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Laura Cano-Castro1, Jinyun Li2, Nian Wang2, Sarah L. Strauss3

and Arnold W. Schumann1*

1Soil, Water and Ecosystem Sciences Department, Citrus Research and Education Center, University
of Florida, Lake Alfred, FL, United States, 2Microbiology and Cell Sciences Department, Citrus
Research and Education Center, University of Florida, Lake Alfred, FL, United States, 3Soil, Water and
Ecosystem Sciences Department, Southwest Florida Research and Education Center, University of
Florida, Immokalee, FL, United States
The term plant growth-promoting rhizobacteria (PGPR) refers to a root-associated

bacteria that possesses several benefits for soil and the plant. The increasing demand

for sustainable food production necessitates a shift towards agricultural practices

that mitigate adverse environmental impacts. Excessive use of chemical fertilizers

and pesticides has raised concerns, prompting a surge of interest in harnessing the

potential of beneficial soil microorganisms, particularly plant growth-promoting

rhizobacteria. This study explores the impact of soil inoculation with PGPR

treatments on grapefruit seedlings, including a commercial strain of Bacillus

velezensis, a fresh inoculum of Bacillus amyloliquefaciens, a mixture of three

selected citrus endophytic Bacillus spp. isolates, inorganic fertilizers, and

combinations thereof. The aim was to test their ability to enhance growth and

nutrient uptake reducing the input of chemical fertilization. Results indicated that the

combination of Bacillus velezensis and inorganic fertilization significantly improved

soil nutrient availability and enhanced plant growth, surpassing both negative (water)

and positive (inorganic fertilization) controls. Shoot and root systembiomass showed

significant increases from Bacillus velezensis plus inorganic fertilization compared to

other treatments. These findings provide insights into management methods that

can reduce chemical inputs while promoting plant productivity. The demonstrated

benefits of PGPR on grapefruit seedlings highlight a promising approach for future

research and applications in sustainable citrus cultivation.
KEYWORDS

PGPR, beneficial bacteria, nutrient uptake, growth promotion, sustainable
production, biofertilizer
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Introduction

Developing methods to enhance agricultural sustainability is

necessary for ensuring not only an adequate food supply but also

for upholding global environmental protection for future

generations (Nwachukwu et al., 2021; Wang J. et al., 2022). The

activity of plant growth-promoting rhizobacteria (PGPR) has been

documented in a wide range of strains across several different

genera, including Azotobacter, Arthrobacter, Bacillus, Clostridium,

Hydrogenophaga, Enterobacter, Pseudomonas, Serratia, Klebsiella,

Microbacterium, Paenibacillus, and Azospirillum (Grobelak et al.,

2015; Kumar Meena et al., 2015; Kumar et al., 2018; Numan et al.,

2018; Barnawal et al., 2019). Root colonization by microbes is

active (Compant et al., 2019) but it will be influenced by the root

exudates from different plant species (Elsharkawy et al., 2023)

reported by Jamil et al. (2022), and Antoszewski et al. (2022).

Among the rhizobacteria that can colonize plants, we can find

Bacillus amyloliquefaciens (Fan et al., 2015; Gamez et al., 2019),

Bacillus subtilis (Blake et al., 2021; Hu et al., 2023), Bacillus

velezensis (Shi H. et al., 2022; Sun et al., 2022) and some

commercial strains of these species serve as biofertilizers and

biocontrol agents. The ability of these strains to form resilient

endospores can assist in ensuring their viability for the production

of microbial inoculants (Tsotetsi et al., 2022) when added to the

soil. As a result, its utilization in agricultural practices is

rapidly expanding (Shi J. W. et al., 2022) as biostimulants for

growth promotion (Senger et al., 2022), biofertilization

(Bueno et al., 2022), and biocontrol agents (Chen et al., 2020).

A microbial inoculant (MI) is a category of agricultural

amendments that uses live microorganisms to provide fertilizer

benefits for crops (Gong et al., 2018). In numerous instances,

utilizing microbial inoculants containing beneficial microorganisms

instead of synthetic chemicals has raised attention for their ability to

help plant growth, and offer enhanced nutrient availability while

simultaneously fostering environmental benefits and augmenting soil

productivity (Luo et al., 2022; Mawarda et al., 2022; Etesami et al.,

2023). Global markets for PGPR are growing, especially products

involving multiple live bacterial species in “consortia”. When

multiple PGPRs are used together, they appear to provide additive

benefits to plants compared to a single PGPR (Rosier et al., 2021).

Essentially, microbe-based biofertilizers can enhance both the

correct development of plants as well as yield (Rosier et al., 2021;

Shi JW et al., 2022) in several agricultural plants such as wheat

(Triticum aestivum L.) (Zahra et al., 2023), sweet corn (Zea mays

subsp. mays L.) (Akinrinlola et al., 2018), and tomato (Lycopersicon

esculentum Mill.) (Mengistie and Awlachew, 2022; Patani et al.,

2023). They achieved this by augmenting the soil availability of

mineral nutrients, solubilizing phosphorus, and synthesizing

phytohormones, all of which contribute significantly to the overall

health of plants (Kumar et al., 2011; Gohil et al., 2022).

Citrus production in Florida has been adversely affected since

the first detection of the Huanglongbing disease (HLB; Candidatus

Liberibacter asiaticus), which is incurable and leads to an eventual

tree death (Dala-Paula et al., 2019). Therefore, the need for vigorous

citrus rootstock seedlings is a key component for the good

development of trees at young stages, to provide tolerance of
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biotic and abiotic challenges as well as enhance their overall

growth and yield (Vashisth et al., 2020). On the other hand,

water and fertilizer play vital roles in the growth and fruit yield of

citrus. The quantity of fertilizer used in citrus management is linked

to both production costs and environmental concerns

(Ma et al., 2022), thus nutrient management has been

implemented to promote citrus trees’ health in Florida where soils

are poorly drained and have low fertility (Hallman et al., 2022).

Based on the current disease and nutrient problems the citrus

industry in Florida is facing, the objective of this study is to

evaluate the role of Bacillus spp. soil inoculations in citriculture,

particularly in its ability to stimulate and enhance plant growth and

improve nutrient uptake of grapefruit seedlings.
Materials and methods

The experimental site and grapefruit
seedling establishment

The experiment was conducted in a greenhouse located at the

Citrus Research and Education Center (CREC), Lake Alfred, Florida

(28.1026° N, 81.7120° W). ‘Duncan’ grapefruit (Citrus Paradisi)

seedlings were propagated from disease-free seeds collected directly

from the fruit grown in the CREC CUPS (Citrus Under Protective

Screens; Schumann et al., 2023) facility. Seeds were rinsed three

times with distilled water to remove any juice vesicles, and then

soaked in distilled water to discard floating seeds. The selected seeds

were dried with paper towels and the seed coats were carefully

removed with a previously sanitized blade (GEM 62-0161 carbon

steel extra sharp single-edge blade). Two seeds were planted into

each growth media plug in germination trays of the Double Bio

Dome Seed-Starting System (Park Seed, Greenwood, SC) and

allowed to germinate in the greenhouse. After three weeks of

completed germination, the tallest vigorous seedlings with true

leaves were transferred individually into 1.67-L plastic pots filled

with unsterilized substrate media of 50% Canadian peat moss with

the addition of pine bark, perlite, and vermiculite. All plants were

fertilized every week until the start of the experiment 18 weeks after

transplanting, then fertilization was stopped and only treatments

based on fertilizer (T1) and B. velezensis plus fertilizer (T6)

continued receiving reduced fertilization every four weeks (25%

of the full rate) (Table 1). Monitoring and treating for any potential

pest incidence were assessed weekly.
Experimental design and treatments

A randomized complete block design with seven treatments and

five replications was used, with each plot (experimental unit)

composed of four potted grapefruit seedlings. The treatments

(Table 2) were applied as a 0.129 L pot-1 root drench and

correspond to: (1) fertilization (Table 1), (2) B. velezensis

(LALRISE VITA®; Lallemand Plant Care, Montreal, Canada), (3)

fresh inoculum of B. amyloliquefaciens (commercial product

Double Nickel 55®; Certis, Columbia, MD) where dormant
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spores were activated in a bioreactor 24 hours before application,

(4) fresh inoculum of a consortium of B. subtilis, B. megaterium,

and Bacillus sp. (citrus endophytic isolates) (Li et al., 2021), (5) a

combination of fresh inoculum of B. amyloliquefaciens and the

consortium of three B. subtilis isolates to test for additional synergy

with bacterial combinations, (6) B. velezensis with the addition of

fertilization and (7) water (control) with no additional application.

The fertilizer treatment consisted of three different sources

described in Table 1. The fresh inoculum of Bacillus spp.

consortia was prepared by culturing the bacterium in a nutrient

broth medium with agitation at 30°C for 24 hours and adjusted to

109 cells per milliliter with water.
Plant growth measurements

Tree seedling heights and diameters in two perpendicular

directions were measured every month to obtain canopy volume

based on the formula of Thorne et al. (2002), as well as trunk

diameter measured 5 cm above the potting media. SPAD
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chlorophyll index (Konika Minolta, Ramsey, NJ) was collected

monthly from three leaves per tree and averaged for each 4-tree

plot. At the end of the experiment (three months after treatments

began), every plot of four trees was photographed and four leaves

per tree were collected and sent for N, P, K, Ca, Mg, S, Zn, B, Mn,

Fe, and Cu concentration analysis at the Waters Agricultural

Laboratory, Camilla, GA. Tree above-ground biomass and root

biomass were obtained by separating leaves, shoots, and roots for

each 4-tree plot. Bagged samples were placed in a drying oven

(Fisher Scientific, Pittsburgh, PA) for 48 hours at 70°C, and were

then weighed to obtain dry mass per plot.
Media sampling and estimation of
microbial respiration

We hypothesized that microbial respiration from the most

effective rhizobacterial treatments would increase compared to the

controls. Growing media samples in the rhizosphere were obtained

from the excavated root systems by gentle shaking into a plastic

tray, to collect samples, mix and transfer them into plastic Ziploc

bags. A mixed media sample from 4 trees was collected,

representing the treatment plot and processed for microbial

respiration in the lab by implementing the substrate-induced

respiration method (Anderson and Domsch, 1978). Empty Mason

jars were weighed, then 50 grams of media from the samples was

weighed into the jars. To measure the CO2 respired, a 20 mL plastic

scintillation vial was placed inside the jar with 4 mL of 1M NaOH.

After 10 days of incubation in a growth chamber in dark-

conditions at 35 degrees Celsius, vials were removed from the jars

and capped. Jars were placed in the drying oven at 105 degrees

Celsius for 48 hours to dry the media. Dry media was then weighed

to calculate the percentage of gravimetric water content. The

determination of CO2 produced by microbial respiration

processes was based on the titration of 1M NaOH in vials with

standardized 0.1M HCl and the use of phenolphthalein as a color

indicator to determine the endpoint. An additional blank jar with a

vial inside and no media was included in the incubation to calculate

the titration amount with zero respiration.
Calculations

To obtain shoot biomass we summed the leaf and stem biomass

and then conducted an ANOVA to find the significance among

treatments. Similarly, the shoot-to-root ratio was calculated by

dividing shoot biomass by root biomass. Finally, the N content in

leaves was obtained by multiplying the leaf N concentration and the

leaf biomass. In order to test the N fertilizer equivalent saved as a

result of using PGPRs, a linear regression line of mg N applied per

pot versus mg N/pot accumulated in leaves was calculated for

treatments T1 (fertilizer) and T7 (control). The regression

equation was then used to interpolate the mg N fertilizer

equivalent contributed by each PGPR treatment according to its

N accumulation in the leaf biomass.
TABLE 2 Description of treatments applied as a root drench to the pots
(0.129 L pot-1).

Treatments
Interval
of applications

T1 Fertilization Every four weeks

T2 Bacillus velezensis (LALRISE VITA®) Every four weeks

T3 Bacillus amyloliquefaciens (Double Nickel®)
fresh bioreactor

Every three weeks

T4 Consortia Bacillus subtilis isolates Every three weeks

T5 Fresh B. amyloliquefaciens + B.
subtilis consortia

Every four weeks

T6 B. velezensis + fertilizer Every four weeks

T7 Control (water) As needed*
*Water was also applied to treatments 1 to 6 as needed to replace evapotranspiration losses.
the time interval of applications was designed based on recommendation labels from the
bacterial products utilized.
TABLE 1 Fertilizer description and nutrient concentration.

Fertilizer Nutrient concentration

0.883 g L-1 Miracle-Gro® Total N 24%,
P2O5 8%
K2O 16%
Boron (B) 0.02%
Copper (Cu) 0.07%
Iron (Fe) 0.15%
Manganese (Mn) 0.05%
Molybdenum (Mo) 0.0005%
Zinc (Zn) 0.06%

0.402 g L-1 Pennington Epsom salt Magnesium (Mg) 9.8%
Sulfur (S) 12.9%

0.169 g L-1 Sequestrene™ 138 Iron (Fe) 6%
Dilute mixed fertilizer solution was applied as a root drench at 0.129 L pot-1.
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Statistics

To identify significant differences between treatments, Analysis

of Variance (ANOVA) was performed using Rstudio (Rstudio

Team (2020). Rstudio: Integrated Development for R. Rstudio,

PBC, Boston, MA URL http://www.rstudio.com/.) and conducting

Post hoc comparisons with the Tukey HSD test to find statistical

differences between means using the ‘agricolae’ package (De

Mendiburu, 2022). The data was tested to be normally and

independently distr ibuted, from the seven treatment

combinations with 5 replications. Differences were considered

statistically significant when P ≤ 0.05.
Results and discussion

Grapefruit seedling growth

Results of grapefruit seedling growth measurements included

height, canopy volume, trunk diameter, root, stem, and leaf

biomass, and SPAD chlorophyll index. Tree height, canopy

volume, trunk diameter, shoot biomass, root biomass, and

chlorophyll index were significantly greater for plants inoculated

with B. velezensis that also received fertilizer (Figures 1–6). The B.

subtilis + B. amyloliquefaciens consortium treatment (T5) had a

significantly higher shoot biomass than the untreated negative

control (T7), despite the lack of any added fertilizer. The growth

promotion ability may have an effect on roots (Shen et al., 2023) and

can lead to an increase in water and nutrient uptake for the overall

plant growth (Wang et al., 2020). In our results, Supplementary

Figure 3 shows a very highly significant correlation (p<0.001)

between leaf N accumulated and root biomass per tree to

illustrate the linkage between enhanced root biomass and N

uptake. The B. velezensis inoculation + fertilizer treatment (T6)
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produced significantly more shoot biomass than any other

treatment, even including T1, the fertilized positive control

(Figure 4), and the B. velezensis inoculation (T2), suggesting

synergy between the B. velezensis and fertilizer. The ratio of

shoot/root biomass is an estimate of response to physical,

chemical, and biological factors related to above-ground

architecture (Lopez et al., 2023). Supplementary Figure 1 shows

no significant differences among treatments suggesting that the

relative changes in root and shoot growth according to treatments

were approximately proportional. The B. subtilis + B.

amyloliquefaciens treatment produced a significantly higher

(p<0.001) SPAD chlorophyll index than the control (Figure 6),
FIGURE 1

Average tree height per tree for treatments. Mean values and
standard deviations were employed for representation. Different
letters indicate significant differences between treatments (P < 0.05).
FIGURE 2

Average canopy volume per tree for treatments. Mean values and
standard deviations were employed for representation. Different
letters indicate significant differences between treatments (P < 0.05).
FIGURE 3

Average trunk diameter per tree for treatments. Mean values and
standard deviations were employed for representation. Different
letters indicate significant differences between treatments (P < 0.05).
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but the other B. subtilis and B. amyloliquefaciens treatments did not

show evidence of promoting tree growth (Figures 1–6).

Soil inoculation with bacteria that promote plant growth is a

promising technique for sustainable agricultural management and

an effort to increase the efficiency of crops to uptake nutrient via

symbiosis with microbes. In the present study, we anticipated that

the applied bacteria would successfully establish around the

rhizosphere in the potting media, as demonstrated in this study.

However, when conducting microbial inoculation in open field soil

conditions, the response of soil bacterial communities may be less

consistent due to environmental variability such as tillage (Sergaki

et al., 2018), pesticides, fertilizers, and sewage sludge amendments
Frontiers in Horticulture 05
applied in raw form (Omotayo and Babalola, 2021). These

environmental factors could disrupt the establishment and

proliferation of the bacteria. Bacillus species are well known for

their plant growth-promoting potential (Gohil et al., 2022), and

based on our results, we could see a marked increase in above and

below-ground plant biomass with PGPR inoculation. Although the

specific mechanisms by which PGPR promotes plant growth are not

fully understood (Backer et al., 2018), they are thought to include

auxin secretion by B. velezensis, systemic induced resistance,

phosphate solubilization (Wang et al., 2020; Wang et al., 2022)

pathogen control, and secondary metabolites (Grobelak et al., 2015;

Ghazy & El-Nahrawy, 2021) to protect and promote plant growth

(Wang et al., 2020).
Microbial respiration assay

We hypothesized that microbial respiration from the most

effective bacterial treatments would vary compared to the

controls, however there were no significant differences among the

microbial respiration of the treatments (Supplementary Figure 2).

The positive and negative controls (untreated and fertilized)

showed respiratory activity even though they were not inoculated

with bacteria, and this indicates that unsterilized potting media can

harbor a wide variety of microorganisms, whether they are

beneficial (Huang et al., 2012; Al-Mazroui and Al-Sadi, 2015) or

pathogenic species (Al-Sa’di et al., 2008; Al-Sadi et al., 2011). The

fact that in the present work all the treatments showed microbial

respiration activity suggests that it could have masked the activity of

added PGPR treatments. From previous studies, we can identify the

lack of analysis for bacterial communities’ characterization in

potting media to assess changes in the activity of inoculated soil

microbial communities (Al-Sadi et al., 2016; Mawarda et al., 2022).
FIGURE 4

Average shoot (leaf + stem) dry biomass per tree for treatments.
Mean values and standard deviations were employed for
representation. Different letters indicate significant differences
between treatments (P < 0.05).
FIGURE 5

Average root dry biomass per tree for treatments. Mean values and
standard deviations were employed for representation. Different
letters indicate significant differences between treatments (P < 0.05).
FIGURE 6

Average SPAD chlorophyll index for leaves sampled in treatments.
Mean values and standard deviations were employed for
representation. Different letters indicate significant differences
between treatments (P < 0.05).
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Leaf nutrient analyses

Inoculation with B. velezensis together with the addition of a low

(25%) fertilizer rate significantly increased leaf nitrogen (N),

magnesium (Mg), and sulfur (S) concentrations compared to the

other treatments of Bacillus species along with the positive and

negative control (Table 3). Salvagiotti et al. (2009) reported a

synergism in the uptake of N and S by plants, and a synergism of

P and Mg uptake by plants was reported by Weih et al., 2021.

However, in our study P concentration differences were not

significant (Table 3) but increased levels of P uptake were observed

from treatments inoculated with B. velezensis, B. amyloliquefaciens,

and B. subtilis. Leaf concentrations of K, Ca (Table 3), Mn, and Cu

(Table 4) were also not significantly different among treatments.

Nitrogen is one of the essential nutrients for crop growth and

has been widely studied (Wang et al., 2014). In our study, due to a

low rate of fertilization, leaf N concentration for all treatments

was below the optimum rate required for citrus crops (Obreza

et al., 2020), however, leaf N concentration for the B. velezensis plus

fertilizer treatment, significantly outperformed the rest of the

treatments (Table 3). A similar pattern was observed in the SPAD

chlorophyll index (Figure 6), where fertilizer treatment B. velezensis

plus fertilizer had the highest average chlorophyll content correlated

to N status in the leaf.

In the absence of fertilizer, there were non-significant differences in

leaf nutrient concentrations among treatments inoculated only with

bacteria (Tables 3, 4), emphasizing the importance of synergistically

including fertilizer with PGPR inoculation as some previous studies

found, increasing yield in tomato (Solanum lycopersicum L.) (Clagnan

et al., 2023) and cowpea (Vigna unguiculata L. Walp) (Stamford et al.,

2020). Surprisingly, leaf iron (Fe) concentrations were higher for the

control treatment (T7; Table 4), although Fe concentration was at the

optimum level for all the treatments. For the negative control (T7), it is

possible that other nutrients were more limiting than Fe, resulting in a

lack of biomass growth and a relative concentration of Fe in the leaves

when compared to the more thrifty treatments.

Stamford et al. (2020); Clagnan et al. (2023) and Angulo et al.

(2020) have examined the potential beneficial effects of microbial-

based fertilizers on the rhizosphere in a competitive nutrient-limited
Frontiers in Horticulture 06
environment. After soil inoculation, these microorganisms contribute

to nitrogen fixation, solubilization/mobilization of soil nutrients, and

secretion of substances that enhance plant growth (Shahwar et al.,

2023). The B. amyloliquefaciens + B subtilis consortia (T5) treatment

accumulated the most leaf N per tree for any unfertilized treatment,

and significantly more than B. amyloliquefaciens (T3; Supplementary

Figure 4). PGPRs play a key role when unavailable nutrients are

present in the soil or nearby the rhizosphere (Prasad et al., 2019).

From the regression line of N fertilizer applied versus leaf N

accumulated (y = 0.4015x - 169.19), we estimated the amount of N

contributed by PGPRs that was not derived by chemical N fertilizer.

T6 was the highest (105mgN/pot), followed by T5 (47mgN/pot), T2

(16 mg N/pot), T4 (14 mg N/pot), and T3 (-23 mg N/pot). The

negative value for T3 suggests microbial N immobilization. For T6,

the amount of fertilizer N applied (82 mg N/pot) was subtracted from

the interpolated result, leaving only the equivalent portion derived

from PGPR activity (105 mg N/pot). The highest N fertilizer

equivalent provided only by PGPRs was T5 (B. amyloliquefaciens +

triple B. subtilis consortia), which was 57% of the amount of chemical

N fertilizer supplied in treatments 1 and 6. Gohil et al., 2022 reported

that Bacillus sp. PG-8 was able to solubilize insoluble nutrients to help

the plant growth. Phosphate solubilization is most frequently

attributed to Bacillus isolates by 80% compared to Azotobacter,

Pseudomonas, and least by Mesorhizobium (Ahmad et al., 2008).

The promotion of plant growth can be ascribed to various

mechanisms, including the synthesis of plant growth-promoting

hormones within the rhizosphere and the involvement in other

plant growth-promoting activities (Ahmad et al., 2008). In recent

years, numerous strains of B. velezensis have been discovered and

extensively examined for their impact on plant growth, disease, and

pest resistance, and the induction of systemic plant defenses, while

some strains have proven to be pivotal in enhancing crop yield.
Conclusions

This study demonstrated that PGPR inoculation using B.

velezensis plus fertilizer as a root drench significantly increased

root biomass, trunk diameter, tree height, canopy volume, and
TABLE 3 The concentration of macronutrients in leaves for the different treatments.

Macronutrients

Treatments N% P% K% Ca% Mg% S%

Fertilizer 1.85 ± 0.15 ab 0.15 ± 0.02 ab 1.8 ± 0.235 2.8 ± 0.292 0.434 ± 0.039 ab 0.526 ± 0.065 a

B. velezensis 1.69 ± 0.13 b 0.15 ± 0.007 ab 1.86 ± 0.182 2.82 ± 0.259 0.42 ± 0.023 abc 0.412 ± 0.035 b

B. amyloliquefaciens 1.65 ± 0.07 b 0.15 ± 0.004 ab 1.96 ± 0.114 2.78 ± 0.192 0.418 ± 0.027 abc 0.424 ± 0.045 b

B. subtilis consortia 1.59 ± 0.17 b 0.13 ± 0.008 ab 1.72 ± 0.130 2.82 ± 0.228 0.384 ± 0.013 c 0.394 ± 0.041 b

B. amyloliq + B. subitlis consortia 1.73 ± 0.20 ab 0.13 ± 0.018 b 1.76 ± 0.195 2.82 ± 0.192 0.396 ± 0.028 bc 0.424 ± 0.032 b

B. velezensis + fertilizer 1.97 ± 0.08 a 0.16 ± 0.011 a 1.78 ± 0.083 2.94 ± 0.288 0.454 ± 0.008 a 0.536 ± 0.061 a

Control 1.59 ± 0.19 b 0.13 ± 0.008 ab 1.78 ± 0.130 2.64 ± 0.152 0.398 ± 0.028 bc 0.416 ± 0.041 b

ANOVA p <0.001 0.0261 0.299 0.583 0.00205 <0.001
Mean values and standard deviations are shown. Different letters indicate significant differences between treatments (P<0.05).
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SPAD chlorophyll index of grapefruit seedlings. The combination

of these factors can contribute to healthier and more robust plants.

The increase in canopy volume is indicative of greater foliage

density, which can have a direct influence on photosynthesis,

light interception, and overall productivity. In the same context,

the study also shows that the chlorophyll index, an indicator of

photosynthetic activity, was significantly enhanced by the B.

velezensis inoculation and fertilizer. Furthermore, the study

reveals that leaf nutrient concentrations, particularly nitrogen

(N), sulfur (S), and magnesium (Mg), were significantly increased

in plants treated with PGPR and fertilizer compared to

other treatments.

Another key finding of this research was the necessity of

sufficient fertilizer in the root zone in order to obtain the desired

benefits from PGPR inoculation. Future studies designed to

establish the critical nutrient levels required for optimizing the

function and benefits of PGPR would help refine recommendations

for their widespread use in citrus cultivation. Nursery trees grown in

artificial media and drenched with PGPR could reach marketable

size sooner, with less resources. The increased root biomass of

PGPR-grown nursery trees would be especially valuable during the

transplanting and establishment of trees in the field.
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TABLE 4 The concentration of micronutrients in leaves for the different treatments.

Micronutrients

Treatments B ppm Zn ppm Mn ppm Fe ppm Cu ppm

Fertilizer 67.6 ± 5.98 16.8 ± 1.79 ab 27.4 ± 2.07 132 ± 21.2 ab 4.8 ± 1.48

B. velezensis 66 ± 10.1 17.8 ± 3.03 ab 22.6 ± 6.80 97.8 ± 10.8 bc 4.4 ± 0.548

B. amyloliquefaciens 62.4 ± 5.94 19 ± 2.24 a 20.2 ± 2.05 91.6 ± 14.5 c 4 ± 1.22

B. subtilis consortia 61.2 ± 6.61 15.4 ± 1.14 b 22.4 ± 2.79 107 ± 20.8 abc 3.6 ± 1.14

B. amyloliq + B. subitlis
consortia

67.2 ± 4.60 15.6 ± 1.67 ab 23.4 ± 8.44 126 ± 26.8 abc 4.2 ± 1.64

B. velezensis + fertilizer 64.8 ± 9.12 17.2 ± 1.48 ab 26.4 ± 7.47 125 ± 29.5 abc 4 ± 1.58

Control 58.2 ± 7.01 16 ± 1.41 ab 23.8 ± 5.07 140 ± 26.0 a 5.2 ± 1.64

ANOVA p 0.342 0.0332 0.455 0.001 0.231
fr
Mean values and standard deviations are shown. Different letters indicate significant differences between treatments (P<0.05).
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SUPPLEMENTARY FIGURE 1

Average shoot/root dry biomass ratio for treatments. Mean values and
standard deviations were employed for representation. Different letters

indicate significant differences between treatments (P < 0.05).
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SUPPLEMENTARY FIGURE 2

Microbial respiration obtained frommedia samples represented as milligrams
of CO2-C per gram of soil media respired by microbes. Mean values and

standard deviations were employed for representation. Different letters

indicate significant differences between treatments (P < 0.05).

SUPPLEMENTARY FIGURE 3

Correlation relationship between leaf N accumulation per tree and root

biomass per tree.

SUPPLEMENTARY FIGURE 4

Leaf N accumulation per tree according to treatment.
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