
Biotechnol. 55, 445-454. doi: 10.1007/s13580-014-0049-y

Kimura, K., Yasutake, D., Koikawa, K., and Kitano, M. (2023). Spatiotemporally
variable incident light, leaf photosynthesis, and yield across a greenhouse: fine-scale
hemispherical photography and a photosynthesis model. Precis. Agriculture. 24, 114—
138. doi: 10.1007/s11119-016-9492-3

Kittas, C., and Bartzanas, T. (2007). Greenhouse microclimate and dehumidification
effectiveness under different ventilator configurations. Building Environment. 42, 3774-
3784. doi: 10.1016/j.buildenv.2006.06.020

Kittas, C., Karamanis, M., and Katsoulas, N. (2005). Air temperature regime in a
forced ventilated greenhouse with rose crop. Energy buildings. 37, 807-812.
doi: 10.1007/s13580-014-0049-y

Kutta, E., and Hubbart, J. (2014). Improving understanding of microclimate
heterogeneity within a contemporary plant growth facility to advance climate control
and plant productivity. Plant Sci. 2, 167-178. doi: 10.11648/j.jps.20140205.14

Lamprinos, 1., Charalambides, M., and Chouchoulis, M. (2015). “Greenhouse
monitoring system based on a wireless sensor network,” in Proceedings of the 2nd
International Electronic Conference on Sensors and Applications. 13-15. doi: 10.3390/
ecsa-2-E009

Legast, E., Brajeul, E., and Truffault, V. (2019). “Effect of temperature on tomato fruit
growth: a modelling-based proposal for optimal temperature distribution within heated
greenhouse,” in International Symposium on Advanced Technologies and Management
for Innovative Greenhouses: GreenSys2019, Vol. 1296. 49-56. doi: 10.17660/
ActaHortic.2020.1296.7

Levene, H. (1960). Robust tests for equality of variances. Contributions to probability
Stat 69, 278-292.

frontiersin.org


https://doi.org/10.1006/anbo.2001.1524
https://doi.org/10.1006/anbo.2001.1524
https://doi.org/10.1145/355780.355786
https://doi.org/10.1002/wics.84
https://doi.org/10.15446/dyna.v81n188.41338
https://doi.org/10.1016/j.jclepro.2022.133753
https://doi.org/10.17660/ActaHortic.2014.1037.67
https://doi.org/10.17660/ActaHortic.2014.1037.67
https://doi.org/10.1016/j.scienta.2018.01.056
https://doi.org/10.1006/anbo.2000.1123
https://doi.org/10.1007/s42853-020-00075-6
https://doi.org/10.13031/2013.27393
https://doi.org/10.1175/1520-0450(1981)020%3C1527:NEFCVP%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1981)020%3C1527:NEFCVP%3E2.0.CO;2
https://doi.org/10.1016/j.scienta.2015.09.047
https://doi.org/10.1016/j.solener.2019.08.042
https://doi.org/10.1016/j.biosystemseng.2006.05.005
https://doi.org/10.17660/ActaHortic.1993.328.1
https://doi.org/10.5897/AJB10.2488
https://doi.org/10.1016/S0304-4238(98)00097-1
https://doi.org/10.1016/S0304-4238(98)00097-1
https://doi.org/10.1016/S0304-4238(97)00144-15
https://doi.org/10.1016/S0304-4238(97)00144-15
http://www.fao.org/faostat/en/data/QC
http://www.fao.org/faostat/en/data/QC
https://doi.org/10.2307/1937887
https://doi.org/10.1016/j.biosystemseng.2016.11.005
https://doi.org/10.1021/jf072196t
https://doi.org/10.1080/14620316.1987.11515760
https://doi.org/10.1016/j.plaphy.2012.02.010
https://doi.org/10.1051/agro:2001131
https://doi.org/10.1051/agro:2001131
https://doi.org/10.3390/s19010060
https://doi.org/10.17660/ActaHortic.1996.416.13
https://doi.org/10.17660/ActaHortic.1996.416.13
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.3390/plants9070806
https://doi.org/10.1080/14620316.1985.11515640
https://doi.org/10.1080/14620316.1985.11515640
https://doi.org/10.3390/su12239939
https://doi.org/10.3389/fpls.2021.646144
https://doi.org/10.1016/j.scienta.2021.110271
https://doi.org/10.1016/j.scienta.2021.110271
https://doi.org/10.1051/agro:2001129
https://doi.org/10.1051/agro:2001129
https://doi.org/10.13031/2013.31715
https://doi.org/10.1006/jaer.1999.0485
https://doi.org/10.1007/s13580-014-0049-y
https://doi.org/10.1007/s11119-016-9492-3
https://doi.org/10.1016/j.buildenv.2006.06.020
https://doi.org/10.1007/s13580-014-0049-y
https://doi.org/10.11648/j.jps.20140205.14
https://doi.org/10.3390/ecsa-2-E009
https://doi.org/10.3390/ecsa-2-E009
https://doi.org/10.17660/ActaHortic.2020.1296.7
https://doi.org/10.17660/ActaHortic.2020.1296.7
https://doi.org/10.3389/fhort.2024.1425285
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org

Salagovi¢ et al.

Lu, N., Nukaya, T., Kamimura, T., Zhang, D., Kurimoto, L, Takagaki, M., et al.
(2015). Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato
growth and productivity during the winter season. Scientia Horticulturae. 197, 17-23.
doi: 10.1016/j.scienta.2015.11.001

Marquardt, D. W., and Snee, R. D. (1975). Ridge regression in practice. Am.
Statistician. 29, 3-20. doi: 10.1080/00031305.1975.10479105

Mufioz, M., Guzman, J. L., Sanchez, J. A., Rodriguez, F., and Torres, M. (2019).
Greenhouse models as a service (GMaaS) for simulation and control. IFAC-
PapersOnLine. 52, 190-195. doi: 10.1016/j.ifacol.2019.12.520

Nkansah, G. O., Amoatey, C., Zogli, M. K., Owusu-Nketia, S., Ofori, P. A., and
Opoku-Agyemang, F. (2021). Influence of topping and spacing on growth, yield, and
fruit quality of tomato (Solanum lycopersicum L.) under greenhouse condition. Front.
Sustain. Food Systems. 5. doi: 10.3389/fsufs.2021.659047

Ogunlowo, Q. O., Akpenpuun, T. D., Na, W.-H., Rabiu, A., Adesanya, M. A., Addae,
K. S., et al. (2021). Analysis of heat and mass distribution in a single-and multi-span
greenhouse microclimate. Agriculture. 11, 891. doi: 10.3390/agriculture11090891

Panwar, N. L., Kaushik, S. C., and Kothari, S. (2011). Solar greenhouse an option for
renewable and sustainable farming. Renewable Sustain. Energy Rev. 15, 3934-3945.
doi: 10.1016/j.rser.2011.07.030

Pathak, T. B., and Stoddard, C. S. (2018). Climate change effects on the processing
tomato growing season in California using growing degree day model. Modeling Earth
Syst. Environment. 4, 765-775. doi: 10.1007/s40808-018-0460-y

Pawlowski, A., Guzman, J. L., Rodriguez, F., Berenguel, M., Sanchez, J., and Dormido,
S. (2009). Simulation of greenhouse climate monitoring and control with wireless
sensor network and event-based control. Sensors. 9, 232-252. doi: 10.3390/s90100232

Pearce, B. D., Grange, R. I, and Hardwick, K. (1993). The growth of young tomato
fruit. I. Effects of temperature and irradiance on fruit grown in controlled
environments. J. Hortic. Science. 68, 1-11. doi: 10.1080/00221589.1993.11516322

Picken, A.J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon
esculentum Mill.). J. Hortic. Science. 59, 1-13. doi: 10.1080/00221589.1984.11515163

Qian, T., Dieleman, J. A., Elings, A., De Gelder, A., and Marcelis, L. F. M. (2015).
Response of tomato crop growth and development to a vertical temperature gradient in
a semi-closed greenhouse. J. Hortic. Sci. Biotechnol. 90, 578-584. doi: 10.1080/
14620316.2015.11668717

R Core Team (2013). R: A language and environment for statistical computing.

Reichrath, S., and Davies, T. W. (2002). Using CFD to model the internal climate of
greenhouses: past, present and future. Agronomie. 22, 3-19. doi: 10.1051/agro:2001006

Rezvani, S.-e., Abyaneh, H. Z., Shamshiri, R. R., Balasundram, S. K., Dworak, V.,
Goodarzi, M., et al. (2020). IoT-based sensor data fusion for determining optimality
degrees of microclimate parameters in commercial greenhouse production of tomato.
Sensors. 20, 6474. doi: 10.3390/520226474

Riga, P., Anza, M., and Garbisu, C. (2008). Tomato quality is more dependent on
temperature than on photosynthetically active radiation. J. Sci. Food Agriculture. 88,
158-166. doi: 10.1002/jsfa.3065

Rodriguez, F., Berenguel, M., Guzman, J. L., and Ramirez-Arias, A. (2015). Modeling
and control of greenhouse crop growth (Basel: Springer). doi: 10.1007/978-3-319-11134-6

Frontiers in Horticulture

17

10.3389/fhort.2024.1425285

Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F., and Pitcairn, M. J. (1999).
Evaluation of several degree-day estimation methods in California climates. Int. J.
Biometeorology. 42, 169-176. doi: 10.1007/s004840050101

Rubinetti, D., Iranshahi, K., Onwude, D. I, Xie, L., Nicolaiii, B., and Defraeye, T.
(2023). An in-silico proof-of-concept of electrohydrodynamic air amplifier for low-
energy airflow generation. J. Cleaner Production. 398, 136531. doi: 10.1016/
j-jclepro.2023.136531

Salagovic, J., Vanhees, D., Verboven, P., Holsteens, K., Verlinden, B., Huysmans, M.,
et al. (2024). Microclimate monitoring in commercial tomato (Solanum Lycopersicum
L.) greenhouse production and its effect on plant growth, yield and fruit quality dataset.
Mendeley Data. doi: 10.17632/tkbkzdt5nr.2

Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables.
Postharvest Biol. technology. 15, 279-292. doi: 10.1016/S0925-5214(98)00091-X

Sethi, V. P., and Sharma, S. K. (2007). Survey of cooling technologies for worldwide
agricultural greenhouse applications. Solar Energy. 81, 1447-1459. doi: 10.1016/
j.solener.2007.03.004

Shamshiri, R. R, Bojic, I, van Henten, E., Balasundram, S. K., Dworak, V., Sultan, M.,
et al. (2020). Model-based evaluation of greenhouse microclimate using IoT-Sensor
data fusion for energy efficient crop production. J. Cleaner Production. 263, 121303.
doi: 10.1515/intag-2017-0005

Shamshiri, R. R,, Jones, J. W, Thorp, K. R, Ahmad, D., Man, H. C,, and Taheri, S.
(2018). Review of optimum temperature, humidity, and vapour pressure deficit for
microclimate evaluation and control in greenhouse cultivation of tomato: a review. Int.
agrophysics. 32, 287-302. doi: 10.1016/j.jclepro.2020.121303

Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality
(complete samples). Biometrika. 52, 591-611. doi: 10.2307/2333709

Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., and Berkvens, R. (2020).
Leveraging LoRaWAN technology for precision agriculture in greenhouses. Sensors. 20,
1827. doi: 10.3390/520071827

Su, Y., and Xu, L. (2017). Towards discrete time model for greenhouse climate
control. Eng. agriculture Environ. Food. 10, 157-170. doi: 10.1016/j.eaef.2017.01.001

Suay, R., Lopez, S., Granell, R.,, Molto, E., Fatnassi, H., and Boulard, T. (2008).
Preliminary analysis of greenhouse microclimate heterogeneity for different weather
conditions Vol. 797 (International Workshop on Greenhouse Environmental Control
and Crop Production in Semi-Arid Regions), 103-109. doi: 10.17660/
ActaHortic.2008.797.12

Tijskens, L. M. M., Unuk, T., Okello, R. C. O., Wubs, A. M., éuétar, v, §umak, D,
et al. (2016). From fruitlet to harvest: Modelling and predicting size and its
distributions for tomato, apple and pepper fruit. Scientia Horticulturae. 204, 54-64.
doi: 10.1016/j.scienta.2016.03.036

Wang, X., and Xing, Y. (2017). Evaluation of the effects of irrigation and fertilization
on tomato fruit yield and quality: a principal component analysis. Sci. Rep. 7, 350.
doi: 10.1038/s41598-017-00373-8

Zhao, Y., Teitel, M., and Barak, M. (2001). SE—Structures and Environment: Vertical
temperature and humidity gradients in a naturally ventilated greenhouse. J. Agric. Eng.
Res. 78, 431-436. doi: 10.1006/jaer.2000.0649

frontiersin.org


https://doi.org/10.1016/j.scienta.2015.11.001
https://doi.org/10.1080/00031305.1975.10479105
https://doi.org/10.1016/j.ifacol.2019.12.520
https://doi.org/10.3389/fsufs.2021.659047
https://doi.org/10.3390/agriculture11090891
https://doi.org/10.1016/j.rser.2011.07.030
https://doi.org/10.1007/s40808-018-0460-y
https://doi.org/10.3390/s90100232
https://doi.org/10.1080/00221589.1993.11516322
https://doi.org/10.1080/00221589.1984.11515163
https://doi.org/10.1080/14620316.2015.11668717
https://doi.org/10.1080/14620316.2015.11668717
https://doi.org/10.1051/agro:2001006
https://doi.org/10.3390/s20226474
https://doi.org/10.1002/jsfa.3065
https://doi.org/10.1007/978-3-319-11134-6
https://doi.org/10.1007/s004840050101
https://doi.org/10.1016/j.jclepro.2023.136531
https://doi.org/10.1016/j.jclepro.2023.136531
https://doi.org/10.17632/tkbkzdt5nr.2
https://doi.org/10.1016/S0925-5214(98)00091-X
https://doi.org/10.1016/j.solener.2007.03.004
https://doi.org/10.1016/j.solener.2007.03.004
https://doi.org/10.1515/intag-2017-0005
https://doi.org/10.1016/j.jclepro.2020.121303
https://doi.org/10.2307/2333709
https://doi.org/10.3390/s20071827
https://doi.org/10.1016/j.eaef.2017.01.001
https://doi.org/10.17660/ActaHortic.2008.797.12
https://doi.org/10.17660/ActaHortic.2008.797.12
https://doi.org/10.1016/j.scienta.2016.03.036
https://doi.org/10.1038/s41598-017-00373-8
https://doi.org/10.1006/jaer.2000.0649
https://doi.org/10.3389/fhort.2024.1425285
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org

	Microclimate monitoring in commercial tomato (Solanum Lycopersicum L.) greenhouse production and its effect on plant growth, yield and fruit quality
	1 Introduction
	2 Materials and methods
	2.1 Plant growth conditions
	2.2 Climate conditions and monitoring
	2.3 Microclimate calculation
	2.4 Plant and tomato fruit measurements
	2.5 Statistical analyses

	3 Results
	3.1 Average greenhouse climate conditions show seasonality
	3.2 Identification of microclimate zones across the greenhouse
	3.3 Diurnal microclimate differences between two zones
	3.4 The local microclimate influences plant growth and fruit yield
	3.5 Tomato quality is not affected by microclimate
	3.6 The local microclimate conditions predict differences in tomato plant and fruit development
	3.7 Long-term effects of the microclimate on growth rate

	4 Discussion
	4.1 Temperature and VPD conditions are often suboptimal in a commercial greenhouse
	4.2 A local microclimate is present during all seasons
	4.3 Microclimate variation affects plant and fruit growth
	4.4 Microclimate differences impact whole-season fruit yield

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


