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The value of generalized linear
mixed models for data analysis in
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Modern data analysis typically involves the fitting of a statistical model to data, which

includes estimating the model parameters and their precision (standard errors) and

testing hypotheses based on the parameter estimates. Linear mixed models (LMMs)

fitted through likelihood methods have been the foundation for data analysis for well

over a quarter of a century. These models allow the researcher to simultaneously

consider fixed (e.g., treatment) and random (e.g., block and location) effects on the

response variables and account for the correlation of observations, when it is

assumed that the response variable has a normal distribution. Analysis of variance

(ANOVA), which was developed about a century ago, can be considered a special

case of the use of an LMM. A wide diversity of experimental and treatment designs, as

well as correlations of the response variable, can be handled using these types of

models. Many response variables are not normally distributed, of course, such as

discrete variables that may or may not be expressed as a percentage (e.g., counts of

insects or diseased plants) and continuous variables with asymmetrical distributions

(e.g., survival time). As expansions of LMMs, generalized linearmixedmodels (GLMMs)

can be used to analyze the data arising from several non-normal statistical

distributions, including the discrete binomial, Poisson, and negative binomial, as

well as the continuous gamma and beta. A GLMM allows the data analyst to better

match the model to the data rather than to force the data to match a specificmodel.

The increase in computer memory and processing speed, together with the

development of user-friendly software and the progress in statistical theory and

methodology, has made it practical for non-statisticians to use GLMMs since the late

2000s. The switch from LMMs to GLMMs is deceptive, however, as there are several

major issues that must be thought about or judged when using a GLMM, which are

mostly resolved for routine analyses with LMMs. These include the consideration of

conditional versus marginal distributions and means, overdispersion (for discrete

data), the model-fitting method [e.g., maximum likelihood (integral approximation),

restricted pseudo-likelihood, and quasi-likelihood], and the choice of link function to

relate the mean to the fixed and random effects. The issues are explained

conceptually with different model formulations and subsequently with an example

involving the percentage of diseased plants in a field study with wheat, as well as with

simulated data, starting with a LMM and transitioning to a GLMM. A brief synopsis of

the published GLMM-based analyses in the plant agricultural literature is presented to

give readers a sense of the range of applications of this approach to data analysis.
KEYWORDS

binomial, conditional distribution, fixed effects, integral approximation, marginal
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1 Introduction

Whether one is conducting a planned experiment with replication,

blocking, and randomization or collecting observational data such as

from a survey, data analysis needs to be carried out in order to reach

conclusions (Schabenberger and Pierce, 2002). We take it as axiomatic

that appropriate statistical methods are required to interpret the

collected data from any study. Of course, “appropriate” can mean

many different things, depending on the situation and context of

interest. Generalized linear mixed models (GLMMs) are becoming

quite popular for data analysis in agriculture and other disciplines

(Gbur et al., 2012; Ruıź et al., 2023); however, there is a lot of uncertainty

about which GLMM to use, how to fit GLMMs to data, and how to

interpret the obtained results. Our objectives here were to provide some

background on the statistical modeling of data, particularly for data

collected in the agricultural or the plant sciences, to explain GLMMs

with examples, and to discuss several important issues when using

GLMMs that may be initially not appreciated by the data analyst.

Several other references are valuable for learning more about

GLMMs and for conducting analyses of a wide range of datasets

from different experimental designs (Littell et al., 2006; Bolker et al.,

2009; Zuur et al., 2009; Gbur et al., 2012; Stroup, 2013; Brown and

Prescott, 2015; Stroup et al., 2018; Gianinetti, 2020; Li et al., 2023; Ruıź

et al., 2015, 2023). For those who wish to learn more theory, as well as

applications, Stroup (2013) is an indispensable reference. Molenberghs

and Verbeke (2010) and McCulloch and Searle (2001) provided

considerably more theory about mixed models, but may be of less

value to the reader of this article. This article is heavily influenced by

Stroup (2013, 2015) and the material in Chapters 11–13 in Stroup et al.

(2018). We focus on an example involving the percentage of plants

infected by a particular disease in a field study, although the methods

can be applied to any discrete data where percentages can be calculated.

Gianinetti (2020) and Li et al. (2023) are other excellent references for

the GLMM-based analysis of data expressed as percentages. Readers

should refer to Gbur et al. (2012); Stroup (2013), and Ruıź et al. (2023)

for details on the analysis of continuous data using GLMMs. For those

interested in broader issues related to statistical analysis in horticulture,

including commonly made errors, we recommend Kramer et al. (2016).

Below, we start with some historical background on data

analysis, followed by a discussion on non-normal statistical

distributions and then presentations on models for data with

normal and non-normal distributions. Model expansions and

alternatives are given for select experimental designs. We place an

emphasis on the different methods of model fitting and the

interpretation of the estimated parameters for GLMMs,

demonstrated with an example dataset. Some major challenges in

the use of GLMMs are presented. Before the conclusions, a list of

cases in the literature where GLMMs were used is given.
2 Background: from ANOVA
to GLMMs

Analysis of variance (ANOVA), including the special case of t-

tests, and linear regression have been the foundations for data

analysis in agriculture and other disciplines for over a century
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(Fisher, 1918, 1935; Cochran and Cox, 1957; Steel and Torrie,

1960). The pioneering statistical works of Fisher, Yates, Cochran,

and Snedecor, among others, coupled with the advances in

statistical software and the increased speed and memory of

computers, have given researchers a large toolbox of methods to

describe data, predict outcomes, and make inferences about

hypotheses of interest (Schabenberger and Pierce, 2002; Gbur

et al., 2012).

ANOVA can be considered a special case of multiple linear

regression (Speed, 2010), where several predictor or explanatory

variables (X1, X2, etc.) are binary (0, 1). This allows data analysis to

be couched in terms of linear modeling of the response variables as

functions of predictor variables, an approach that still dominates

today. An explanatory variable can be discrete, generally known as a

classification or class variable, or simply a factor, and consists of two

or more distinct levels (e.g., cultivar 1 and cultivar 2 or treatment A

and treatment B). Otherwise, the explanatory variable can be

continuous (e.g., temperature), often called a covariate or a

covariable. Continuous variables can be treated as discrete

variables in a statistical model, depending on the objective and

the manner in which the experiment was conducted.

Models consist of fixed-effects and/or random-effects variables

(Schabenberger and Pierce, 2002). For the fixed-effects variables, the

levels (categories or groups) in the study represent all possible levels

of the factor or all the levels of interest by the investigator (i.e., they

were selected for study because they are of specific interest).

Examples would be fungicide treatment, biocontrol treatment,

pathogen inoculum dose, temperature, cultivar, or the nitrogen

level in a fertilizer. For the random-effects variables, the levels in the

study represent only a random sample of a larger set of levels (i.e., a

sample from a distribution of effects). Examples could include the

location (environment), a block, or a plot in a field study. A given

variable could be considered fixed or random, depending on the

circumstances. For instance, plant genotype could be considered a

random-effects variable if a sample of a population of genotypes was

randomly selected for study, with the goal of characterizing the

mean (expected value) and the variability of the response variable

(e.g., yield); on the other hand, genotype could be considered as a

fixed-effects variable if the investigator was strictly interested in the

responses of those particular genotypes. Similar arguments can be

made about location–year (“environment”) as being fixed or

random (see Chapter 6 in Littell et al., 2006).

The term mixed model is used when there are both fixed- and

random-effects variables in the model. More specifically, these are

known as linear mixed models (LMMs) when the response variable

(e.g., yield, biomass, or disease severity) is considered to be normally

distributed and the mean (expected value) is modeled directly as a

function of the fixed- and random-effects terms (Stroup, 2013). This

is explained in the next section, which includes a more technical

description of LMMs. A special case of a LMM is the linear model

(LM), in which there are no random effects except for the residual;

another special case is the random-effects model, in which there are

no fixed-effects variables. The concept of random effects goes back

to Fisher (1918, 1935), possibly earlier (but less formally), with

subsequent important early contributions by Yates (1940) and

Eisenhart (1947), as well as many others.
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For many years, the standard approach to handling random

effects in standard software (or by brute force work on a calculator

in the very early days) was to fit a LM to the data using ordinary

least squares as if all effects were fixed and then perform post-

model-fitting calculations to estimate the mean squares and

variances for the random-effects variables (Steel and Torrie, 1960;

Littell et al., 2006). The latter are used (automatically) to estimate

the standard errors (SEs) of the least squares means and the mean

differences for the fixed-effects terms and also to test for factor

effects. This approach works fine for many special cases (e.g.,

balanced randomized complete block designs); however, even for

a design such as the popular split plot or split plot with blocks,

certain SEs cannot be calculated correctly (Littell et al., 2006). For

incomplete block designs (i.e., where each block does not contain all

the treatments), recovering all of the available information in a

study (e.g., treatment effects within and between blocks) requires

some tedious post-model-fitting calculations when all factors

(including blocks) are considered fixed in the model (Yates,

1940). Many other situations often cannot be analyzed

satisfactorily with the mean square, post-model-fitting adjustment

approach, at least not without major approximations. Examples

include repeated measures in time and space or any situation when

complex correlations of data need to be specified or estimated.

The methodology of treating random effects fully as random in

the model-fitting process was developed by Henderson in a series of

papers (e.g., Henderson, 1950, 1953, 1984), with extensive theory by

Harville (1977) and others, especially Laird and Ware (1982). The

model-fitting approach is likelihood-based (rather than least

squares/mean square-based), with an assumed normal

distribution for the response variable conditional on the random

effects (see below). Except for special (simple) cases, model fitting is

iterative, facilitated by fast computers with large memories to carry

out the multiple iterations in a rapid manner. It was not until the

mid-1990s that (relatively) easy-to-use software was developed to fit

LMMs to data based on the likelihood principle. The MIXED

procedure in SAS is especially important here (Littell et al., 2006).

Presently, several R packages, such as “lme4” and “nlme,” can be

used (Galecki and Burzykowski, 2013; Bolker et al., 2022). GenStat

(VSN International, Hemel Hempstead, UK) has been able to fit

LMMs using the likelihood methodology for many years. These

programs have opened up a great diversity of applications in data

analysis across all disciplines that go far beyond what was possible

with the traditional ANOVA approach in the older software (Brown

and Prescott, 2015). Nevertheless, the older approach is still

used extensively.

It has been well understood for decades that the distributions of

many response variables are not normal. Many are discrete (such as

the counts of fruit or the percentages of diseased plants), while

others are continuous but not symmetrical (possibly including the

severity of disease symptoms or the time to an event, such as time to

seed germination). The gamma and beta distributions are possible

alternatives to the normal distribution for asymmetrical continuous

distributions (Gbur et al., 2012; Ruıź et al., 2023). Counts with no

(definable) upper bound (e.g., the number of insects on plants or the

number of spores in a spore trap) may be described using

the Poisson distribution, while counts with an upper bound [e.g.,
Frontiers in Horticulture 03
the number of plants with disease symptoms out of n plants

observed (disease incidence) or the number of seeds germinating

out of n seeds observed] may be described using a binomial

distribution (Madden and Hughes, 1995; Madden et al., 2007;

Gianinetti, 2020). In the binomial case, proportions can be

defined as y/n, where y is the count. In the Poisson case,

proportions do not exist as n is not defined. In practice, there is

always a finite upper bound n for a count in biology; however, if n is

very much larger than y, then it is reasonable to assume that there is

no upper bound. An alternative for Poisson is the negative binomial

(NB) distribution, while an alternative for the binomial is the beta-

binomial distribution (Madden and Hughes, 1995). Both of these

alternatives represent situations with higher variances than defined

by the Poisson and the binomial.

A typical property of non-normal distributions is that the

variance is a function of the mean (Stroup, 2013). However,

the standard assumption of a (normality-based) LM or LMM is

that the (residual) variance is constant across all of the factor levels

(i.e., the variance is independent of the mean). Linear or linear

mixed modeling approaches can be (and routinely have been) used

for non-normal data, as an approximation, by transforming the

response variable so that the residual variance is roughly constant

across the different means (e.g., for different treatments, cultivars,

etc.). Examples include using the angular transformation (arcsine

square root transformation) for proportions when the response

variable has a binomial distribution and the square root

transformation for unbounded counts when the response variable

has a Poisson distribution (Piepho, 2003, 2009). Although this has

been a popular and practical approach for decades, there are some

disadvantages, as explained by Stroup (2015) and Gbur et al. (2012),

among others. Essentially, this entails forcing the data to agree with

a model (linear or LMM) rather than choosing a model that

matches the stochastic process that generates the data (i.e.,

choosing a model that corresponds to the distribution of the

data). Among other things, the estimated treatment “means” of

the transformed values, or their back transformation to the original

data scale, do not necessarily mean what users might think they

mean. Additional issues are discussed further below.

The analysis of non-normal data has been possible for decades

using methods that are actually based on non-normal distributions,

especially for data with binary, binomial, and Poisson distributions

(McCullagh and Nelder, 1989; Schabenberger and Pierce, 2002).

Typical analyses include probit or logistic modeling of bioassay

(binary dead or alive) data or count data. This was primarily for

models with only fixed effects, with the models known as

generalized linear models (GLMs), usually when the distribution

belonged to the so-called exponential family of distributions. The

addition of random effects to these GLMs to form GLMMs has

posed some considerable statistical challenges, but research was in

full force by the early 1990s (Breslow and Clayton, 1993; Wolfinger

and O’Connell, 1993), although it would take another decade or

more before relatively easy-to-use software became broadly

available. The GLIMMIX procedure of SAS is especially

important here, as is the lme4 package in R. GenStat also has

methods for fitting GLMMs. One can consider LMs, LMMs, and

GLMs as special cases of GLMMs. Readers should consult Littell
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et al. (2006); Gbur et al. (2012); Stroup (2013), and Ruıź et al. (2023)

for more details on GLMMs, as well as on LMMs and GLMs.

There are many reasons to use GLMMs in the agricultural and

plant sciences (Gbur et al., 2012) because one can account for both

random and fixed effects with several different realistic statistical

distributions for the data. Nevertheless, there are also many issues

that investigators need to be aware of when using GLMMs. These

are described below after a more formal introduction of LMMs and

GLMMs in the context of an example dataset.
3 Non-normal distributions

3.1 Example

We consider a simple example to demonstrate several concepts

and methods for the analysis of non-normal data. This is a subset of

a much larger dataset analyzed in Paul et al. (2019) regarding, in

part, the effect of fungicide treatments on Fusarium head blight in

wheat (caused by the fungus Fusarium graminearum), mycotoxin

contamination of the grain, and crop yield. This example is from

one location–year (environment), a subset of the full dataset

consisting of 29 environments (conducted by different

researchers) with two factors evaluated at each environment,

fungicide treatment, and cultivar resistance. We only consider the

susceptible plant cultivar here, so that we are left with just one fixed-

effects factor in a randomized complete block design (RCBD). If all

the treatments were not in all of the blocks, we would have an

incomplete block design. We are using this subset merely for

demonstration purposes, not as a way of analyzing the full multi-

environment dataset with two factors.

The example experiment in this environment was laid out in

four blocks (j = 1, ..., 4), with the six treatments (i = 1, ..., 6)

randomized within each block. There were n = 100 wheat spikes

randomly chosen and visually assessed for disease symptoms in

each experimental unit (plot: a block–treatment combination

identified by the ij index), and each spike was categorized as

either diseased or healthy, giving a total of yij diseased spikes per

plot, with a proportion given by propij = yij/n. This proportion is

known as disease incidence (Madden et al., 2007), a measure of the

fraction of individuals that are infected. With this design, there is a

single response for each experimental unit (yij or propij), even

though this is the sum of several (n) binary observations. There is

no requirement that n be constant as it could vary with plot (nij).

Here, we consider block to be a random effect and treatment to be a

fixed effect. Note that, in Paul et al. (2019), more emphasis was

placed on the analysis of the severity of disease on spikes (known as

an “index” in the head blight literature) instead of the disease

incidence. Severity is a continuous response variable representing

the area of spikes with symptoms, expressed on a proportion or a

percentage scale.

The research questions are: Does treatment affect (mean)

disease incidence? If so, which treatments are different from each

other? Once we consider GLMMs for these data, we can ask better

questions; for example, does treatment affect the probability of a

wheat spike being infected (p) and which treatments differ from
Frontiers in Horticulture 04
others in terms of p? To save space, the only difference we show is

between the last and first treatments.
3.2 Distribution for disease incidence

Since disease incidence is discrete with an upper bound of n, it is

reasonable to consider the y in each plot to have a binomial

distribution (Madden and Hughes, 1995), at least as a starting

point. Generically, without reference to a particular treatment or

block (i.e., no subscripts), we can write this as y ~ Bin(p,n), where p
is a location parameter representing the probability of a trait or

characteristic. For instance, p is the probability that a plant is

infected or diseased; a moment estimate of p is the mean of the

proportions for a given plot. The mean y for the binomial

distribution is np and its variance is np(1 − p). Converting to

proportions, the mean prop is p and its variance is p(1 − p)/n for the
binomial. It is well known that the binomial can be well

approximated using a normal distribution if n is large enough

(Schabenberger and Pierce, 2002). To exemplify, following Stroup

(2013, 2015), we simulated 100,000 observations from a binomial

distribution with p = 0.1, with three different values of n (Figure 1).

With n = 10, the binomial distribution is fairly skewed and poorly

approximated by the normal (smooth curve); with n = 30, the

binomial is much less skewed; and with n = 100, the binomial is very

close to a normal distribution. With values of p closer to 0.5, the

binomial is much closer to being symmetric (and is exactly

symmetrical at p = 0.5), and approximation to normality is

achieved with a smaller n. At very small or large p (i.e., very close

to 0 or 1, respectively), a very large n may be needed to

approximate normality.

LMMs are not too sensitive to some departure from normality

(Littell et al., 2006), and there are some LMM-fitting methods that

do not require normality, e.g., MIVQUE0 (Rao, 1972), although

calculations of confidence intervals and inference generally assume

normality. However, even when it is reasonable to assume

normality as an approximation for the binomial, the problem is

that the variance of y (or of prop) will vary with the mean. The well-

known angular (i.e., arcsine square root) transformation of prop

does approximately stabilize variances, where prop* = sin−1(√prop)

(Schabenberger and Pierce, 2002). Other variance-stabilizing

transformations may be more successful when p is very close to 0

or 1 (Piepho, 2003). These may work well with LMMs (i.e., for

assumed normal data), although it becomes non-trivial to interpret

the exact meaning of the estimated angular means for each

treatment relative to the underlying distribution of the counts (or

corresponding proportions). This is especially true when there are

random effects (see details and example below). There are also other

challenges with the transformation-based LMM analysis. For

instance, one transformation may be appropriate to stabilize

variances, but a different transformation may be needed to obtain

a linear (straight line) relation between y and a continuous

explanatory variable (for a regression problem). Another

transformation may be needed to obtain a symmetrical

distribution. Thus, there are some big advantages to moving away

from transformation-based analyses.
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The binomial is a member of the exponential family of

distributions (McCullagh and Nelder, 1989; Gbur et al., 2012;

Ruıź et al., 2023). There are several other distributions of the

exponential family, or have statistical properties that are very

similar to those of the members of the family. These include the

Poisson, NB, gamma, and beta distributions (Stroup, 2013). The

binomial, Poisson, and NB are for discrete data, whereas the gamma

and beta are for continuous data. GLMs and GLMMs were

developed to fit data from these distributions. The normal

distribution, also known as the Gaussian, is a (symmetric)

member of the exponential family, so LMM can be thought of as

a special case of a GLMM. We focus on the normal and binomial

distributions in this paper, which are applied to discrete data.

Readers should consult Stroup (2013); Ruıź et al. (2023), and

Gbur et al. (2012) for details on the other distributions.
Frontiers in Horticulture 05
4 Models and analysis

4.1 Linear mixed model

Generically, we use y in the models as the response variable,

with subscripts depending on the experimental and treatment

design. For specific cases, we can use another symbol for the

response. The classic LMM for a RCBD with one observation per

experimental unit (ij combination) is:

yij = q + ti + bj + eij (1)

where q is a constant (intercept), ti is the effect of the i-th

treatment (fixed), bj is the effect of the j-th block (random), and eij is

the residual (random), the latter representing variability in the

response variable not accounted for by the other terms in the model.

The residual essentially gives the unique effect of each experimental

unit on the response variable (after accounting for the treatment

and block main effects) and is equivalent to an interaction of the

treatment and block effects (when there is one observation for each

ij combination, as here). The random effects for this RCBD model

are assumed to be normally distributed, with means of 0 and with

variances s 2
b and s 2

e :

  bj eN(0,s 2
b ), eij eN(0,s 2

e ) (2)

Thus, Equations 1 and 2 are needed to jointly define the

model for a RCBD with a random block effect. The (total)

variance of yij is s2
b + s 2

e . In some circumstances, block could

be considered as a fixed effect (Dixon, 2016), but we do not

consider this here.

Equation 1 (with the distributions in Equation 2) is defined as a

mixed model because beyond the fixed effect(s), it has at least one

random effect in addition to the residual (Stroup et al., 2018). It is

linear (in terms of the parameters and response variable y) because

the terms on the right-hand side of Equation 1 are actually

shorthand expressions for a sum of parameters (factor effects)

multiplied by binary indicator variables that identify treatments

and blocks (Milliken and Johnson, 2009) and because the left-hand

side does not involve any transformation of y. Note that the fixed

effects are constants (to be estimated) and the random effects are

(latent) random variables to be predicted (Stroup, 2013). Many

statistical programs may refer to the random effect predictions as

estimates and not predictions in the output. The non-residual

random effects such as blocks do not need to be normally

distributed (Lee and Nelder, 1996), but this is, by far, the most

common assumption. Statistical research has shown that the results

often are not very sensitive to this normality assumption for the

random effects (McCulloch and Neuhaus, 2011; Schielzeth et al.,

2020). It is a standard assumption of LMMs that the residuals have a

normal distribution. The concept of a residual substantially changes

when we transition to GLMMs.

For a segue to GLMMs, Equation 1 can be rewritten in terms

of expected values (means). That is, determining the expected value,

E(·), of the left- and right-hand sides of Equation 1 conditional on

the block random effect (more generally, conditional on all random

effects other than the residual) leads to:
FIGURE 1

Frequency distribution of 100,000 observations of the response
variable y generated from a binomial distribution with n = 10, 30,
100 individuals per observation. Proportions were calculated as y/n
for each observation.
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mij = q + ti + bj (3)

where mij is the so-called conditional expected value or the mean

of the response for treatment i and block j. It is “conditional”

because its value is for the specific level(s) of the random effect (the

j-th block for this simple RCBD). From Equation 3 and the

normality assumptions, the distribution of the response variable

yij conditional on the random effect, yij|bj, is defined as:

yijjbj eN(mij,s
2
e ) (4)

Note that the mean for this conditional distribution of yij is mij
and that the variance of this conditional distribution for a given

block (or a given level of the random effects) is s 2
e (which was given

as the residual variance in Equation 2). In other words, after

accounting for the fixed and random effects, the only other

variability of y is captured by the variance of the conditional

distribution (i.e., the unexplained variability). Readers should note

that the mij in Equations 3 and 4 may be written as mij|bj in order to

make the conditioning explicit (we avoid this additional notation

here). Putting it all together, the alternative to Equations 1 and 2 is:

mij = q + ti + bj

yijjbj   eN(mij,s 2
e )

bj   eN(0,s2
b )

(5)

In this manner of writing the LMM, the residual term

“disappears”; s 2
e is now seen as the variance of the conditional

normal distribution for y (after accounting for other effects).

Equation 5 can actually be generalized further in a way that will

help to understand GLMMs for non-normal response variables.

The right-hand side of Equation 3 for the conditional mean is

known as the linear predictor (LP), which is typically written with

the h symbol (hij for the RCBD here). The LP specifies all the fixed

and random effects in a controlled experiment or with observational

data that can affect either the conditional mean of a response

variable (or a function of the conditional mean). For a LMM (i.e.,

normal conditional distribution), the mean simply equals the LP;

that is, we link the LP to the mean with mij = hij. We can then

rewrite the set of equations for a RCBD as:

 hij = q + ti + bj

mij =  hij

yijjbj   eN(mij,s 2
e )

bj   eN(0,s2
b )

(6)

The LMM is rarely seen written this way, and the inclusion of

the explicit LP component is excessive for this LM with conditional

normal distribution; however, it does nicely allow for a transition to

the non-normal conditional distributions of GLMMs. This

formulation is also very useful for Bayesian model fitting because

it defines the two statistical distributions in the model: the

distribution of the block random effect and the conditional

distribution of the response variable.

Equations 1 and 2, or Equation 6 (with the four sub-equations),

can be expanded for any number offixed and random effects, as well

as the interactions of random and fixed effects (Littell et al., 2006;
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Stroup, 2013). Both formulations are conditional models, with the

same results when fitted to data; it is just a matter of preference in

how one writes the LMM. From Equations 5 or 6, the expected

mean for the i-th level of the fixed effect (the i-th treatment) can be

determined. The random effects are integrated out to obtain mi
(instead of mij). Because the expected value of the normally

distributed bj is 0, the result for a LMM is simply:

mi = q + ti (7)

This is generally of most interest to the investigator. The

estimates of mi and the differences of mi between treatments (mi −
mi′, where i and i′ are any two treatments), as well as their SEs (a

function of the variances in Equation 6), are derived from statistical

theory and are automatically calculated with LMM software (with

the right statements or options). Details are in mixed-model

textbooks (e.g., Littell et al., 2006; Galecki and Burzykowski, 2013;

Stroup et al., 2018).

There is yet another way to write a LMM. The two random-

effects terms (including the residual) in Equation 1 can be taken and

combined into one term as: hij = bj + eij. The LMM can then be

written as:

yij = q + ti + hij (8)

This LMM is known as a marginal model for a RCBD

experiment (Stroup, 2013). Both block and residual effects are still

present, just expressed differently. The variability component(s)

now has to be written with more complexity to express both

random sources. The approach is to define a vector of random

effects for each level of the random effect (the j-th block here),

designated hj. In order to save space, we assume here that there are

just three treatments, so we can write:

hj =

h1j

h2j

h3j

0BB@
1CCA =

bj + e1j

bj + e2j

bj + e3j

0BB@
1CCA (9)

where each element of the vector corresponds to a different

treatment. This leads to the derivation of the variance–covariance

matrix (P) for yij:

P =

s 2
b + s2

e s2
b s2

b

s2
b s2

b + s2
e s2

b

s2
b s2

b s2
b + s2

e

0BB@
1CCA (10)

The diagonal elements of the matrix are the (total) variances of

yij (s 2
b + s 2

e ; the same for each treatment), while the off-diagonal

elements (s 2
b ) are the covariances of the response variables. This

formulation helps to make clear that, with a random block,

observations that are from the same block are correlated. The

correlations within a block can be determined from the

covariances and variances (Littell et al., 2006). This structure is

known as compound symmetry (CS). The conditional model

(Equations 1 and 2, or Equations 5 or 6) and the marginal model

(Equations 8 and 10) are equivalent for LMMs. Fitting either

version will give the same result when fitted to data if s 2
b is 0 or

positive. Although the conditional model in Equations 5 or 6 does
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not explicitly show a covariance, the covariances between

treatments are still there, derivable from the terms of the

conditional model. For the RCBD, the correlation of yij within the

same block (say, j = 1), known as the intra-class correlation, is:

r = s 2
b =(s

2
b + s 2

e ) (11)

The reader can find more details in Stroup (2013) and Gbur

et al. (2012).

The most common method to fit LMMs is through the use of

restricted maximum likelihood (REML), also known as residual

maximum likelihood. This can be considered the gold standard.

REML produces unbiased parameter estimates (such as with a

RCBD) or less biased estimates than those produced with

maximum likelihood (ML). Bayesian methods can also be used

(Wolfinger and Kass, 2000; Stroup, 2021), as well as some

alternative frequentist approaches (Littell et al., 2006). It is

important to note that, whether the data analyst uses the

conditional (Equation 6) or the marginal (Equations 8-10) form

of the LMM, the actual (observed) data correspond to the marginal

distribution (Gbur et al., 2012). In essence, the conditional and

marginal models are just two different ways of generating data from

a marginal distribution (Stroup, 2013). The random effects in a

conditional LMM are random latent variables that are not directly

measured or observed; rather, they are predicted through the

model-fitting procedure. What one observes (measures) and then

analyzes are data arising from the marginal distribution, no matter

how that marginal distribution is derived or generated.
4.2 Example data analyzed with LMMs

Using the GLIMMIX procedure in SAS with REML estimation,

the conditional LMM in Equation 6 (equivalent to Equations 1 and

2) was fitted to the example data with the proportion of diseased

wheat spikes as the response variable (propij for yij). This is not

normally done as the variance is not independent of the mean for

binomial data (or discrete data, in general). Estimates of the

treatment means (e.g., q̂ + t̂ 1 = m̂ 1) and the SEs are given in

Table 1, together with one pairwise difference of means. The

exact same results are obtained if the marginal model (Equations

7–10) is fitted for this LMM (results not shown). The SEs are

functions of the block and residual variances (details in Gbur et al.,

2012; Stroup, 2013). Interestingly, despite the problems in directly

analyzing proportions, the estimated mean proportions from the

fitted LMM are unbiased estimates of the true proportions for each

treatment across all the blocks (i.e., across all the levels of the

random effects; the marginal means) (Stroup, 2013, 2015).

However, the estimated SEs across all treatments (0.0590) are

meaningless because the LMM assumes a constant variance (s 2
e ).

Since the estimates of variability are wrong, the estimates of

confidence intervals and the tests of significance are thus wrong.

The LMM of Equation 6 can be generalized to allow for a

separate residual for each level of the fixed effect (s 2
ei). This is easily

done using REML algorithms such as in the MIXED procedure in

SAS. Fitting such a model can be more challenging, especially with

the small sample sizes typically found in agricultural field studies.
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With the number of blocks in this example being four, attempting

to estimate each treatment-specific residual variance is thus not a

good strategy.

The results of fitting the LMM to the transformed angular data

are also shown in Table 1. The estimated SEs were constant across

the treatments (0.0651), which is expected since one assumes that

the angular-transformed data have variances independent of the

mean. Comparisons of the treatments and tests of significance can

be done on these mean transformed values, and back-

transformation of the means can be performed to obtain a type of

“mean proportion” for each treatment, as shown in the table.

However, it is not intuitive what these back-transformed means

represent exactly. They are not estimates of the means of the

distributions of the actual proportions, but are related to

those means.

In symbols and suppressing subscripts here, using g(y) as a

transformation (function) of y [such as a log and angular (arcsine

square root), among others], the expected value (i.e., mean) of g(y),

E(g(y)), is not equal to the transformation of the expected value

(mean) of y, g(E(y)) (Schabenberger and Pierce, 2002). These two

types of means are related, but are not the same. The situation

becomes even more complicated with multiple random effects. For

the example (Table 1), the back-transformed values give a type of

“central” (but not truly central) value of the marginal distribution of

the data. Nevertheless, analytical approaches based on

transformations still have value, as long as the investigators

understand the limitations.
5 Generalized linear mixed models

5.1 Conditional non-normal distributions

With GLMMs, investigators have the opportunity to better

match the model used for data analysis with a plausible model for

stochastic generation of the data (Stroup, 2013, 2015). Consider the

disease incidence data in the example, where it is reasonable to

assume a binomial distribution for y in a given plot (experimental

unit), at least as a starting point. Suppressing subscripts

temporarily, we can write generically, y|plot ~ Bin(p,n), for the

conditional distribution of the number of diseased wheat spikes

(this could also be for the number of germinated seeds in a pot in a

greenhouse, etc.). The probability of disease (or the probability of

some trait), p, could be influenced by the pathogen inoculum

density, the favorability of the environment for infection, and so

on. It is quite plausible that p represents a parameter that has direct

mechanistic interpretation. We continue with our hypothetical

example from Figure 1 and consider p = 0.1 (following closely,

once again, the method in Stroup, 2013).

Consider the impact of random effects, such as blocks. If there is

only one treatment (e.g., control), then the plot and the block are

synonymous. With random effects, p is randomly perturbed by the

block, so that p is higher than 0.1 in some blocks (plots) and is lower

than 0.1 in other blocks. The response y in each block (for any single

treatment) would depend on the realized value of p for that block.

On average, the perturbation is 0, at least on one possible scale.
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Ultimately, we want to specify the marginal distribution of y [across

the population of plots (blocks)] based on the data-generating

process in each plot (block) and the distribution of perturbations

across the plots. A linear additive scale for the perturbation of the

random block effects (i.e., adding bj directly to p) would not work in
a realistic model, in general, because a random permutation could

give a probability nonsensically above 1 or below 0 in a given plot

when p is relatively close to 1 or 0. A linear perturbation could work

on a function of p, if the right function was used, so that p remains

bounded by 0 and 1. This is the approach taken in the usual GLMM.

Being more explicit and referring back to the conditional

distribution form of a LMM (Equation 6), we can write the LP for a

RCBD as  hij = q + ti + bj. This is exactly the same for a normal or a

non-normal conditional distribution. Likewise, the random block effect

can be assumed to have a normal distribution, as with LMMs. The

question is how to link the hij LP to the location parameter. This is done

through the link function, g(pij), or, more generally, as g(mij), where a
link function is a transformation of a parameter (not a transformation of

the observations). Thus, we can write g(pij) =hij. The location parameter

is obtained by the inverse link function, written as pij = g−1(hij) = h(hij).
For conditional binomial data, the logit is the most common link

function; that is, g(pij) = logit(pij) = ln(pij/(1 − pij)). There are other

possibilities for the link function based on specific applications or theory

(Collett, 2003). The term “identity link” or “identity link function” is

used when there is no transformation of m or p.
For a RCBD (one fixed-effects factor and random block effect

factor), we can now write the conditional model form of the GLMM

generically as:

 hij = q + ti + bj

g(mij ) =  hij

yijjbj   eDist(mij, n)

bj   eN(0,s 2
b )

(12)
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where “Dist” is generic for some conditional distribution.

This equation is almost the same as that for the LMM (see

Equation 6). For conditional binomial data (with p = m), in
particular, we write:

 hij = q + ti + bj

logit(pij) =  hij

yijjbj   e Bin(pij, n)
bj   eN(0,s 2

b )

(13)

Recall that the mean of the binomial is np for y; the mean of y/

n is p. Thus, the location parameter p with the binomial plays the

role of m in the general distribution (Equation 12). Unlike with a

LMM, it is important to note that there is no variance to estimate

for the conditional binomial distribution (i.e., no unknown

residual variance as the variance of the binomial is fully defined

based on n and p). The variance of the conditional binomial

is np(1 − p). See GLMM expansions and extensions below

(Section 6) for the implications of this. One can reduce

Equation 13 to three components by directly writing  logit(pij) =
q + ti + bj as the first sub-equation. It is important to note that,

although the g(·) link function is a transformation, a GLMM is not

a model for a function or transformation of data (i.e., not a model

for the transformed response variable). Put another way, a GLMM

is not a model for the mean of transformed observations; rather, it

is a model for a function (transformation) of the mean (m, p, etc.)
of the actual (non-transformed) observations. This subtle

difference is extremely important. The LP of the GLMM in

Equation 13 estimates a function of the probability of disease

for a particular treatment and block. The inverse link to obtain p
for a logit link function is given by:

pij = h(hi j ) = 1= 1 + exp −logit(hij)
� �� �

(14)
TABLE 1 Estimated means and standard errors (SEs) when fitting a linear mixed model (LMM; Equation 6) to the proportion of diseased wheat spikesa

with an incorrect assumption that the residual variance is constant (i.e., independent of the mean proportion) and when fitting the LMM to the angular
transformation of the proportions where it is reasonable to assume the transformed values have constant residual variance, together with the back-
transformation of the estimated angular means to obtain proportions (where the SE of the back-transformation is based on the delta method).

Treatment Proportion Angular transformation Angular transformation

Mean SE Mean SE Back-
transformed

SE

1 0.475 0.0590 0.760 0.0651 0.475 0.0650

2 0.600 0.0590 0.891 0.0651 0.605 0.0636

3 0.620 0.0590 0.908 0.0651 0.621 0.0631

4 0.540 0.0590 0.826 0.0651 0.541 0.0648

5 0.755 0.0590 1.067 0.0651 0.767 0.0550

6 0.820 0.0590 1.139 0.0651 0.825 0.0494

6 − 1b 0.345 0.0781 0.379 0.0866 –c –c
aExample dataset: Effects of different fungicide treatment applications (fixed effects) and block (random effects) on the incidence of Fusarium head blight in wheat (randomized complete block
design). There were n = 100 wheat spikes assessed for disease in each plot (treatment × block combination).
bContrast of treatment 6 − treatment 1 (example).
cBack-transformation of a difference of the transformed means has no meaning. If these mean differences are desired, the back-transformation of each angular mean would first be calculated,
followed by calculation of the differences of these means. Statistical tests of contrasts should be done on the transformed scale if the model was fitted to the transformed response variable.
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5.2 Marginal distribution

Integrating over the random effects of the conditional LMM

(Equation 6) results in the marginal distribution for y (Littell et al.,

2006; Stroup, 2013; Brown and Prescott, 2015). With normality for

the random effects and the conditional distribution in a LMM, the

marginal distribution is determined analytically. The expected

values of the fixed effects of this marginal distribution (e.g.,   mij =

q + ti) are the same as those obtained simply by inserting 0 (the

expected value of the normally distributed random effects; see

Equation 2) for the random effects in the conditional LMM

(Equation 3).

The situation is different with GLMMs. The marginal

distribution cannot be determined analytically, requiring

numerical integration; for the binomial conditional distribution,

as an example,  logit(pi) = q + ti is not the logit of the mean

proportion of diseased individuals over all the blocks (i.e., over all

the levels of the random effects). This is because the inverse link is a

nonlinear equation (Equation 14) and the conditional distribution

is not normal. This is an extremely important concept because, as

discussed above, one observes the marginal distribution (more

technically, a sample from the marginal distribution), not the

conditional distribution. Numerical integration over the random

effects can give an estimate of the marginal distribution (required

for model fitting), including estimates of the marginal mean (the

marginal mean proportion of diseased plants here over all the

blocks) and its variability. This is explained by Stroup (2013) on

pages 102–107 for a similar situation. Sometimes, this marginal

distribution, which is made up of the mixture of the binomial and

normal distributions, is called the logistic–normal–binomial (LNB)

distribution when used to characterize the spatial variability in fields

(Hughes et al., 1998).

The marginal distribution from Equation 13 can also be

obtained by simulation for known parameters for the conditional

distribution and the random-effects distributions. Following Stroup

(2013) closely, we estimated the marginal distribution of the

diseased proportion (y/n) across levels of the random effects by

simulating 100,000 observations from Equation 13, with p = 0.1 and

n = 30 for the conditional binomial distribution, and three levels of

the block effect standard deviation [sb = 0.5, 1.0, and 1.5 (s 2
b = 0.25,

1.0, and 2.25)]. With simple random sampling (i.e., no random

effect distributions), the binomial distribution is not very skewed

with n = 30 (Figure 1). However, in a mixed-model setting with

symmetric (normal) random effects, the marginal distribution of

the proportion can be very skewed depending on the value of the

block variance. As seen in the left-hand column of Figure 2, the

marginal distribution becomes more and more skewed with

increasing block variance. A general rule of thumb is that

marginal distributions are not symmetrical for GLMMs, with the

skewness dependent on the skewness of the conditional distribution

(e.g., binomial) and the magnitude of the variances of all the

random effects in a LP.

In the simulation example in Figure 2, the mean proportions of

the marginal distributions are estimated as 0.109, 0.134, 0.169 for

block variances of 0.25, 1.0, and 2.25, respectively, all with p = 0.1
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(displayed in Figures 2A–C, respectively). That is, the mean

proportions increase with increasing random effect variances even

though the underlying location parameter for the conditional

distribution (i.e., for the generation of observations in each

experimental unit) is fixed at p. Broadly, the mean proportion

will not correspond to the inverse link of q + ti for treatment i (or

just q when there is just one treatment). When p is less than 0.5, the

marginal mean proportion will be greater than p, with the degree of

difference being dependent on the random effect variability. When

p is greater than 0.5, the marginal mean proportion will be less than

p. The variances of the marginal distributions also increase in the

same manner. Using the angular transformation of the observations

in a LMM does not lead to a symmetric marginal distribution, as

seen in Figure 2D for an example block variance of 1.0. The new

variance-stabilizing transformation of Piepho (2003),

prop* = ½exp (dprop) − exp(d(1 − prop))�=2d;
with a stabilizing parameter of d = 5 also does not lead to a

symmetric distribution when the block variance is 1.0 in this

example (Figure 2E). We estimated d using the ML methodology

in Piepho (2003) (results not shown). Other tested values of d did

not result in a symmetric distribution. As discussed by Piepho

(2003), the new variance-stabilizing transformation to be used in

LMMs is very effective in stabilizing variances (among treatments),

but is less effective in producing a symmetrical distribution of the

transformed data (especially when the original distribution of y is

very skewed).

There are other ways to derive a marginal distribution than the

typical method here of mixing a normal random effect distribution

with conditional binomial on the link scale. For example, it is well

known that the beta-binomial provides an excellent representation

of the distribution of disease incidence when there is overdispersion

(i.e., higher variability than for the binomial alone, sometimes called

extra-binomial variation) (Madden and Hughes, 1995; Turechek

and Madden, 1999; Madden et al., 2007). In general, the beta-

binomial is utilized to characterize the spatial variability (clustering)

of incidence within fields, where each sampling location in a field is

a separate observation of disease incidence (based on n observed

units for each sample) (Turechek and Madden, 1999), but the

concept is easily extended to variability among blocks in planned

experiments. In the context of a RCBD, the beta-binomial is derived

by, once again, assuming that p is randomly perturbed in each plot

(block, etc.). However, the random block effect is not additive on the

link scale of the binomial [e.g., not adding bj to the equation for logit

(pj)] as it is for the derived GLMM of Equation 13. Instead, the

random block effect is assumed to have a beta distribution and is

multiplicative with p (i.e., working directly on the scale of p)
(Madden and Hughes, 1995). The plot effect is characterized by a

ϱ correlation parameter (instead of s 2
b ). An example of simulated

observations from a beta-binomial distribution is shown in

Figure 2F, where ϱ was chosen to roughly have the same effect as

s2
b = 1 with the normal random effect (Figure 2B). As with the other

scenarios in Figure 2, the marginal distribution is very skewed here.

There are many uses of the beta-binomial and the related binary

power law (Hughes and Madden, 1995; Madden et al., 2018), but
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the beta-binomial is not commonly used for routine data analysis

with GLMMs (e.g., determining treatment effects). Since the

random effect is considered non-normal, the beta-binomial is a

special case of what is often called doubly (or double) generalized

linear mixed models (DGLMMs) (Lee et al., 2006). We consider this

in some more detail below.

The key question in a GLMM is the measure of the “location”

(and associated SE) one wants to estimate. In agreement with

Stroup (2013, 2015) and Stroup et al. (2018), we argue that for

conditional binomial data, one wants to estimate logit(pi) = q + ti
for treatment i and the conditional probability pi using the inverse
link function (location parameter of the conditional binomial)
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(Equation 14). That is, one is interested in the parameter from

the conditional distribution, the probability of disease when the

random effects are exactly at their means (0). This is considered a

conditional mean. This location parameter is not affected by the

distribution of the random effects [although the random effect

variances do affect parameter estimation and the precision (SE) of

parameter estimates]. It turns out that the pi from the conditional

binomial (for treatment i) is the median of the marginal distribution

of proportions for this treatment (Stroup, 2013). Most importantly,

when the GLMM of Equation 13 is fitted to RCBD data, estimates of

logit(pi) for each treatment (q + ti), and therefore pi through the

inverse link (Equation 14), can be directly obtained.
FIGURE 2

Marginal distributions determined by generating 100,000 observations of the response variable y with a conditional binomial distribution (with p =
0.1 and n = 30 individuals per observation), plus a random effect for each observation (which had, for most graphs, a normal distribution with

variance of s2
bor standard deviation of sb). Inverse link is used to obtain y from logit(p). Proportion is calculated as y/n. Left-hand column: (A–C)

Data generated with Equation 13 (without t because there is only one treatment, with bj now as a plot effect), with standard deviations of bj effect of
0.5 (A), 1.0 (B), and 1.5 (C). Right-hand column: (D) Data generated as in (B) (standard deviation of 1), but the proportions transformed with angular
transformation. (E) Data generated as in (B) (standard deviation of 1), but the proportions transformed with Piepho (2003) function (with d = 5). (F)
Unlike other graphs, y is generated with beta-binomial distribution with overdispersion parameter of ϱ = 0.1 and no bj effect, approximately giving
the same variance of y/n as in (B) (with a standard deviation of 1).
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5.3 Example

The estimates of the logit of the probability of disease and the

corresponding conditional probabilities (inverse links), together

with their estimated SEs, from the fit of Equation 13 are given in

Table 2 (listed as model A). This is based on restricted pseudo-

likelihood (RSPL) model fitting, discussed below. As expected, the

SEs are not equal for the different treatments, being a function of the

variance of the conditional binomial and the block variance. The

block variance estimate was small in this example (ŝ 2
b = 0.073), and

the proportions are not very close to 0 or 1, meaning that the p̂ i of

the conditional binomial (based on the inverse link) is close to the

mean proportion of the marginal distribution obtained with the fit

of the LMM to the proportion data (Table 1). However, the SEs vary

greatly between the LMM and GLMM approaches [e.g., 0.042 for

treatment 1 with the GLMM (model A in Table 2) versus 0.059 for

the same treatment with the LMM (Table 1)], reflecting that the

GLMM properly accounted for the variance of a binomial

distribution and estimated a conditional distribution parameter.
6 GLMM expansions and alternatives

6.1 Link functions

Although it is very common to use the logit link with a

conditional binomial distribution in a GLMM, there are other

choices, such as the probit (inverse standard normal function)

and complementary log–log (CLL) [ln(−ln(1 − p))]. There may be

theoretical reasons to choose a different link for some applications

(Collett, 2003), or selection may be based on the goodness of fit of

the model (Malik et al., 2020). For instance, Kriss et al. (2012) used

the CLL link in a hierarchical GLMM for surveys of clustered plant

disease incidence data, where the choice of link was based on

previous theoretical and empirical work on the relationship

between disease incidence and severity (a continuous variable)

and the relationship between incidence at two (or more) scales in

a spatial hierarchy (Turechek and Madden, 2003; Hughes et al.,

2004; Paul et al., 2005). Many other possible link functions have

been proposed, and Malik et al. (2020) described several of them,

with a proposed approach for deciding on an appropriate link

to use.

The reason for the logit being the default link has to do with the

form of the binomial distribution. One method of writing the log of

the binomial distribution (derived after a little algebraic

manipulation of the function typically given in introductory

statistics courses) is:

ln½f (y)� = y   ln
p

1 − p

� �
+ n ln (1 − p) + ln

n

y

 !
(15)

Equation 15 is in the form for a member of the exponential

family of distributions (Collett, 2003; Gbur et al., 2012). A key

property of this family of distributions is that there is a term that

involves the product of the response variable (y) and a so-called

canonical parameter, which is either the mean (expected value, m)
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or the location parameter, or a function of the mean for the

distribution. Here, the canonical parameter is the logit of p, ln(p/
(1 − p)), the typical link function for the binomial. For the Poisson,

for instance, the canonical parameter is ln(m), which is the typical

default link function for count data. The work by Gbur et al. (2012)

and many of the major reference books for GLMMs give the ln[f(y)]

forms for other distributions or density functions in the exponential

family. All the relevant properties of these distributions (such as the

variance, among others) follow directly from the form of the ln[f

(y)]. When the default canonical link is not selected, the main

software programs, such as GLIMMIX in SAS, handle the necessary

extra calculations in the background to fit models and

calculate statistics.
6.2 Realistic modifications of the GLMM

The GLMM with a binomial conditional distribution (Equation

13) is the obvious natural extension of the LMM (Equation 6) for a

RCBD; however, there is a very good chance that the use of the

simple GLMM with agricultural (or other) experiments will give

incorrect results! In particular, the SEs of the estimated location

parameters (m and p) for treatments (on the link scale of the model

or for the inverse link scale of the data) may be too small. Likewise,

tests of significance are likely to be wrong or misleading, where the

test statistics are too large and the p-values for significance too small

(Stroup, 2015). This is an important warning, as elaborated below.

To understand this, note that the conditional normal distribution in

Equation 6 has a variance (s2
e ) that is estimated, but there is no

variance to estimate with the conditional binomial. The variance

of y for a conditional binomial distribution is fully defined by

p and n; that is, var(yij|bj) = npij(1 − pij) for the RCBD with

random block effect. However, as discussed elsewhere, count data

are very commonly overdispersed (Madden et al., 2007, 2018); that

is, y has a higher variance at the experimental unit (plot) level than

npij(1 − pij). Similarly, for counts without an upper bound, y has a

higher variance at the plot level than the theoretical variance for a

Poisson distribution (m) (Madden and Hughes, 1995; Madden et al.,

2018). As an aside, the concept of overdispersion as used here does

not exist for the (conditional) normal distribution because the

residual variance is independent of the mean; s 2
e can take on any

value to account for the variability not accounted for by the other

terms in the model (in other words, the residual variance is

estimated from the data). For plant diseases, there are numerous

causes for overdispersion at the experimental unit (plot in this case)

level, especially the clustering of diseased individuals in plots or

fields (Hughes and Madden, 1995; Madden et al., 2007). More

broadly, any non-uniformity within the experimental units or

nonrandom sampling of the units, or misspecification of the LP

(right-hand side of the equation for h), or misspecification of the

conditional distribution in the model can result in overdispersion in

a given data analysis. Put another way, overdispersion can occur

“when the model fails to adequately account for all the sources of

variability” (Stroup et al., 2018, p. 391).

There are multiple ways to deal with overdispersion when

analyzing discrete data. The primary approaches for our purposes
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in this article are: 1) to expand the LP to include an additional

random-effects term (or terms); 2) to use a quasi-likelihood for the

conditional distribution; or 3) to use a different conditional

distribution that allows for higher variability than for the

binomial (or Poisson for unbounded counts) (Stroup, 2013).

There are important implications for all of these model

expansions in terms of model fitting (estimation). We defer the

discussion on estimation until later.
6.3 Adding terms to the linear predictor

The first of these approaches is the expansion of the GLMM.

For the RCBD conditional model of Equation 13, we add a term for

the interaction of block and treatment, (bt)ij, which we can write as

vij, to the right-hand side of the LP:

 hij = q + ti + bj + vij

The distribution of vij is assumed to be normal, vij eN(0,s 2
v ).

Now, the conditional distribution of y given the random effects is

written as:

yijjbj, vij   e Bin(pij, n)
Conceptually, we assume that p is randomly perturbed not only

by the block but also by the individual plot. Recall that the residual

term in Equation 1 for a normality-based LMM is equivalent to the

interaction of block and treatment, where the residual term

accounts for the variability not accounted for by the other terms

in the model. Therefore, the expansion of the LP for the

conditionally binomial data is in the same spirit, taking into

account the experimental design [for experiments without blocks,

the bj term would not be present, but the vij term would still be used
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here for the random effect of the experimental unit (plot)]. For

the RCBD with conditional binomial data, Equation 13 is now

written as:

 hij = q + ti + bj + vij

logit(pij) =  hij

yijjbj, vij   e Bin(pij, n)
bj   eN(0,s 2

b )

vij   eN(0,s 2
v )

(16)

The same general approach is used for any conditional GLMM

that is based on a conditional binomial or a conditional Poisson

distribution (with any number of fixed and random effects), i.e., to

add a residual-like random effect to the LP equation of the model.

This may be a three-way or a higher-order interaction, generally a

crossing of all the terms in the LP. Equation 16 is considered a

conditional model, and the pij represents the probabilities of disease
for the individual plots (combination of treatment and block), the

same as with Equation 13. Interest still remains on the estimation of

logit(pi) (= q + ti) and, hence, pi.
6.3.1 Example
Fitting Equation 16 using RSPL (see below for a discussion on

model fitting), which we label as model B, resulted in estimates of

ŝ 2
b = 0.031 for block (compared with 0.073 for model A) and ŝ 2

v =

0.248 for the block × treatment interaction [plot random effect

(“residual”)] (Table 2). Although the block variance is smaller than

that of the naive GLMM above (no vij term), there is now a nonzero

plot variance that was not previously considered. The estimates of

the LP (logit) and the inverse link for each treatment are shown in

Table 2. Here, the estimated SEs are larger than that for the fit of the
TABLE 2 Estimated means and standard errors (SEs, in parentheses) both on the linear predictor scale [logit(mean)] and the data scale (inverse link;
with SEs based on the delta method) when fitting three generalized linear mixed models (GLMMs) using restricted pseudo-likelihood (models A and B)
or restricted pseudo-likelihood with a quasi-binomial conditional likelihood (model C) to the number of diseased wheat spikesa: naive Equation 13
(model A); Equation 16, which includes an additive random effect for the individual experiment unit (plot; model B); and Equation 17, which includes a
multiplicative overdispersion parameter instead of an additive experimental unit effect (model C).

Treatment Model Ab Model Bb Model Cb

Logit
mean (SE)

Inverse link
mean (SE)

Logit
mean (SE)

Inverse link
mean (SE)

Logit
mean (SE)

Inverse link
mean (SE)

1 −0.101 (0.168) 0.475 (0.042) −0.102 (0.283) 0.474 (0.071) −0.100 (0.259) 0.475 (0.065)

2 0.410 (0.170) 0.601 (0.041) 0.438 (0.285) 0.608 (0.068) 0.407 (0.263) 0.600 (0.063)

3 0.495 (0.170) 0.621 (0.040) 0.498 (0.284) 0.622 (0.067) 0.491 (0.265) 0.620 (0.062)

4 0.162 (0.169) 0.540 (0.042) 0.166 (0.283) 0.542 (0.070) 0.161 (0.259) 0.540 (0.064)

5 1.138 (0.179) 0.757 (0.033) 1.211 (0.292) 0.771 (0.052) 1.128 (0.295) 0.756 (0.054)

6 1.532 (0.188) 0.822 (0.027) 1.557 (0.296) 0.826 (0.043) 1.520 (0.327) 0.821 (0.048)

6 − 1c 1.634 (0.165) _d 1.659 (0.390) _d 1.621 (0.395) _d
aExample dataset: Effects of different fungicide treatment applications (fixed effects) and block (random effects) on the incidence of Fusarium head blight in wheat (randomized complete block
design). There were n = 100 wheat spikes assessed for disease in each plot (treatment × block combination).
bEstimated variances or overdispersion parameter and test statistic for treatment effects. Model A: ŝ 2

b = 0.073, F = 27.90; model B: ŝ 2
b = 0.031, ŝ 2

v = 0.248, F = 5.24; and model C:

ŝ 2
b = 0.036, f̂   = 5.77, F = 4.80. AIC statistics are not used when a pseudo-likelihood or a quasi-likelihood estimation is utilized.

cContrast of treatment 6 − treatment 1 (example).
dInverse link of a difference of the transformed means has no meaning. If these mean differences are desired, the inverse link of each logit mean would first be calculated, followed by the
differences of these means. Interval estimation is problematic. Statistical tests of contrasts should be done on the link scale if the model was fitted with a non-identity link function.
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simpler Equation 13 (e.g., 0.283 for treatment 1 logit for Equation

16 versus 0.168 for Equation 13). This, together with the nonzero

estimated variance for vij, is an indicator of the overdispersion that

needed to be accounted for. The F statistic for treatment

significance is now 5.24, smaller than that for the simpler (and

inadequate) Equation 13 that did not account for the extra

variability (F = 27.9). The means (on the link or data scale) are

similar to the results found using the simpler model. However, these

means will, in general, not be the same.
6.4 Quasi-likelihood

When there is greater variability than is possible with a

binomial distribution (i.e., with overdispersion or extra-binomial

variation), instead of adding a random effect term as the LP, the

conditional variance can be defined as a constant times the binomial

variance. For a RCBD, this is var(yij|bj) = fnpij(1 − pij), where f is an
overdispersion scale parameter. It plays the role of the index of

dispersion (D) in spatial pattern analysis (Madden et al., 2018). By

allowing f to take on any positive value, the conditional variance

can always be expressed as a multiple of the binomial. For

unbounded counts, one would write var(yij|bj) = fmij, where mij is
the variance (and the mean) of the Poisson distribution. With f not

equal to 1, the conditional distribution is no longer binomial; in fact,

there is no longer an actual true conditional statistical distribution

that could stochastically generate the data. Thus, one has a so-called

quasi-likelihood, and a method suitable for quasi-likelihood is used

to fit the model (Gbur et al., 2012; Stroup, 2013). See below for a

discussion on estimation.

The quasi-likelihood-based model for the RCBD is given as a

slight modification of Equation 13:

 hij = q + ti + bj

logit(pij) =  hij

yijjbj   e   quasi :Bin(pij, n; f)
bj   eN(0,s 2

b )

(17)

where quasi :Bin(pij, n; f) is an arbitrary expression that

represents a conditional quasi-likelihood (which is not for the

actual distribution of the data). Note that the LP (hij) is the same

as the naive GLMM in Equation 13 (i.e., no addition of a vij term). It

would be incorrect to add the vij term (block × treatment

interaction) in a model where the f is also added as this would be

overparameterization; that is, two terms (s 2
v and f) would be

“competing” to explain the overdispersion.

6.4.1 Example
Table 2 displays the estimated means and SEs (model-scale

logits and data-scale inverse link means) for the fit of Equation 17

based on the conditional quasi-binomial likelihood (model C). This

was done with RSPL (see below). The estimated means are

extremely close to those obtained for the fit of naive Equation 13

(model A), but the SEs are much larger, reflecting an estimated scale

parameter of f̂ = 5.77 (i.e., the conditional variance is nearly six
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times larger than that obtainable with the binomial). The SEs are all

larger than those for the fit of the naive Equation 13, but more

similar to the SEs for the expanded LP model of Equation 16 (model

B). The test of treatment effect is now F = 4.80, similar to that

obtained with Equation 16 and much smaller than the F for the

naive Equation 13 (model A).

The use of quasi-likelihood for model fitting is very

straightforward and can be applied to many modeling situations.

It is often considered a simple fix for overdispersion in GLMs or

GLMMs (McCullagh and Nelder, 1989). Nevertheless, (Stroup

2013, pp. 347–348) was somewhat critical of the approach

because an actual likelihood function is not used in the

estimation as there is no true conditional distribution. That is,

there is no model for the direct stochastic generation of the data.

There are alternative approaches, such as the use of Equation 16

(model B), which may be consistent with the experimental design

(i.e., random block and plot effects in this example). Model B

(Equation 16) can be thought of as characterizing one possible data

generation process for the given experimental design (e.g., the

random effects of blocks and experimental units such as plots)

and model C (Equation 17) as characterizing a consequence of the

random effects affecting p (or m in general) that are not in the

model. Piepho (1999) and Madden et al. (2002) compared these and

other GLMMs for the analysis of plant disease incidence data.

Piepho (1999) should also be consulted for a more thorough

discussion of data generation processes that would lead to model

B or C.
6.5 Different distributions
with overdispersion

For unbounded count data, Poisson is commonly replaced by

the NB to account for overdispersion at the experimental unit level

(or for the clustering of individual observations, in general)

(Madden et al., 2007). The conditional Poisson would be replaced

with the conditional NB in Equation 13. Because the NB has its own

overdispersion parameter k that is estimated, then a vij term would

not be added and a f not specified for a quasi-distribution. This

substitution of the NB for the Poisson is easy to do with the

GLIMMIX procedure in SAS. For overdispersed binomial-type

data (when there is an upper bound of n for y), such as in our

example, the beta-binomial distribution (“Betabin”) can replace the

binomial. This distribution is not in the exponential family and is

much less used for mixed-model analysis, although it has had more

use with GLMs with only fixed effects (Hughes and Madden, 1995;

Morel and Neerchal, 2010) and for quantifying aspects of the spatial

heterogeneity of plant diseases (Madden et al., 2007, 2018). To use

this model, the yijjbj   e Bin(pij, n) in Equation 13 would be replaced

with yijjbj   e Betabin(pij, n,   ϱ), where ϱ is one formulation of the

overdispersion parameter for this distribution (at ϱ = 0, the Betabin

reduces to the binomial; as ϱ increases, overdispersion increases).

The LP would contain only the treatment and block effect (as in

Equation 13). This can be considered one type of DGLMM

(Lee et al., 2006).
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The beta-binomial distribution is not available in the GLIMMIX

procedure, but can be fitted using ML (not the REML) with the

NLMIXED procedure when there are random effects (such as block

effects). Considerably more coding is required to achieve this for the

beta-binomial. An alternative to fitting the beta-binomial is to

utilize the h-likelihood (see below).

The results for the example with the beta-binomial as the

conditional distribution (model D) are given in Table 3 based on

ML estimation. Although the means are similar, the SEs are larger

than those for model A (Equation 13) as the extra-binomial

variability is taken into account, but smaller than those for models

B and C (which take into account the extra-binomial variability in

different ways). The smaller SEs for the beta-binomial are due, in part,

to ML rather than REML being used in the estimation.
7 Fitting GLMMs to data

Unlike with normality-based LMMs, the method for fitting

GLMMs to data (i.e., parameter estimation and random effects

prediction) is controversial (Stroup, 2013; Stroup and Claassen,

2020). Even the labels for the model-fitting methods are confusing

and are used differently by different researchers, with the labels even

evolving over time. For LMMs, REML is the generally preferred

(and noncontroversial) method of model fitting, partly because it

produces unbiased estimates (fixed effects and their SEs) or less

biased estimates than ML (McCulloch and Searle, 2001; Galecki and

Burzykowski, 2013; Stroup et al., 2018). For simple cases, REML

duplicates the results for the mean square (and moment)-based

methods that predate the contemporary likelihood-based methods

for LMMs. Regular ML can also be used for LMMs. However, it is

well known that this produces biased estimates; in particular, the

variance estimates and the SEs will be too small for ML estimation,

resulting in the test statistics being too large. The latter is an issue

when the number of independent observations is small. REML and

ML are both iterative methods, although simple situations can result

in convergence in a single iteration.

Recall that, for any experiment or survey, the observed data are

a manifestation of the marginal distribution. Thus, the estimation

requires integration over all the random effects in a conditional

model to approximate the marginal distribution. However, there is

no analytical solution (i.e., mathematical expression) for this

integration with GLMMs; only approximations are possible,

which is one of the complexities of working with this class of

models. In fact, practical use of GLMMs only became possible with

the availability of fast computers with large memory (and excellent

programming). Despite the many labels in the literature, two broad

frequentist methods can be used: model approximation

(linearization) and integral approximation. There are also some

more specialized methods.
7.1 Linearization

Linearization involves a first-order Taylor series expansion of

the inverse link function of the LP equation [pij = g−1(hij) = h(hij)],
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generally centered on the current (or initial) estimates of the fixed

and random effects (Breslow and Clayton, 1993; Wolfinger and

O’Connell, 1993). A so-called pseudo-variable (y*) is formed based

on this expansion, which is a function of the current parameter

estimates (and random effect predictions) and the first derivative of

the inverse link with respect to the LP. The expected value of y* is

modeled as a function of the fixed and random effects (the right-

hand side of the LP). The variance of y* conditional on the random

effects is a complex function of the first derivatives and the variance

function for the conditional distribution [e.g., np(1 − p) for

binomial and m for Poisson].

Wolfinger and O’Connell (1993) developed a pseudo-likelihood

(PL) method based on linearization. The PL method makes the

(approximating) assumption that the conditional distribution of y*

(but not y), given the random effects, is normal with a complicated

variance (Stroup, 2013; Xie and Madden, 2014). As a consequence,

the marginal distribution is also normal. Thus, one can use the

machinery of normality-based LMMs to fit GLMMs and then

(automatically) recover the relevant statistics for the actual

distribution of y after convergence of the PL algorithm. The PL

fitting algorithm is doubly iterative in that the fitting of the y*

pseudo-variable is iterative (as is any LMM), and then the y* is

updated at the end of each LMM fit based on the LMM results, with

the LMM fitting being repeated with the updated y*. The double

iterations continue until convergence (defined in different ways).

With PL, one ultimately is basing the analysis on the actual

distributions specified in the model for y (the normality

assumptions for y* is only for the intermediate computational

work). Restricted PL is the default in the GLIMMIX procedure in

SAS (called RSPL in SAS), which uses REML-based model fitting for

the pseudo-variable. As an option, the ML version of PL (ML-based

PL; known as MSPL in GLIMMIX) can be performed. An

overdispersion term, f, can also be added as an option (see

Equation 17) with the PL method (either RSPL or MSPL), which

then becomes a quasi-likelihood approach (no longer a true

statistical distribution for the conditional distribution of y). We

are not aware of any R packages for PL estimation.

Breslow and Clayton (1993) took a quasi-likelihood approach,

which only assumes that the objective function to maximize in the

iterative estimation process has the general form of a member of the

exponential family of conditional distributions (defined through a

mean and variance, but with a multiplicative overdispersion

parameter). This approach is often labeled as penalized quasi-

likelihood (PQL) or marginal quasi-likelihood (MQL).

Implementation in R can be done with the “glmmPQL” function

in the MASS package. In this program, the overdispersion

parameter f is always estimated (cannot be restricted to 1);

therefore, the results do not correspond to a (conditional)

distribution for y, but to a quasi-likelihood. The PL approach

taken to fit model C in the example (Table 2) has analogy with

the PQL method of Breslow and Clayton (1993).

The PL method is extremely flexible, allowing not only true

distributions but also quasi-likelihoods and can easily handle

correlated observations, such as in temporal or spatial repeated

measures (Stroup, 2013). The RSPLmethod was therefore used to fit

models A, B, and C to the example data discussed so far.
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7.2 Integral approximation

Instead of approximating the model to obtain a marginal

distribution of a pseudo-variable, the integration over the random

effects (of the original model) can be approximated to obtain an

estimated marginal distribution of y. Generally, the best method to

use is the Gauss–Hermit quadrature (quadrature for short),

although it is computationally demanding and can be extremely

(or painfully) slow for moderate to large data problems, sometimes

requiring many hours if there are several factors and interactions.

The Laplace approximation, a special case of quadrature, is another

integral approximation method that works well for many datasets

and often gives estimates very similar to those obtained with the

more accurate quadrature (Joe, 2008; Stroup, 2013; Ruıź et al.,

2023). Laplace can be very fast and works when quadrature is not

possible or practical. Both Laplace and quadrature are available as

options in GLIMMIX of SAS, and quadrature with one quadrature

point (which reduces to one way of expressing the Laplace

approximation) is the default in the lme4 package of R when

fitting GLMMs. Linearization methods are not done with the

“lme4” package.

There are two important points worth noting with this

approach: 1) Integral approximations are ML-based; that is, there

is no restricted/residual (REML-like) version that reduces bias. The

problems that come with the use of ML instead of REML with

normality-based models carry over to GLMMs (bias of parameter

estimates and SEs, test statistics, etc.). 2) Integral approximations

require a true likelihood; therefore, quasi-likelihood-based models
Frontiers in Horticulture 15
(e.g., f > 1 with quasi-binomial likelihood) cannot be fitted. In

particular, model C for overdispersion with the binomial data

cannot be fitted using these approaches.

7.2.1 Example with integral approximation
The results from model B (Equation 16, with a random vij for

plot effects) using quadrature are given in Table 3 (model B-quad).

The results for the means are similar in this example to those

obtained with RSPL (see Table 2), although the SEs are slightly

smaller with the integral approximation methods (e.g., SEs of 0.245

versus 0.283 for the logit mean of treatment 1). The variance

estimates are a little smaller here (0.175 versus 0.248 for ŝ 2
v), and

the F statistic is a little larger for quadrature compared with that of

RSPL. The smaller variances and SEs are a consequence of the use of

ML- rather than REML-based methods. If the MSPL method in

GLIMMIX was used, the results would be more similar between PL

and integral approximations (both being ML-based). The

linearization and integral approximation (quadrature) methods,

however, will never give identical results.
7.3 Comparison of linearization and
integral approximations

Early on after the linearization methods were proposed, it was

accepted as common knowledge that integral approximations are

more accurate (less biased) than linearization when fitting GLMMs

to data (Stroup, 2013). However, this conclusion was mostly based
TABLE 3 Estimated means and standard errors (SEs, in parentheses) both on the linear predictor scale [logit(mean)] and the data scale (inverse link;
with SEs based on the delta method) when generalized linear mixed models (GLMMs) were fitted to the number of diseased wheat spikesa using
maximum likelihood with the quadrature method for integral approximation for Equation 16 (model B-quad), for Equation 13 but with the beta-
binomial for the conditional distribution of y instead of the binomial (model D), and when using Bayesian estimation with Equation 16 (model
B-Bayes).

Treatment Model B-quadb Model Db Model B-Bayesc

Logit
mean (SE)

Inverse link
mean (SE)

Logit
mean (SE)

Inverse link
mean (SE)

Logit
mean (SE)

Inverse link
mean (SE)

1 −0.103 (0.245) 0.474 (0.061) −0.099 (0.224) 0.475 (0.056) −0.116 (0.390) 0.472 (0.093)

2 0.438 (0.247) 0.608 (0.059) 0.419 (0.227) 0.603 (0.054) 0.426 (0.384) 0.602 (0.089)

3 0.502 (0.246) 0.623 (0.058) 0.482 (0.229) 0.618 (0.054) 0.487 (0.396) 0.616 (0.090)

4 0.167 (0.245) 0.542 (0.061) 0.162 (0.225) 0.540 (0.056) 0.147 (0.386) 0.535 (0.092)

5 1.211 (0.255) 0.770 (0.045) 1.176 (0.257) 0.764 (0.046) 1.223 (0.393) 0.766 (0.070)

6 1.567 (0.260) 0.827 (0.037) 1.524 (0.281) 0.821 (0.041) 1.521 (0.236) 0.818 (0.036)

6 − 1d 1.669 (0.340) –e 1.623 (0.336) –e 1.637 (0.365) 0.346 (0.085)f
aExample dataset: Effects of different fungicide treatment applications (fixed effects) and block (random effects) on the incidence of Fusarium head blight in wheat (randomized complete block
design). There were n = 100 wheat spikes assessed for disease in each plot (treatment × block combination).
bFor frequentist analysis, estimated variances or the overdispersion parameter, the test statistic for treatment effects (for B-quad), and the AIC statistic based on log-likelihood. Model B-quad: ŝ 2

b

= 0.023, ŝ 2
v = 0.175, F = 6.93, AIC = 194.8; model D: ŝ 2

b = 0.033, ϱ̂   = 0.032, AIC = 193.8.
cFor Bayesian estimation, the non-informative prior distributions were the flat constant for the fixed-effects terms, uniform(min = 0, max = 0.9) for sb and sv (square root of the variances), and
normal for the random-effects terms. The estimates in the table are the means of the estimated posterior distributions, while the numbers in parentheses are the standard deviations of the
posteriors (analogous to SEs with frequentist analysis). Because Bayesian analysis involves random sampling from posteriors, the results will be slightly different for each fit.
dContrast of treatment 6 − treatment 1 (example).
eInverse link of a difference of the logit means with a frequentist analysis has no meaning. If these mean differences are desired, the inverse link of each logit mean would first be calculated,
followed by calculation of the differences of these means. Statistical tests of contrasts should be done on the link scale if the model was fitted with a non-identity link function (for
frequentist analysis).
fUnlike with frequentist analysis, the difference of the means on the inverse link scale can be directly determined in a Bayesian analysis based on the posteriors (inverse link of each generated value
of the posterior for the logits, and then summary statistics from these).
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on assessments under extreme conditions [such as when there was

only one individual (diseased or healthy) in an experimental unit].

The “common knowledge” has not held up based on more recent

assessments, at least not as a generality (Couton and Stroup, 2013;

Claassen, 2014; Piepho et al., 2018; Stroup and Claassen, 2020).

Estimation performance has been recently assessed in detail by

Stroup and Claassen (2020) (see also their online supplements) with

extensive simulations, and the overall results showed that there is no

overall best method for fitting GLMMs.

The best method depends, in part, on how well the conditional

distribution (such as binomial or Poisson) can be approximated by

a normal distribution (see Figure 1). For conditional binomial data,

this partly depends on n (the number of individual observations

that gives a proportion y/n) for an individual experimental unit,

such as a plot (block × treatment combination for a RCBD). When

n is much less than 30, the conditional binomial may be quite

skewed (especially when p is close to 0 or 1), and the linearization

methods may give biased results. A small n per experimental unit

coupled with a large number of experimental units (e.g., blocks in a

RCBD) would be a situation where the likelihood approximation

works best as the conditional distribution need not be normal-like.

Integral approximations may also be desirable when p is very close

to 0 or 1 at moderate values of n. On the other hand, the

linearization methods, particularly the RSPL, are very accurate

when n is 40 or higher in each experimental unit and may

produce considerably less biased estimates of the means and SEs

than the integral approximations, especially with the small number

of experimental units (blocks) that are common in agricultural

sciences. There are circumstances when all estimation methods are

less than satisfactory (e.g., small n combined with a small number

of replicates).

Since integral approximations are strictly ML-based and not

REML-based, they suffer from small-sample bias (small number of

replicates, such as blocks in the RCBD case). Thus, with the typical

number of four to six blocks in field experiments, integral

approximations will typically lead to estimates of variances that

are too small, leading to the SEs for means being too small and the

test statistics for the significance of factor effects (overall or

individual contrasts) being too large. These all result in a large

type I error rate (rejecting the null hypothesis when the null

hypothesis is true). The RSPL linearization method (with the

same model) performs much better in these situations. The

exception is when the n is very small, in which no method may

be acceptable. However, the MSPL linearization method (or quasi-

likelihood) would also suffer from the small-sample bias because it

is ML- and not REML-based. A much more detailed investigation is

given in Stroup and Claassen (2020).

There are other advantages of the linearization methods. We

have found when analyzing multiple datasets that the linearization

methods more readily converge under a wide range of situations.

Since these methods use normal distributions (as intermediate

approximations), some methods strictly for LMMs are available.

One is the use of the Kenward–Roger method to obtain more

appropriate estimates of the SEs of the parameter estimates and

adjustments for the denominator degrees of freedom for small

samples (Stroup, 2013). Another advantage is that the algorithm
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does not “blow up” when one or more variance estimates are 0.

Negative variances can even be obtained with the linearization

methods as long as the variance of the marginal distribution is

positive (Stroup et al., 2018). This allows for better control of type 1

errors in some circumstances. In contrast, with integral

approximations, an estimate of 0 for a variance leads to

nonsensical SEs (and other results). For the latter, the terms in

the GLMM with a 0 variance must be removed and the

model refitted.

Based on Claassen (2014) and Stroup and Claassen (2020), one

can make the following general recommendations for fitting

GLMMs to conditional binomial data:
• For large n and small number of replicates (e.g., blocks):

Use RSPL.

• For large n and large number of replicates: Use either

approach as both have similar performance.

• For small n and small number of replicates: No method has

shown great performance. RSPL may converge more easily.

• For small n and large number of replicates: Use integral

approximation approaches.

• When using integral approximation, quadrature may be

theoretically better than the Laplace approximation, but the

Laplace approach gives similar results under many

circumstances. Quadrature may not be computationally

feasible in some situations, especially with several

variances in the GLMM.

• If one wants to simply inflate the variance of the conditional

distribution (f > 1) to account for the overdispersion (extra-
binomial variation due to not explicitly accounting for some

sources of variation in the model), the binomial can be

replaced with a quasi-likelihood (analogous to PL with the f
allowed to take any value). With a small number of

replicates (blocks), this should be done with restricted PL

(REML-based, such as RSPL in GLIMMIX).
Similar recommendations can be made for conditional Poisson

data (Stroup and Claassen, 2020). That is, if the number of

replicates is small (as in many field studies), RSPL linearization

outperforms, or strongly outperforms, the quadrature and Laplace

integral approximation methods. The superior performance of

RSPL may be less pronounced when the conditional distribution

is highly skewed (typically when m is very close to 0), but it still

performs well. Integral approximations perform well primarily

when there are many replicates.
7.4 Goodness of fit

Even when linearization may be advantageous based on the bias

of the parameter and variance estimates, among others, there are

some other reasons to use integral approximations. In particular, the

goodness of fit of models, including evaluation of the model

assumptions, cannot easily or directly be done using linearization

methods. This is because one is dealing with the (restricted) log-

likelihood for the pseudo-variable (with RSPL or MSPL), not the
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(restricted) log-likelihood for the original observations. The goodness

of fit of the model for the pseudo-variable, although done, is not a

reliable metric to assess the GLMM (Littell et al., 2006). For instance,

with the example in Table 2, adding the vij block × treatment

interaction to the GLMM (Equation 16) resulted in a point

estimate of s 2
v greater than 0, with larger SEs for the means and

smaller F statistic for significance compared with those of the model

without this term (Equation 13). This suggests that the added random

effect term was necessary. The results between the two models would

be about the same (e.g., no increase in SEs) if the vij term was not

needed. However, this conclusion is only informal.

The vij term (or any random-effects terms) can be formally

tested if the (restricted) log-likelihood for the data is available,

which is obtained with the integral approximation. A likelihood-

based confidence interval can be constructed for s 2
v , and a chi-

squared test of significance (null hypothesis of s 2
v = 0) is

straightforward with the GLIMMIX procedure. A simpler

approach with integral approximation approaches is to compare

the AIC statistics for the model fits with and without the vij term.

With the example above, the AIC is 194.8 with the vij term (model

B-quad), while it is 229.7 with the simpler model [model A-quad

(results not shown for A-quad)]. The lower AIC is an indication

that there is a random plot effect that needs to be accounted for.

Likelihood-based methods are especially appropriate for

studying the magnitude of estimated variances when the focus is

on random effects rather than on fixed effects. For instance, Kriss

et al. (2012) used a hierarchical GLMM to investigate the variability

of the incidence of Fusarium head blight among counties, fields

within counties, and sampling sites within fields. Using a so-called

small-area sampling approach, the authors demonstrated the use of

likelihood-based confidence intervals for the variances in which the

spatial scales had the greatest (and lowest) heterogeneity of disease.

Presently, there are new computational methods for incorporating

survey weights in the random effects of GLMMs to account for

unequal sampling probabilities when analyzing survey data (Diaz-

Ramirez et al., 2020).

Recent research by Piepho (2019, 2023) has shown how to

estimate a coefficient of determination (R2) for the fit of LMMs and

GLMMs. An advantage of this new approach is that linearization or

integral approximation methods can be used to fit the GLMM.

Interested readers should consult these papers for a discussion of

other proposals for R2 calculations with mixed models. Using the

algorithm in Piepho (2023), R2 = 0.507 for the fit of Equation 16

(model B) to the example data. In our view, the calculation of

relative measures of goodness of fit such as R2 is most desirable

when fitting LMMs or GLMMs with continuous explanatory

variables, when trying to compare mixed models with different

explanatory variables or number of explanatory variables, or when

analyzing observational data rather than data from randomized

trials. An example would be a random coefficient model for crop

yield in relation to disease intensity measurement, with location–

year as a random effect (Madden and Paul, 2009).

In principle, graphical methods can be used to assess the

goodness of fit, as well as select the most reasonable model, as they

commonly are for normality-based LMMs (Littell et al., 2006;

Stroup, 2013; Stroup et al., 2018). This includes assessment of
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different types of residual plots. There are many possible choices

in viewing residuals for GLMMs, such as those determined on the

model (i.e., linear predictor) or the data (i.e., inverse link) scale, or

the type of scaling (standardization) to use for the residuals (e.g.,

raw, Pearson, or studentized). A useful presentation on this can be

found in Stroup et al. (2018) and Stroup (2013). We agree with the

authors of the former that more research is needed to fully evaluate

the fit of GLMMs, especially when trying to decide on the most

appropriate model to use.
7.5 The h-likelihood

As an alternative to the linearization and integral methods

described above, the so-called h-likelihood method is also possible

(Lee and Nelder, 1996; Lee et al., 2006). Instead of estimating a

marginal likelihood (either on a pseudo-variable scale or the

original data scale), a joint likelihood is defined for both fixed

and random effects. This approach is especially useful when one

wants to specify that the random effects have non-normal

distributions. An example would be a beta-distribution for the

random block effect. Thus, the h-likelihood method is well suited

for DGLMMs, such as when the beta-binomial distribution is used;

however, in principle, h-likelihood can be applied to a wide range of

problems. Although there is an R package (“hglm”), the

methodology has still not been broadly adopted in statistics for

routine data analysis with GLMMs, and some view the approach

with skepticism (Meng, 2009). For normally distributed random

effects, we have found that the h-likelihood estimation performs

very similarly to RSPL in terms of fixed-effects parameter estimates,

SEs, and other statistics when the data have a conditional binomial

distribution (Piepho et al., 2018).
7.6 Bayesian estimation

Although we emphasize frequentist methods in this paper, a

Bayesian approach can be taken to fit a GLMM if one has an

assumed true conditional distribution (binomial or Poisson, for

instance) (Piepho and Madden, 2022). Thus, the Bayesian approach

follows directly from the integral approximation methods in the

sense that the model is not approximated and true distributions are

used. Bayesian analysis is a different philosophy, but is becoming

quite popular in many fields. Prior distributions (indicating the

degree of certainty or uncertainty before the experiment) on all the

parameters (e.g., ti), random effects (e.g., bj), and the variance and

covariance parameters (e.g., s 2
b ) need to be specified in order to

ultimately estimate the marginal posterior distributions and

credible intervals for the parameters and the differences of

parameters (such as the means and the differences of means).

Most Bayesian approaches (but not all) require a considerable

amount of coding to implement, and is computationally

expensive, where sampling of distributions is done, usually with

the Markov chain Monte Carlo (MCMC) algorithm, until

convergence is reached (although it is not always reached). The

approach is much more challenging for a non-statistician. There are
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a range of R packages for Bayesian analysis (rstan), and the release

of the BGLIMM procedure in SAS greatly facilitates Bayesian

analysis with GLMMs as the syntax is very close to that of

GLIMMIX. For those interested, Section 2.3 of Brown and

Prescott (2015) is a good place to start, at least in terms of mixed

models. The online tutorial by Stroup (2021) is extremely

informative for the fitting of GLMMs using the BGLIMM

procedure. Piepho and Madden (2022) further demonstrated the

use of this Bayesian procedure for conducting a meta-analysis of

conditional binomial data.

7.6.1 Example
When fitting Equation 16 to the example data (model B-Bayes)

with non-informative prior distributions, the treatment means were

similar to those found with the frequentist analysis (Table 3). As is

typical, the means were not the same, however. The standard

deviations of the posterior distributions (analogous to the SEs in

the frequentist analysis) were larger than those for the fit of the

same model with quadrature (compare models B, B-quad, and B-

Bayes). This is expected because Bayesian analysis takes into

account the uncertainty of the variance estimates.
8 Overview of some additional
GLMMs and general guidance
for analysis

8.1 Marginal model

Although one would normally be interested in the conditional

means when fitting a GLMM to discrete data (Stroup, 2013), such as

pi, there may be situations when marginal means are desired. This

type of GLMM can be fitted by expanding on the concepts

explained above for marginal LMMs (Equations 7-11). The

approach uses the quasi-likelihood and expands on the common

method used with GLMs (no random effects) for repeated measures

(Liang and Zeger, 1986), generally called generalized estimating

equations (GEEs). As with LMMs, the LP for a RCBD consists only

of the fixed effects,  logit(pij) = hij = q + ti. The effects of block and
plot are accounted for through a so-called working correlation or

covariance matrix for the vector of the response variable for the j-th

block, yj (the response vector would have six elements with six

treatments). The working covariance matrix is not a true covariance

matrix, but behaves like one. Details are given in Stroup (2015) and

Stroup (2013).

Fitting a marginal GLMM (with RSPL) to the example disease

incidence data would produce the same mean proportions (after

applying the inverse link function to the estimated logits), as found

in the first column of results in Table 1 for a normality-based LMM

fitted directly to the proportion data (Stroup, 2013). This is not

unexpected because the marginal means and conditional means are

the same with LMMs, as discussed above. The SEs of the estimated

means with marginal GLMM do vary with the mean, as required,

due to the dependency of variances on the means for non-normal

data. Although similar here, the means from a marginal GLMM
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generally will not agree with the means from a conditional GLMM.

Since we feel that researchers are mostly interested in conditional

means (see above discussion), we do not give any more details on

the marginal approach.
8.2 GLMMs for two expansions of
the RCBD

It is instructive to see how the GLMM for a RCBD is expanded

for two different scenarios.

8.2.1 Sampling
With field studies, it is common to collect multiple samples

within each experimental unit. For instance, Madden et al. (2002)

analyzed several datasets with a GLMM for the effects of fungicide

treatment on the incidence of Phomopsis leaf blight in strawberry.

Within each experimental unit (plot), there were either three or five

samples, each consisting of n = 15 leaflets. Although the values from

the clusters could be pooled to obtain a single y and n for each plot,

sampling within plots can also be explicitly accounted for. The

LMM linear predictor would be:

 hijk = q + ti + bj + vij (18A)

where mijk = hijk, in which the ijk subscript represents the i-th

treatment, the j-th block, and the k-th sampling unit within the plot

(block × treatment combination), respectively, and vij is the random

plot effect (equivalent to the block × treatment interaction). The

residual for the LMM (i.e., the variance of the conditional normal

distribution, ŝ 2
e ) represents the effect of the k-th sampling unit

within the i j-th plot (block × treatment × sampling

unit interaction).

For a GLMM with a conditional binomial distribution, the

simple use of Equation 18A, where logit(pijk) = hijk, would fail to

account for the effects of the sampling units within plots. This

approach would be a generalization of model A (Equation 13). A

quasi-likelihood approach could be taken using Equation 18A with

the overdispersion parameter f, producing a generalization of

model C (Equation 17; quasi-conditional binomial likelihood).

Alternatively, the conditional model could be expanded to:

 hijk = q + ti + bj + vij + wijk (18B)

where wijk is the random effect of the k-th sampling unit within

the ij-th plot (analogous to the residual in a LMM, now a three-way

interaction of block, treatment, and sampling unit). Now, one has a

conditional binomial for yijk:

yijkjbj, vij,wijk e Bin pijk, n
� �

Both vij and wijk are assumed to have normal distributions with

variances s 2
v and s2

w, respectively, when using Equation 18B. This

would be an expansion of model B (Equation 16). Based on previous

work by Piepho (1999), Madden et al. (2002) compared these and

some other more complex GLMMs for the analysis of five

strawberry datasets for disease incidence. Additional levels in the

sampling hierarchy for disease incidence were analyzed for another
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crop/disease system by Piepho (1999) using data initially analyzed

by Hughes and Madden (1995) using GLMs (all fixed effects). Only

the RSPL (without or with a f overdispersion term) was used by

Piepho (1999) and Madden et al. (2002). Recall from above that the

use of the f parameter with PL is actually a form of quasi-likelihood.

8.2.2 Split plots
A split plot with blocking is a very common design for field

experiments in agriculture, involving two or more fixed-effects

factors (Steel and Torrie, 1960; Schabenberger and Pierce, 2002).

Here, one has three sizes of experimental units: blocks, whole

plots (one of the fixed-effects factors, where the factor levels are

randomized within each block), and sub-plots (another fixed-

effects factor, where the factor levels are randomized within each

whole plot). For instance, Moraes et al. (2022) studied the effect of

cultivar resistance level and fungicide treatment on disease

incidence for Fusarium head blight, as well as for other

response variables assumed to have distributions in the

exponential family. For a single year, cultivar was the whole

plot (large experimental units), randomized within blocks, and

fungicide treatment was the sub-plot (small experimental units),

randomized within each whole plot factor level within blocks.

With random blocks and a split-plot design, the LP for a

normality-based LMM is:

 hijk = q + gi + tj + (gt)ij + bk + vik (19A)

where mijk = hijk, in which gi is the effect of the i-th whole-plot

factor, tj is the effect of the j-th sub-plot factor, (gt)ij is the

interaction of the whole-plot and sub-plot factors, bk is the

random effect of the k-th block, and vik is the random effect of

the ik-th whole plot (equivalent to the interaction of block and the

whole-plot effect). The variance of the conditional normal

distribution represents the variability among sub-plots within

whole plots (equivalent to the interaction of block, whole-plot,

and sub-plot effects).

For a GLMM for disease incidence (conditional binomial), with

logit(pijk) = hijk, direct use of Equation 19A [an expansion of model

A (Equation 13) for RCBD] would not account for the variability of

the sub-plots. The extra-binomial variability due to a sub-plot effect

could be accounted for by using quasi-likelihood for the binomial,

i.e., using Equation 19B, but with a quasi-binomial likelihood with a

f parameter [expansion of model C (Equation 17)]. Alternatively,

reflecting the random effects of sub-plots within whole plots and

blocks, the LP can be expanded to:

 hijk = q + gi + tj + (gt)ij + bk + vik + wijk (19B)

where wijk is the random effect of the j-th sub-plot within the ik-

th whole plot (equivalent to the interaction of block, whole plot, and

sub-plot). This would be an expansion of model B (Equation 16) for

a conditional binomial. Both vij and wijk are assumed to have

normal distributions with variances s 2
v and s 2

w, respectively.

Equation 19B is the basis for the model used in Moraes et al.

(2022), although the authors expanded it to account for an analysis

of the split plot over years (where year and interactions with year

were also random effects in the model).
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8.3 Overall guidance for GLMMs with
different designs

GLMMs can be expanded in numerous ways to account for

different treatment and experimental designs. Readers should

consult Gbur et al. (2012); Stroup (2013); Stroup et al. (2018),

and Ruıź et al. (2023) for examples. For those who are used to

analyzing data with LMMs, here is the basic rule of thumb:
• Start with the LP equation that would be appropriate for a

normality-based LMM analysis (there are many textbooks

with this).

• For GLMMs involving either the binomial or Poisson

conditional distribution, either:
o Add a random-effects term to the LP that would be

analogous to the residual term of a LMM, which can

then be fitted with a linearization or an integral

approximation method (see above for guidance) or

o Keep the LP of the LMM and use a quasi-likelihood

(with the f parameter) instead of a true

conditional distribution.
As described above, there are other approaches as well, such as

the use of marginal models or the switch to other conditional

distributions for overdispersed binomial-type data (e.g., beta-

binomial). For repeated measures, or more generally when there

is a variance–covariance matrix, the use of GLMMmethods is more

challenging, but can be done with a working covariance matrix (a

GEE-type quasi-likelihood approach). See Stroup et al. (2018) and

Stroup (2013) for discussion and examples.

When the conditional distribution is not Poisson or binomial,

such as the gamma or beta for (assumed) non-normal continuous

random variables, there is actually a variance or scale parameter for

the conditional distribution that is estimated from the data (Gbur

et al., 2012). Thus, one might not need to consider adding a random

effect term to the LP or use a quasi-likelihood approach. There may

still be additional variability to account for, however, and readers

should refer to Gbur et al. (2012).
8.4 The overall guidance applied to
the example

Several GLMMs and model-fitting methods were useful in

analyzing the example dataset that exhibited the typical situation

of higher variability than can be represented by the naive model A,

the model that transfers directly from an LMM-based analysis. The

use of model A would give a false sense of treatment effects with

artificially low SEs. The addition of an experimental unit random-

effects term (analogous to the residual in an LMM) was consistent

with the experimental design and led to more realistic SEs and tests

of significance. Due to the small number of blocks (typical for field

studies in the plant sciences) and the relatively large number of

observations within plots, the RSPL (model B), a linearization

approach, was preferable to the quadrature (model B-quad), an
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integral approximation. Quasi-likelihood methods could also be

used to account for the overdispersion exhibited by the data (model

C), although one no longer has a true conditional statistical

distribution in the model. A more complicated approach of

changing the conditional distribution from binomial to beta-

binomial was also effective in accounting for the overdispersion

(model D), although this method will probably not be for routine

analysis by non-statisticians. Except for model A, the differences in

the results (i.e., the means and SEs) were not large, reflecting the fact

that the estimated p values for the different treatments were not too

close to 0 or 1.
9 Challenges

9.1 All zeros or all ones

Although it remains popular to fit LMMs to transformed

proportion data (for conditional binomial), care must be taken

regarding the selected transformation. Transformations of

observations such as logs or logits fail (i.e., are undefined) when

the proportion is 0 or 1, and the log transformation fails when the

proportion is 0 (Piepho, 2003) (the angular transformation is

defined for these proportions). A major advantage of GLMMs for

conditional binomial data is that the observed individual zeros or

ones for proportions do not pose any difficulty; no ad hoc methods

(adjustments for zeros and ones) are needed to accommodate the

extreme values of the response variable. Nevertheless, there remains

a potential problem with GLMMs fitted to data with a conditional

binomial (or Poisson) distribution. For a RCBD and conditional

binomial data, as an example, model fitting fails if all the y

observations for a given treatment are equal to 0 or n (so that the

proportions are 0 and 1 for all observations) (Gianinetti, 2020).

Statistically, the problem is known as quasi-complete separation

(Albert and Anderson, 1984; Clark et al., 2023). Since this is

typically found with a very effective treatment for controlling

disease, so that all y values are 0, this is sometimes called the all-

zero problem, but it all applies to the situation where all the y values

are equal to n.

When one tries to use a likelihood-based model-fitting method

with these data, the iterative procedure will never converge, or

apparent convergence may be obtained, but for nonsensical or

meaningless estimates of some means and absurdly large (and

meaningless) values of some SEs (Albert and Anderson, 1984).

Essentially, this is because with quasi-complete separation,

mathematically, the ML estimates of one or more parameters are

infinite (Heinze and Schemper, 2002). That is, some parameter

estimates do not exist as real numbers when fitting a model using

ML. Gianinetti (2020) and Claassen (2014) discussed the problem

in more detail. One solution is to remove the treatments with all

zeros (or all ns) and then refit the model. The problem is that the

treatment resulting in all zeros often is of most interest, such as a

new or a very effective pesticide. The treatment with all ns may be

the control treatment that the investigator wishes to compare with

others. The ad hoc approach is to add a small constant, c, to y (y′ = y

+ c) and add 2c to n (n′ = n + 2c). This gives values of prop′ (=y′/n′)
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that may be very close to 0 and 1, but never equal to these limits.

The y′ data can then be analyzed. Of course, the choice of c will

affect the results. A common choice for c is 0.5. Still, there are

questions. In particular, should one modify all observations in this

manner (all treatments and blocks) or just for the “problem”

treatments? In fact, the modification is only needed for a single

observation, and not all replicates, to avoid the problem (one of the

blocks for the problem treatment).

For GLMs (i.e., all fixed effects), models can be fitted to data of

this type using a penalized likelihood method (Firth, 1993; Heinze

and Schemper, 2002). For a RCBD, this would mean treating block

as a fixed effect. This is straightforward with the LOGISTIC

procedure in SAS and with some R packages. Although this may

be reasonable for this balanced simple case, expansions to split plots

and other designs (such as repeated measures and cluster sampling,

among others) are not possible as random effects are required to

account for aspects of the experimental designs. It turns out that

Firth’s penalized likelihood method is related to the ad hoc

approach of fitting a model to the modified y′ data (Firth, 1993).

Firth (1993) also showed the link between his penalized likelihood

approach and Bayesian analysis with certain types of prior

distributions. Claassen (2014) has made important contributions

by expanding on the approach in Firth (1993) for GLMMs for some

situations. As far as we are aware, this generalization is not available

in standard GLMM software.

Overall, there is no best approach to recommend at this point

for data with a conditional binomial (or Poisson) distribution, and a

lot more research is needed. For the practicing data analyst, the ad

hoc y′/n′ approach will be the easiest to implement in the GLMM

context, by far. Alternatively, analyzing the proportion data

(suitably transformed) using a normality-based LMM might be

the most practical when there are multiple treatments with all zeros

or all ns.

The situation is different for continuous non-normal variables

in the exponential family. For instance, with the commonly used

gamma distribution (Gbur et al., 2012), the response variable is a

non-zero positive value (0 is not allowed). With the beta

distribution for continuous proportions, the response variable is

between 0 and 1 (where 0 and 1 are not allowed). When using these

as the conditional distribution in a GLMM, any individual

observations outside the permitted range become missing values

(just like any 0 becomes a missing value when logs are used in a

LMM). An adjusted y (y′) would need to be used to keep the

response variable within the required range, although the form of

the adjustment will affect the results. There are also generalizations

of the gamma and beta distributions that allow for zeros (or zeros

and ones) (e.g., Basak and Balakrishnan, 2012), but these are outside

the usual realm of GLMMs with exponential family distributions.

More research is needed to deal with this problem when

using GLMMs.
9.2 Too many zeros

Misspecification of the conditional distribution is one of the

causes of overdispersion for discrete data. Sometimes, there too
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many zeros in the dataset compared with what is possible to

represent with a binomial distribution (or a beta-binomial). There

could also be too many observations with all n individuals with

disease (or whatever the trait of interest). For plant disease in the

field, suppose, as a simple example, that there is no pathogen

inoculum present in some plots (e.g., certain sections of a field),

but there is inoculum in the other plots (e.g., fungal spores in soil);

the presence or absence of inoculum is unknown to the investigator.

This can be considered a consequence of the spatial heterogeneity of

the unknown inoculum levels. Where inoculum is present, the

conditional binomial may be appropriate for any given treatment

and block (where y could be from 0 to n), but without the inoculum,

there can be no infection (where y must be 0).

For the conditional distribution, one then has a mixture of two

distributions or two processes. One distribution would be binomial

and the other would be a degenerate discrete distribution, where

Prob(y = 0) = 1. This is known as the zero-inflated process, which is

usually manifested by a relatively large frequency of zeros in a

histogram compared with the rest of the frequency distribution at a

given p (Cohen, 1960; Lambert, 1992). In Equation 13, as an

example, all sub-equations are the same, except that we write yijjbj
  e   Mixture(pij, n;w), where “Mixture” is an arbitrary notation for

the mixture distribution and w is a so-called mixture probability

parameter. The estimate of w represents the proportion of the

mixture that is of the binomial type, and 1 − w represents the

proportion that is the type with all zeros. Detection of zero inflation

will typically be done only when there are many observations, such

as when a dataset consists of multiple cluster samples within each

experimental unit (plot). Failure to account for this situation will

lead to biased estimates of the pi probabilities for treatments. There

would typically be insufficient data in a simple RCBD, with one

observation per combination of treatment and block, to identify and

model zero inflation as a mixture distribution.

There are excellent methods for fitting zero-inflated models

with GLMs (all fixed effects), such as in GENMOD and FMM in

SAS. It is much more challenging to fit zero-inflated GLMMs. In

SAS, one would need to utilize nonlinear mixed-model software and

write the code in NLMIXED. “glmmTMB” is an R package for zero-

inflated discrete data, while “NBZIMM” is a mixed-model package

for zero-inflated NB data (recall that NB is a generalization of the

Poisson for overdispersed count data). Bayesian approaches may be

very beneficial (Zuur et al., 2012). Readers should be on the lookout

for new procedures and packages for fitting these types of GLMMs.
10 Example GLMMs in the plant
sciences in agriculture

We have assembled a list of papers where GLMMs for non-

normal data (or data assumed to be non-normal) have been used in

plant pathology, agronomy, and horticulture (Table 4). We also

included papers when normal (Gaussian) data were analyzed

together with non-normal data (for different response variables).

This list is based on a search in Google Scholar and Web of Science.

The list is only intended to give a sense of the range of applications

of GLMMs and related data analyses and is not meant to be an
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exhaustive compilation. The response variables analyzed in these

experiments can be placed in the following categories: i) continuous

symmetric or asymmetric data (e.g., amount of mycotoxins, insect

body length, seed weight, sucrose concentration, yield, disease

severity, leaf damage, or beetle survival time); ii) discrete

proportion data (e.g., number of leaves infected, germinated

seeds, pigmented flowers, or hatched eggs out of a total of n

individuals); and iii) count (discrete) data without a definable

upper limit (e.g., number of insects, aphids, female eggs, or

tubers). These studies were conducted to assess either the efficacy

of fungicides or insecticides on disease and insect control or the

effect of environmental or host factors on disease severity,

mycotoxin accumulation, plant density, seed germination, seed

weight, etc. A handful of studies are focused on a theoretical

evaluation of the different elements of GLMMs using existing

datasets (e.g., Piepho, 2019).

Binomial, NB, gamma, and Poisson were the most commonly

used conditional distributions in these studies, while beta (Bilka

et al., 2021; Susi and Laine, 2021) and Bernoulli (a special case of

binomial with n = 1) (De Silva et al., 2014) were less frequently

used. The link functions specified in the models in these studies

were logit, log, probit, complementary log–log, and identity (i.e.,

no transformation of the mean). While several papers provided

details on how model fitting was conducted and specified the

estimation method [ML (quadrature or Laplace), PL, or quasi-

likelihood)] used, other papers did not provide details of the

estimation method used. We made no attempt to establish

whether the model, the link function, or the estimation method

specified in these studies was appropriately specified by the

authors to match the data and the aims of individual studies.

Furthermore, we did not evaluate whether the authors interpreted

the results appropriately. This summary shows that the

application of GLMMs in the above disciplines is diverse and is

used to address hypotheses in a wide range of experimental

conditions. We expect this to grow as researchers appreciate the

clear argument of matching the model to the data (for a given

experimental and treatment design) when using GLMMs

for analysis.
11 Summary and conclusions

There are several reasons to use GLMMs for the analysis of

non-normal data, some of which were discussed in this paper, with

many more details in several references (Littell et al., 2006; Bolker

et al., 2009; Zuur et al., 2009; Gbur et al., 2012; Stroup, 2013; Brown

and Prescott, 2015; Stroup et al., 2018; Gianinetti, 2020; Li et al.,

2023; Ruıź et al., 2015, 2023). Perhaps the biggest argument is that

one is better off matching the model to the data with a GLMM

rather than changing (i.e., transforming) the data to match the

model, as with a LMM (Gbur et al., 2012; Stroup, 2013). With some

contemporary software, it is deceptively easy now to switch from

normality-based LMMs to non-normality-based GLMMs. For

instance, this simple model statement in the GLIMMIX

procedure of SAS can be used to fit a LMM to the response

variable y for a RCBD (as in our example):
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TABLE 4 Summary of some applications of generalized linear mixed models in the analysis of data from designed experiments in agricultural and
horticultural systems.

Type of studya Response
variable(s)

Conditional
distribution

Link function Estimation
methodb

Reference

Analysis of disease incidence data Disease incidence Binomial Logit Pseudo-likelihood Madden
et al. (2002)

Analysis of disease incidence
using GLMMs

Number of infected leaves Binomial Logit Pseudo-likelihood Piepho (1999)

Ascospore release and dispersal Disease incidence Poisson Log ML (Laplace) Rennberger
et al. (2021)

Assessment of native plants for
pollinator management

Insect count Poisson Log ML (quadrature) Lundin
et al. (2019)

Assessment of seed germination speed
and uniformity using GLMMs

Number of
germinated seeds

Binomial Logit, probit,
complementary
log-log

ML Jardim Amorim
et al. (2021)

Association of plant diversity with
infection risk

Disease prevalence species
richness, plant diversity

Beta,
Poisson, Gaussian

Log, identity –c Susi and
Laine (2021)

Correlation of pollen color with
floral traits

Seeds per fruit, germinated
seeds, vegetative size

Poisson, binomial,
log-normal

Log, logit – Koski
et al. (2020)

Cultivar tolerance to weevil injury Insect density, yield loss Poisson, Gaussian Log, identity – Villegas
et al. (2021)

Effects of weather factors on DON in
wheat grain

Amount of DON Gamma Log ML (Laplace) Moraes
et al. (2023a)

Effects of weather factors on DG3 in
wheat grain

Amount of DG3 Gamma Log ML (Laplace) Moraes
et al. (2023a)

Effects of weather factors on ZEA in
wheat grain

Amount of ZEA Gamma Log ML (Laplace) Moraes
et al. (2023b)

Effects of folivory on sexual and
asexual reproduction

Proportion of plants with
fruit, number of fruits

Binomial, Poisson Logit, log – Muola and
Stenberg (2018)

Effects of modes of selfing on
hybrid formation

Proportion of seed set
and germination

Binomial Logit – Brys
et al. (2016)

Effect of planting date on
seed emergence

Days to emergence, percent
stand loss

Poisson Log – Knott
et al. (2019)

Factors affecting the number of
satellites in nesting horseshoe crabs

Color, spine condition,
carapace width, weight

Poisson Log ML (Laplace) Gaussian
ML (quadrature)
pseudo-likelihood

Piepho (2019)

Foraging behavior of beetles Number of aphids Negative binomial Log – Norkute
et al. (2020)

Analysis of germination data
with GLMMs

Percent germination,
germination indices

Binomial, Poisson Logit, probit ML (Laplace),
pseudo-likelihood

Gianinetti
(2020)

Germination traits of oats Percent germination,
median germination

Binomial, Poisson Logit, log-linear Pseudo-likelihood Willenborg
et al. (2005)

Heat stress tolerance in wheat Percent of control,
seed weight

Negative binomial Log – Fu et al. (2023)

Host plant response to
insect oviposition

Proportion of hatched eggs Binomial Logit – Petzold-
Maxwell
et al. (2011)

Interaction between lima bean and its
leaf herbivore

Percent leaf damage,
beetle survival

Binomial, gamma Logit, log – Shlichta
et al. (2018)

Insecticide effects on egg laying Number of eggs per plant,
percent survival

Poisson, Gaussian Log, identity – Lanka
et al. (2014)

Manipulation of nutrients in beetles Body length Gaussian Identity ML (Laplace) Piepho (2019)

(Continued)
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model   y =  trt;

(Random effects, such as blocks, are given in separate

statements, and the identification of explanatory variables as

factors is done in a separate statement). Using the same

procedure, a conditional–binomial GLMM with a logit link

function can be fitted to the same data with only one minor

change to the model statement:

model y=n =  trt;

with all other statements (not shown here) being the same. The

procedure automatically identifies this as a conditional binomial with

logit link when the left-hand side of the equation is given as the ratio

of a response variable to the number of individuals (i.e., y/n). Of

course, the distribution (dist=) and link (link=) can be explicitly

specified as options with this procedure (Gbur et al., 2012; Brown and

Prescott, 2015; Ruiz et al., 2023), allowing for many different

conditional distributions and links. However, this simple switch

would be fitting the naive model A (Equation 13) to the RCBD

data (assuming the block random effect was also specified). This is
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because, with an LMM, a residual is always estimated to account for

the plot variability (in a field study) after accounting for other sources

of variability, but is not estimated with a conditional binomial (or

conditional Poisson). The variance is always np(1 − p) for a

conditional binomial and always m for the conditional Poisson. In

separate statements for random effects, the block × treatment random

term (vij) would need to be added to fit model B (Equation 16), or the

conditional distribution to be changed from binomial to a quasi-

binomial likelihood with the f overdispersion parameter to account

for overdispersion (model C; Equation 17). Alternatively, a more

complex conditional distribution could be used, such as the beta-

binomial (but not with the GLIMMIX procedure).

The important point here is that one should never lose sight of

the experimental design when analyzing data (Piepho et al., 2003;

Bello et al., 2004, 2016), as well as how to account for the relevant

aspects of the design (fixed effects, random effects, and correlations)

in the model (e.g., right-hand side of the equation for h, plus
distributions for random effects) for any selected conditional

distribution, whether using LMMs or GLMMs. Readers should

consult Stroup (2013, 2015) for a more thorough discussion on
TABLE 4 Continued

Type of studya Response
variable(s)

Conditional
distribution

Link function Estimation
methodb

Reference

Manipulation of nutrients in beetles Male morphology Binomial Logit ML (Laplace) Piepho (2019)

Manipulation of nutrients in beetles Female egg count Poisson Log ML (Laplace) Piepho (2019)

Physiological changes during
vine decline

Plant age,
sucrose concentration

Gaussian Identity ML Adkins
et al. (2013)

Processes affecting flower color
in plants

Number of pigmented
flowers, fruit number

Binomial,
negative binomial

Logit, log ML Vaidya
et al. (2018)

Progeny testing using GLMMs Disease status for
seedling, plot

Bernoulli, binomial Logit Pseudo-likelihood De Silva
et al. (2014)

Relating plant age to virus
infection traits

Plant infection, tuber count,
disease severity, yield

Binomial, Poisson,
log-normal, Gaussian

Logit, log, identity Pseudo-likelihood Chikh-Ali
et al. (2020)

Repeated measures Management practices Binomial Logit ML (Laplace), pseudo-
likelihood, quasi-likelihood

Stroup (2015)

Roles of genotype and environment
on plant defense

Presence of aphids Binomial Logit – Potts and
Hunter (2021)

Seed germination Number of
germinated seeds

Binomial Logit Quasi-likelihood Stroup (2015)

Split-plot experiment Count data Poisson,
negative binomial

Log Quasi-likelihood Stroup (2015)

Testing sanitizers against blight
on boxwood

CFUs, disease severity Poisson, beta Log, logit – Bilka
et al. (2021)

Testing pre-harvest treatments
in citrus

Disease incidence Binomial Logit – Hao
et al. (2023)

Testing seeding treatments Plant density Poisson,
negative binomial

Log – Svejcar
et al. (2023)
aDON, deoxynivalenol toxin; DG3, DON-3-glucoside toxin; ZEA, zearalenone toxin. All concentrations in parts per million.
bQuadrature (or Gaussian quadrature) and Laplace approximation are two maximum likelihood (ML) methods for GLMMs. Pseudo-likelihood methods can be either restricted/residual ML-
based (RSPL, using SAS syntax), where adjustment is made for the fixed effects, or ML-based (MSPL using SAS syntax), where there is no adjustment for fixed effects. Quasi-likelihood methods
are of the ML type (no adjustments for fixed effects). The default method in GLIMMIX of SAS is RSPL; therefore, it is assumed that the restricted version of pseudo-likelihood was used when
pseudo-likelihood was mentioned, even when the authors did not state this explicitly. In some papers, different estimation methods were used for different response variables, or a comparison was
made of the results from more than one estimation method.
cNot specified.
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this topic. Adding terms to a GLMM (or modifying conditional

distributions) may be needed to account for the sources of

variability that are automatically accounted for with LMMs.

In this paper, we emphasized the switch from LMM to GLMM,

with the assumption that the reader is more familiar with LMMs.

We mostly restricted our attention to one type of response variable

[discrete observations (counts) that can be represented as

proportions or percentages] and one experimental design,

namely, a RCBD. This approach was chosen to show the

similarities and differences between LMMs and GLMMs, focusing

on one small dataset. The differences in the results between LMMs

and GLMMs will be greater in other datasets with larger random

effect variances and when some of the pi values are closer to 0 or 1

for some treatments (Stroup, 2013). The differences between LMMs

and GLMMs carry through to more complex experimental and

treatment designs (Gbur et al., 2012; Ruıź et al., 2023). Issues in data

analysis that are mostly well resolved for LMMs remain debatable

with GLMMs. For instance, appropriate model fitting (estimation)

can be controversial for GLMMs (Stroup and Claassen, 2020). In

fact, some models, such as those involving a quasi-likelihood (e.g.,

models with an overdispersion parameter, f), can only be fitted

using certain estimation methods (either pseudo-likelihood or

quasi-likelihood). For other models, investigators have choices for

model fitting, and the best choice depends on the circumstances, as

presented above. Despite earlier criticisms, linearization methods,

particularly the restricted versions such as RSPL (analogous to

REML for LMMs), have been shown recently to often be the best

choice for model fitting, especially for discrete data and the small

sample sizes typically used in field studies in agriculture (Stroup and

Claassen, 2020). Integral approximations of the marginal likelihood

(such as quadrature and Laplace) do have advantages when there

are reasonably large numbers of replicates, especially when one is

interested in comparing the goodness of fit of different models

through differences in the log-likelihood or have specific interest in

the variances and covariances.

A key distinction of LMMs and GLMMs is the notion of

conditional versus marginal means (Stroup, 2013). Conditional and

marginal means are the same for normality-based LMMs, but are

different, in general, for GLMMs. The magnitude of the random

effect variances has a large influence on the magnitude of the

difference between the conditional and marginal means. We agree

with Stroup (2013, 2015) and Stroup et al. (2018) that most

researchers would find the conditional means as being more

meaningful and of primary interest, thus emphasizing the

importance of conditional models in a GLMM-based analysis.

The use of a conditional model, however, still allows for broad or
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narrow inference when testing hypotheses or calculating the

confidence intervals for parameters or parameter differences.

Inference space (broad vs. narrow) has to do with whether

inference is over the entire population of random effects (say, all

possible blocks, locations, etc.) or only for the specific random effect

levels in the study. Littell et al. (2006) and Stroup (2013) should be

consulted for more detail on this topic.
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