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Application of commercial
seaweed extract-based
biostimulants to enhance
adventitious root formation in
ornamental cutting propagation
protocols: a review
Danilo Loconsole*, Eugenio Scaltrito, Anna Elisa Sdao,
Giuseppe Cristiano and Barbara De Lucia

Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari, “Aldo Moro”, Bari, Italy
Despite significant advancements in stem-cutting propagation, insufficient

rooting efficiency remains an economic burden for the ornamental nursery

industry. IBA and NAA play a critical role in generating adventitious roots (AR)

when applied exogenously. In sustainable agriculture, the substitution of

chemical inputs, with alternative natural eco-friendly products presents a key

challenge. Biostimulants can form part of a solution to mitigate such risks

deriving from the use of agrochemicals, they are generally considered to be

non-toxic, non-polluting, biodegradable, and non-hazardous. The current

knowledge of the use of commercial seaweed extract (SE) products applied to

ornamental cutting propagation has not been summarized until now. Therefore,

we conducted a systematic review, and we hypothesized that SE-based

biostimulant application to ornamental stem cuttings improves AR formation in

terms of rooting percentage, root number, and architecture. Moreover, they

increase the overall quality of a rooted cutting as dry biomass and organic

compound content. The authors chose SE-based biostimulants because they

have been proven to have an extremely low carbon footprint; moreover, they are

expected to account for more than 33% of the global market for biostimulants

and reached a value of 894 million Euros by 2022. This review focuses on (i) SE-

based biostimulants, in particular, brown algae; (ii) technical information on five

commercial products: Goteo®, Kelpak®, AlgaminoPlant, Bio Rhizotonic,

Actiwawe and others, less known, also used as phytoregulators substitutes; (iii)

applied protocols, describing dose, application method, number of treatments,

cutting type; (iv) effects of applied protocols on rooting rate, root architecture

and overall rooted cutting quality. Outcomes show that findings vary based on

crops, cuttings, location, raw materials, composition, dose, application number

and procedures, and growth environment.
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1 Introduction to ornamental stem
cutting issues

Plant propagation is a vital part of both the agricultural and

horticultural industries. Ornamentals such as rose, glossy abelia, wild

sage, red tip photinia, ninebark, Pennisetum and others can be

propagated using either vegetative multiplication, which produces

genetically identical clones, or sexual reproduction (Hartmann and

Kester, 2002; Winkelmann, 2013). For the industrial ornamental

nursery, seed germination can be unreliable due to dormancy

(Maghdouri et al., 2021) and seeds often have low viability

(Cafourek et al., 2021). Vegetative propagation is insisted by

farmers due to its lower cost, ease, and speed compared to sexual

reproduction. Moreover, the resulting plants are clones that maintain

the same morpho-physiological and genetic characteristics as the

parent plants, ensuring uniformity and early production (Kentelky

et al., 2021; Tsaktsira et al., 2021). Various techniques can be used for

the ornamentals vegetative propagation: while layering is a simple

technique, it is costly and only produces a limited number of clones

(Braun and Wyse, 2019), grafting allows for adaptation to

unfavorable environmental conditions and resistance to soil-borne

pathogens and parasites but is labor-intensive and can lead to

compatibility issues between the rootstock and graft (Baron et al.,

2019; Rasool et al., 2020; Lesmes-Vesga et al., 2021). ‘In vitro’ clonal

propagation can produce many plants in a short time (Gianguzzi

et al., 2020; Park et al., 2021) but requires specialized laboratory

facilities and skilled labor (Read, 2011).

Propagation by stem cutting, less expensive and easier than the

‘in vitro’ technique, is the method most widely used to multiplicate

clones of landscape woody (Kaviani and Negahdar, 2017; Druege

et al., 2019; Ross et al., 2021) and herbaceous ornamental.

Adventitious roots (AR) “arise from non-root parts of plants, in

response to stress and wounding” (Gogna et al., 2022) and are a key

step in stem-cutting propagation (Assis et al., 2004; Oinam et al.,

2011) of economically important landscaping ornamentals (Geiss

et al., 2009).

The evaluation of the rooting quality of propagated cuttings is highly

relevant from an economical viewpoint. AR quality is characterized by a

high both percentage of rooted cuttings and the number and length of

very fine roots, which are essential for continuous access to water and

nutrients (Atkinson, 2000) and can help the plant withstand transplant

shock, increasing survival and plant growth (Franco et al., 2011; Khan

et al., 2016; Koevoets et al., 2016) and by an adequate number of higher

caliber roots with mechanical support function. Indeed, inadequate

environmental, nutritional and hormonal conditions of stem cutting

can lead to the production of insufficient AR, with consequent loss of

quality. The overall cutting quality is represented too by dry biomass of

above-ground and ground parts and by some organic compound

(chlorophyll and carbohydrate) content.

During the last few decades, intense interest has emerged in the

role of other potential rooting co-factors, such as carbohydrates,

phenolics, polyamines, and other plant growth regulators, as well as

signal molecules, such as reactive oxygen and nitrogen species

(Druege, 2023; Roussos, 2023).
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The technical innovations for propagation by cuttings

(automatic mist propagation unit, basal heating) provide optimal

environmental conditions to improve rooting efficiency. Regarding

stock plants nutritional conditions, it is widely recognized that,

having adequate carbohydrate reserves, specifically soluble sugars, is

crucial for survival and AR formation, particularly under

unfavorable environmental conditions for photosynthesis

(Hartmann and Kester, 2002). This is particularly relevant to

producing young ornamental plants in Central Europe, where

cuttings are rooted at relatively low irradiance levels, while in East

and Central Africa and Latin America they are rooted under high

irradiance conditions. This is because cuttings are unable to reach

their light compensation point under low light conditions,

especially during winter (Ahkami et al., 2009; Druege, 2009; Lohr

et al., 2017; Tahir et al., 2022). A significant portion of sucrose is

converted into starch, which is believed to be the primary carbon

source for the growth of AR (Lohr et al., 2017).

Auxin is one of the major endogenous hormones involved in

the process of adventitious rooting and the physiological stages of

rooting are correlated with changes in endogenous auxin

concentrations (Justamante et al., 2019). Indole-3-acetic acid

(IAA) is the most abundant member of the auxin family of

phytohormones, and its biosynthesis in plants and bacteria

proceeds through tryptophan-dependent and independent

pathways; it plays an important role in cell division and root

initiation (Luziatelli et al., 2020).

Generally, on farms, the application of a specific synthetic plant

phytoregulator (i.e. auxin) can enhance the rooting percentage,

number and quality of AR and shortage of rooting time in some

species but with little effect on others (Dıáz-Sala, 2021; Justamante

et al., 2019).

Compounds such as Indole-3-butyric acid (IBA) and 1-

Naphthaleneacetic acid (NAA) play a critical role in generating

AR when applied exogenously to cuttings (Hac-Wydro and

Flasinski, 2015; Gonin et al., 2019). The IBA-containing

preparation of Rhizopon and the water IBA solution positively

affected the degree of rooting and the percentage of rooted cuttings

in deciduous leafy shrubs (Pacholczak et al., 2016a). Loconsole et al.

(2022a) experimented to improve the cutting propagation protocol

and rooting quality of wild sage (Lantana camara) and glossy abelia

(Abelia x grandiflora) treated with 0, 1,250, 2,500, and 5,000 mg L−1.

Results showed that the species had remarkable sensitivity to IBA

dosage, mostly for AR quality, reaching the best results with

5,000 mg L−1 IBA in L. camara ‘Yellow’ (increased root number,

total length, surface area and the number of forks and crossings),

and 1,250 mg L−1 A. x grandiflora ‘Edouard Goucher’.

More than 30 commercial products containing IBA have been

registered by the United States Environmental Protection Agency

for utilization on fruit, vegetable, and ornamental crops, which are

categorized as biochemical pesticides (United States Environmental

Protection Agency, 2022). IBA hazardous information (Globally

Harmonized System of Classification and Labelling of Chemicals

GHS Classification, US), directed to operators in the nursery sector,

is represented by acute toxicity (Category 3), skin corrosion
frontiersin.org
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(Category 2), eye irritation (Category 2A), acute aquatic toxicity

(Category 3), chronic aquatic toxicity (Category 3).
2 Biostimulants in
sustainable agriculture

In sustainable agriculture, the substitution of chemical inputs,

such as growth regulators too, with alternative natural eco-friendly

products presents a key challenge (Bulgari et al., 2020; Malik et al.,

2021; Carillo et al., 2022). Biostimulants could form part of a solution

to mitigate such risks deriving from the use of agrochemicals (Lucini

et al., 2020; Loconsole et al., 2022b). Several concepts have been

proposed to define plant biostimulants, referred to as eco-friendly

because they are generally considered to be non-toxic, non-polluting,

biodegradable, and non-hazardous (Yakhin et al., 2017).

Biostimulants are either organic, inorganic, or microbial substances,

that can enhance in small amounts, the growth, yield and quality of

crops (Rouphael and Colla, 2018; Sible et al., 2021; Kisvarga et al.,

2022; Wei et al., 2022; Ganugi et al., 2023; Kaushal et al., 2023;

Rouphael et al., 2023). They also provide anti-stress effects

(Ambrosini et al., 2021; González-Morales et al., 2021; Franzoni

et al., 2022; Jacomassi et al., 2022; Ma et al., 2022; El-Nakhel et al.,

2023; Zhang et al., 2023). Li et al. (2022) reported a comprehensive

meta-analysis on non-microbial biostimulants of over one thousand

pairs of open-field data in a total of 180 qualified studies worldwide.

They are frequently used in horticulture (Baltazar et al., 2021) but

rarely in plant propagation. In 2014, Calvo defined biostimulants as

any substances or microorganisms that benefit the plant (Calvo et al.,

2014), while Du Jardin et al. stated, in 2015, that the definition is

based on what they are not, rather than what they are; for instance,

fertilizers and pesticides increase plant yields but do not fall into the

biostimulants category. Most biostimulants are complex mixtures

and on this basis (Povero et al., 2016), two definitions have been given

and both share the requirement that the mode of action must be

unknown but differ in the fundamental assumption that the function

of the biostimulant is a consequence of the discrete components

(Carletti et al., 2021; Pandey et al., 2022) or a consequence of the

‘emergent’ properties of the biostimulant. Therefore, Yakhin et al.

(2017) have developed a third concept that integrates the two

previous concepts ‘a formulated product of biological origin that

improves plant productivity as a consequence of the novel, or

emergent properties of the complex of constituents, and not as a

sole consequence of the presence of known essential plant nutrients,

plant growth regulators, or plant protective compound’.

In this review, the authors classified biostimulants into eight

groups: (1) PGPR beneficial bacteria, (2) AMF beneficial fungi,

(3) SE Seaweed extracts; (4) Ple Plant extracts, (5) PH protein

hydrolysates and other nitrogen-containing compounds, (6) HFA

humic acid and fulvic acid, (7) Ch chitosan and other biopolymers,

and (8) Si silicon, having as references papers of du Jardin (2015)

and Yakhin et al. (2017).

Actually, “Fertilising Products Regulation (2019/1009)” represents

a huge step forward for plant biostimulants (European Commission,

2019): for the first time, EU law recognizes biostimulants, and there is a
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common definition across all the Member States. The agricultural

sector has been challenged to increase productivity to feed the growing

global population while reducing adverse impacts on ecosystems and

human health (Rouphael and Colla, 2020). One solution to reduce

chemical use, without compromising crop quality and production (Li

et al., 2022), could be by using biostimulants (Zulfiqar et al., 2020), even

if their effects and mechanisms of action are still not fully understood

(Toscano et al., 2018). The recent Green Deal Europe guidelines will

probably increase the research and innovation in the biostimulants

sector (Corsi et al., 2022).

Despite significant advancements in stem-cutting propagation,

insufficient rooting efficiency remains an economic burden for the

horticultural nursery industry (Ahkami et al., 2009). The current

knowledge of the use of commercial SE products applied to

ornamental cutting propagation has not been summarized until now.

Therefore, we conducted a systematic review to update evidence

presented in scientific articles from 2011 to 2023: we hypothesize

that commercial SE-based biostimulant products application to

ornamental stem cuttings improves AR formation in terms of

rooting percentage, root number, and overall quality of

rooted cutting.

The authors chose SE-based biostimulants because they have

been proven to have an extremely low carbon footprint (Ghosh

et al., 2015); moreover, they are expected to account for more than

33% of the global market for biostimulants and reached a value of

894 million Euros by 2022 (El Boukhari et al., 2020).

The treated areas in this review could fill the gaps in

knowledge on the SE applications in clonal propagation by

cutting. It is undoubtedly thanks to the reviews of Kisvarga et al.

(2022) on the use of biostimulants in ornamental greenhouse

production (i.e. micro propagated orchids, endangered Brazilian,

gladioli and seed-sown species) and Parađiković et al. (2019) on

pot wild roses, marigold, and zinnia that ornamental crops have

the place they deserve in the general landscape of biostimulants

in horticulture.
3 Methodology

This review focuses on ornamental commercially important

crops (Table 1). Demand for ornamentals has been increasing lately,

due to the dynamic development of urban infrastructure (Francini

et al., 2022). Green areas have become an inseparable element of

modern settings. In response to this trend, ornamental nursery

production has been increasing to the point of becoming the most

profitable branch of ornamental horticulture.

The applied methodology, shown in Figure 1, was divided into

five successive phases:
1. Formulation of the problem : Despite significant

advancements in stem-cutting propagation, insufficient

rooting efficiency remains an economic burden for the

floricultural nursery industry.

2. Objectives: to describe: (i) SE-based biostimulants;

(ii) technical information on five commercial SE-based
frontiersin.org
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products: Goteo® , Kelpak® , AlgaminoPlant, Bio

Rhizotonic, Actiwawe and some others less known also

used as phytoregulators substitutes; (iii) applied protocols:

crop, cutting type, commercial SE product, dose,

application method, number of treatments; (iv) effects of

applied protocols on rooting rate, root architecture and

overall quality.

3. Keyword identification: Thomson Reuters’ Web of Science,

Elsevier’s Scopus, and Google Scholar were queried until

November 2023 for published scientific publications,

written in English and identified using the following

keywords: in the first step, “biostimulants AND cutting

propagation AND horticulture AND field AND forestry

crops” (n=68); in the second: “biostimulants AND cutting

propagation AND ornamentals” (n=34), in the third:

“Seaweed extract biostimulants AND cutting propagation

AND ornamentals” (n=21) through the process of

identification of bibliographical references and discarding

those irrelevant.

4. Eva lua t i on by t i t l e / k eyword s / ab s t r a c t : n=21

(Supplementary Table 1).

5. Critical reading and text analysis of papers
The processing of bibliographic data shows that ornamental

crops constitute as much as 45% of all those propagated by stem

cuttings applying biostimulants (Figure 2). Figure 3 focuses on the

comparison between the different types of biostimulants mentioned

in the cutting propagation protocols; SE has higher relative

frequency values both in horticultural (field, forest, fruit,

vegetable and ornamental crops) and ornamental crops.
4 SE-based biostimulants

Seaweeds are a diverse group of organisms, with approximately

9,000 species of red, brown, and green seaweeds identified. Among

these groups, brown seaweeds (Phaeophyta) are commonly used for

commercial extract manufacturing in agriculture (Atzmon and van

Staden, 1994) and horticulture (Khan et al., 2009), due to their high

content of macro- and micronutrients , amino acids ,

polyunsaturated fatty acids, vitamins, and polysaccharides such as

alginates, fucoidans, laminarians, lichenan-like glucans, and fucose

containing glucans (Khan et al., 2009; Battacharyya et al., 2015;

Shukla et al., 2016). The biostimulant function of SE is commonly

associated with the content of phytohormone, such as cytokinins,

auxin, gibberellin and other hormone like compounds

(Petropoulos, 2020; Stirk et al., 2020; Ali et al., 2021; Cardarelli

et al., 2024). These compounds can act directly (i.e. exogenous

apport) or indirectly [i.e. stimulation of genes expression and

promoting the endogenous biosynthesis of auxin, cytokinins and

gibberellins (Ali et al., 2021)], stimulating plant growth and

development (Jannin et al., 2013; Stirk and Van Staden, 2014;

Elansary et al., 2017) and improving nutrient uptake (González

et al., 2013). All these components have a synergistic effect in the

crops, providing a strong root system, promoting plant growth, and
TABLE 1 List of references regarding ornamental commercially
important crops propagated by cutting using SE-based biostimulants
with (+) or without (-) phytoregulators (PhR). (n=21).

Scientific Name
Common
Name

SE(*)/
PhR(**)

Reference
(n=21)

Photinia x fraseri ‘Red Robin’
Red
tip photinia

SE+PhR
Loconsole
et al. (2023)

Rose ‘Duchesse d’Angoulême’,
‘Hurdals’, ‘Maiden’s Blush’
‘Mousseuse Rouge’, R. beggeriana
‘Polstjårnan’, R. helenae ‘Semiplena’

Rose SE+PhR
Monder and
Pacholczak
(2023)

Abelia x grandiflora and
Lantana camara

Glossy
abelia and
Wild sage

SE+PhR
Loconsole
et al. (2022b)

Crassula ovata Jade plant SE-PhR
Toța
et al. (2022)

R. ‘Cosmos®’ and ‘Michelangelo®’ Rose SE+PhR
Traversari
et al. (2022)

R. ‘Hurdal’ Rose SE+PhR
Monder
et al. (2021)

Conocarpus erectus Conocarpus SE+PhR
Abdel-
Rahman
et al. (2020)

Pennisetum ‘Vertigo’ Pennisetum SE-PhR
Kapczynska
et al. (2020)

R. ‘Duchesse d’Angoulême’ Rose SE+PhR
Monder and
Pacholczak
(2020)

R. ‘Elfrid’ and ‘Weisse Immensee’ Rose SE+PhR

Pacholczak
and
Nowakowska
(2020)

Passiflora actinia Passiflora SE-PhR
Gomes
et al. (2018)

R.’Hurdals’, ‘Maiden’s Blush’,
‘Mousseuse Rouge’, beggeriana
‘Polstjaårnan’, and
helenae ‘Semiplena’

Rose SE+PhR
Monder and
Pacholczak
(2019)

Cornus alba Dogwood SE+PhR
Pacholczak
et al. (2017)

Physocarpus opulifolius Ninebark
SE+PhR Pacholczak

et al. (2016b)

Physocarpus opulifolius Ninebark
SE+PhR Pacholczak

et al. (2016a)

Cotinus coggygria Smoke tree SE+PhR
Pacholczak
et al. (2015)

R. ‘Duchesse d’Angoulême’ Rose SE+PhR
Monder
et al. (2014)

Ornithogalum umbellatum
Star
of
Bethlehem

SE-PhR
Salachna
et al. (2014)

Camellia japonica L.
Common
camelia

SE-PhR
Ferrante
et al. (2012)

Pelargonium peltatum ‘Ville de
Paris Red’

Pelargonium SE-PhR
Krajnc
et al. (2012)

Prunus ‘Marianna’
Marianna
plum

SE-PhR
Szabó
et al. (2011)
SE(*): Seaweed extract; PhR(**): Phytoregulators
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improving leaf development and flowering (Mukherjee and Patel,

2019; Valverde et al., 2022).

It is crucial to emphasize that biostimulants derived from SEs do

not constitute a homogeneous category of products. The

characteristics of SE can vary significantly based on factors such as

the family and species of seaweed utilized in the manufacturing

process (e.g., brown, green, or red seaweed), the source of the seaweed

raw material, and the specific extraction methods employed (Fletcher

et al., 2017). Commercial brown SEs are a variable mixture of

Ascophyllum nodosum, Ecklonia maxima, Fucus, Laminaria,

Sargassum, and Turbinaria spp. (Craigie, 2011; Sharma et al., 2012;

Górka et al., 2018). Biostimulants derived from A. nodosum extract

have demonstrated various positive effects on fruit and vegetable
Frontiers in Horticulture 05
crops: plant vigor, increased root development, enhanced chlorophyll

synthesis, promotion of earlier flowering, enhancement of fruit set

and uniformity, delayed senescence, and increased tolerance to

abiotic stress (Shukla et al., 2019). SE application can introduce

microbial communities at the point of inoculation; on the other hand,

foliar application to vegetative growth stages is aimed at stimulating

signal tracts to reduce abiotic stresses (Adedayo and Babalola, 2023;

Krawczuk et al., 2023). These beneficial outcomes highlight the

potential of A. nodosum extract biostimulants in contributing to

overall plant health and productivity (Łangowski et al., 2019).

In terms of biological activity on plants, the main known

elicitors from seaweeds are cell wall polysaccharides that also

contain a wide range of organic and inorganic molecules that are
FIGURE 2

Relative frequency (%) of different crop categories treated with biostimulants in the cutting propagation protocols.
FIGURE 1

Systematic review flowchart.
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known to contribute to their biostimulant activity (Magnabosco

et al., 2023). Their application helps in promoting physiological

actions like photosynthesis, nutrient metabolism, enzymatic

activities, chlorophyll, and carbohydrate content. And

consequently, improve the rooting process. It is known that

during rhizogenesis, carbohydrates are an important source of

energy for plant tissues. Furthermore, a significant portion of

sucrose is converted into starch, which is believed to be the

primary carbon source for the growth of AR (Lohr et al., 2017).
5 Commercial SE-based products as
an example

Analysis of the 21 references (Supplementary Table 1) showed

that there were 10 commercial SE-based products used in the trials.

Supplementary Figure 1 shows that, in our reference list (n=21),

the most widely used commercial SE-based products in the

propagation of ornamental plants turn out to be Goteo (23%),

AlgaminoPlant (19%), Bio Rhizotonic (19%), Kelpak (15%) and

others (4%). Supplementary Figure 2 illustrates the distribution of

other commercial biostimulant categories, non-SE-based: Bio Roots

and RootJuice (Ple) are the those with the highest percentage of use.

Among phytoregulators, IBA is the most widely used in cutting

propagation (60%), followed by NAA (25%) (Supplementary

Figure 3). The dose indicated on the label of the following

commercial SE-based products is missing for the ornamental crops:

Goteo®, Kelpak®, AlgaminoPlant, BioRhizotonic.

Goteo® (Goteo – Goactiv, UPL, Cesena, Italy) is a commercial

liquid seaweed-based biostimulant, containing GA142, a filtrate

from the seaweed A. nodosum, a source of auxins and cytokinins,

polysaccharides and vitamins (Stępowska, 2008; Francke et al.,

2022). In the preparation, GA142 is added with organo-mineral

fertilizers (w/v): 13% P2O5, 5% K2O, and 1.3–2.4% organic

substances (Loconsole et al., 2022b).

Kelpak® (Kelp Products Pty Ltd, Simon’s Town, South Africa)

(Table 2) is a liquid concentrate derived from the stipes and laminae
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of the brown kelp, E. maxima (Osbeck) Papenfuss (Crouch and Van

Staden, 1991). It is commercially used as a plant growth stimulator

reducing nursery periods before out-planting and increasing the

yield and quality of a variety of terrestrial crops (Crouch and Van

Staden, 1991; Al-Hawezy, 2015; Kocira et al., 2018). It is also known

to aid in producing stronger and healthier crops by enhancing root

formation and reducing transplant shock resistance.

AlgaminoPlant (Varichem, Poland), is a liquid preparation

composed of SE derived from Sargassum , Laminaria ,

Ascophyllum, and Fucus at 18% concentration. It incorporates

phytohormones with gibberellin-like activity equivalent to 0.005%

gibberellic acid (GA3), cytokinin activity equivalent to 0.0005%

benzyl adenine (BA), and auxin-like activity corresponding to

0.003% IAA. Additionally, it is enriched with potassium salts of

amino acids at a concentration of 10% (Matysiak et al., 2010).

Bio Rhizotonic (Canna Continental, Los Angeles, USA),

identified as an algae-based rooting liquid stimulator, includes

vitamins such as B1, B2, and N-P-K at a ratio of 0.6–0.2-0.6

(Monder and Pacholczak, 2020).

Actiwave® (Valagro SpA., Atessa, Italy) is a SE product derived

from A. nodosum and its three major components are kahydrin,

alginic acid, and betaine. Its composition includes organic carbon

(12%), organic N (1%), Total N (3%), N ureic (2%), K2O (7%) at 6.4

pH. The dose indicated on the label is 300–500 mL 100 L−1 for the

ornamental crops.
TABLE 2 Composition of commercial SE Kelpak® (34% w/w E. maxima).

IBA: 11.16 mg L−1 N: 0.09% Mn: 17.3 mg Kg−1

Cytokinin: 0.031 mg L−1 P: 90.7 mg Kg−1 Fe: 40.7 mg Kg−1

Alginates: 1.5 L−1 K: 7163.3 mg Kg−1 Cu: 13.5 mg Kg−1

Amino acids: 441.3 mg 100 g−1 Ca: 190.4 mg Kg−1 Zn: 17.0 mg Kg−1

Mannitol: 2261 mg L−1 Mg: 337.2 mg Kg−1 B: 33.0 mg Kg−1

Neutral sugars: 1.08 g L−1 Na: 1623.7 mg Kg−1
Adapted from Szczepanek and Siwik-Ziomek (2019).
FIGURE 3

Relative frequency (%) of biostimulant classes used in the cutting propagation protocols: comparison between ornamental and horticultural crops.
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6 Applied protocols with commercial
SE-based products

‘The ability to demonstrate that a product is indeed a bona fide

biostimulant will depend on a demonstration of its effect’ (Ricci

et al., 2019).
6.1 Goteo®

Goteo® has been observed to stimulate the greenhouse

development of the Ornitogalum bulb’s twin scales, excised from

the outer and inner of the parent bulb and soaked for 30 minutes in

0.2% solution of Goteo® (Salachna et al., 2014). The study revealed

that exciting twin scales from the outer layer of the parent bulb led

to a greater formation of adventitious bulbs that exhibited higher

fresh weight and circumference, as well as a greater number and

length of roots.

Although not in a greenhouse protocol comparing SE-based

biostimulants with IBA, Kapczynska et al. (2020) found that in

Pennisetum ‘Vertigo’ cuttings Goteo®, at a dose of 0.1%, stimulated

AR development, having a significant impact on root elongation,

regardless of whether peat or perlite was used as the rooting

medium. Watering the cuttings with Goteo® 5 times every 5 days

proved to be highly effective, achieving a 100% success rate,

compared to soaking the 2 cm cuttings base for 20 min and

applying foliar Goteo spraying 5 times every 5 days. For each

Goteo treatment, a control was set up in which the cuttings were

treated as follows: soaking with water, watering with water and

spraying with water. Furthermore, Goteo® watering stimulated the

generation of new shoots during greenhouse cultivation. The

application of Goteo® resulted in an increased phosphorus and

potassium content. Khan et al. (2009) observed a beneficial effect

of plant P nutrition because of the application of SE-

based biostimulants.

Loconsole et al. (2022b) investigated the effects of Goteo®

compared to IBA application, in the process of rhizogenesis of

two ornamental shrubs, Lantana camara and Abelia x grandiflora,

in a propagation greenhouse. The treatments applied to semi-

hardwood stem cuttings were as follows: control (distilled water

as spray); IBA (Sigma, St. Louis, MO, USA) solution at

concentration 1,250 mg L−1; Goteo® concentrations at 1, 2, and

3 mL L−1 as spray application at two-week intervals, totaling three

applications. Regarding the concentration, the company

recommends 0.1% solution (1 mL L−1) on vegetable crops and

does not provide a dosage for ornamentals. On the other hand,

Gajc-Wolska et al. (2012) recommended the dosage for hastening

the rooting system regeneration as being equal to three to four

treatments with a 0.2% solution (2 mL L−1) every 2 weeks. SE

biostimulant was found to be effective in enhancing rooting

percentage as well as in root architecture.

Findings revealed that Goteo® at a dose of 3 mL L−1 in wild sage

and 1 mL L−1 in glossy abelia, Goteo® produced similar results to

those obtained with IBA regarding rooting percentage (in lantana:

IBA= 91%, Goteo® 3 mL L−1 = 87%; in abelia: IBA= 93%, 1 mL L−1 =
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90%). Moreover, the stimulator was successful in promoting the

growth of many roots and enhancing architecture parameters when

compared to IBA. Better results were found in wild sage at a dose of

3 mL L−1 compared to IBA treatment, regarding root length (+27%),

surface area (+47%), diameter (+22%), number of tips (+41%), forks

(+61%), and crossings (+31%). In A. × grandiflora, on the contrary,

the applications of IBA and Goteo® 1–2 mL L−1 determined the

greatest root length (391, 396 and 336 mm, respectively) and root

surface area values (67, 70 and 61 mm2, respectively).

In addition to observing that SE-based biostimulant had a

beneficial effect on AR and shoot quality of cuttings, Pacholczak

and Nowakowska (2020) also noted, in two ground cover roses

‘Elfrid’ and ‘Weisse Immensee’ under a plastic tunnel, those on both

chlorophyll contents (chlorophyll a+b) and soluble sugars

(Supplementary Figures 4, 5). The goal of their experiment was to

compare the effects of Goteo® and AlgaminoPlant, applied at a

concentration of 0.2% for foliage spraying, to IBA (Rhizopon 1% or

water solution 200 mg L−1). AlgaminoPlant and Goteo® treated

cuttings, compared to the control, led to an increase in chlorophyll

content by 23% and 28% in Elfrid and by 19% in Weisse Immensee,

respectively. Compared to untreated cuttings, those treated with

Goteo® (0.2%) had the highest values of total soluble sugars and

chlorophyll compared to those treated with Rhizopon (1% IBA) or

water solution.

Monder et al. (2014) andMonder and Pacholczak (2018) in rose

cuttings showed the positive impacts of IBA and SE-based

biostimulants on sugar levels, vital for effective rhizogenesis since

the effectiveness of photosynthesis in cuttings is low. AR formation

is a highly energetic process; the capability of young cutting to

produce carbohydrates both as storage starch and ready-to-use

simple sugar forms is fundamental.
6.2 Kelpak®

Leafy shoot cuttings are exposed to several environmental

stresses during rooting. Szabó et al. (2011) tested, on stockplants

of Prunus ‘Marianna 8-1’ raised in the open field, two biostimulants:

Kelpak® (0.2%) and Wuxal Ascofol® (0.2%, containing A. nodosum

extract) a PGPR-based biostimulant, Pentakeep®V (0.03%),

containing 5-amino-levulic-acid, and untreated control. applied

three times before cutting. Kelpak® and Wuxal Ascofol®

increased the number and the weight of shoots, the weight of

cuttings and the leaf chlorophyll content. Therefore, shoots of

treated stock plants reached earlier the optimum size for cutting

propagation. Application of Kelpak® resulted in the highest rooting

rate and increased the fresh weight of cuttings during rooting

surpassing both control and cuttings treated with the other two

preparations tested.

Maintaining green, functionally active leaves during root

induction is crucial since root formation depends on adequate

carbohydrate supply from the cutting’s source leaves to the region

of root regeneration.

Traversari et al. (2022), aimed to test the replacement of

synthetic phytoregulators, such as auxins and brassinosteroids,

with a commercial SE, for AR formation, analyzed in greenhouse,
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‘Michelangelo®’ and ‘Cosmos®’ rose cuttings, tested with five

different treatments: distilled water (control), 10% Kelpak® and

10% Phylgreen in distilled water, 4000 ppm IBA and NAA in

distilled water; 5 ppm of 22(S),23(S)-homobrassinolide in distilled

water. Results showed that Kelpak® improved rooting percentage

and root biometric parameters in both cultivars. Moreover, root

fresh weight was significantly higher under both auxin and Kelpak®

treatments, with increases of +99% and +62%, respectively.

Additionally, root length demonstrated notable enhancements

under auxin and Kelpak® treatments in the ‘Michelangelo®’, with

increases of +103% and +75%, respectively, compared to

the control.

Loconsole et al. (2023) observed that, in Photinia x fraseri ‘Red

Robin’ cuttings, Kelpak® and Goteo® at the doses of 2 and 3 mL L−1

applied as foliar spray four times in greenhouse propagation,

stimulated the production of callus in over 80% of cuttings treated,

whereas IBA produced the highest rooting percentage. Moreover, it

appears that the abundant callus tissue production hinders the

rooting, creating a structural barrier to the development of AR.

These results are consistent with those of Monder and Pacholczak

(2017) and Monder et al. (2021), who found that in the rhizogenesis

of the ‘Hurdal’ rose, an increase in rooting percentage was only

observed when the percentage of cuttings with callus decreased.
6.3 AlgaminoPlant and Bio Rhizotonic

Pacholczak et al. (2017) reported a comparable effect on the rooting

potential of cuttings of Cornus alba ‘Aurea’ and ‘Elegantissima’, treated

with AlgaminoPlant at 0.2% water solution with cuttings treated with

Rhizopon AA (1% IBA) and IBA 200 mg L−1.

Pacholczak et al. (2016b) reported a beneficial impact of

AlgaminoPlant (0.2%), on the rooting of ninebark cuttings

(Physocarpus opulifolius), sprayed once, twice or three times

during the rooting period, compared to Rhizopon AA (2% IBA)

and a water solution of 200 mg dm−3 IBA. The control cuttings were

sprayed with distilled water. Two nodal stem cuttings were rooted

in styrofoam boxes with a mixture of peat, perlite and sand in a

greenhouse propagation. The trial was repeated in two years (2012

and 2013). A triple treatment with AlgaminoPlant was observed to

increase the percentage of rooted cuttings by 36% (2012) and 26%

(2013) compared to the control and showed comparable or slightly

weaker effects to the treatments with synthetic IBA.

Pacholczak and Nowakowska (2020) compared the effects of

AlgaminoPlant, Goteo® and Rhizopon (1% IBA) on cuttings in two

ground cover roses Elfrid’ and ‘Weisse Immensee’ growth under a

plastic tunnel. SEs were applied by foliar spraying at a concentration

of 0.2%. The experiment’s findings revealed that AlgaminoPlant

exerted a positive influence on rhizogenesis in both cultivars,

comparable to or only slightly less potent than those induced by

the IBA. Furthermore, the application of Goteo® led to an increase

in the content of chlorophyll and total soluble sugars in cuttings. On

the other hand, the levels of free amino acids and polyphenolic acids

were reduced under the influence of Goteo®.

The research carried out by Monder et al. (2021) focused on the

response of stem cuttings of Rosa ‘Hurdal’ treating the cuttings with
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Bio Rhizotonic and showed that the anatomical structure of cuttings

was influenced by plant-derived biostimulants.

Historical roses are especially difficult to propagate, with the

process of rhizogenesis lasting for a minimum of 12 weeks and

connected with low quality of rooted cuttings. Monder and

Pacholczak (2023) pointed out that, on six aged, once-flowering

rose cultivars (‘Duchesse d’Angoulême,’ ‘Hurdals,’ ‘Maiden’s Blush,’

‘Mousseuse Rouge,’ Rosa beggeriana ‘Polstjårnan,’ R. helenae

‘Semiplena’) treated with Bio Rhizotonic, the polyphenolic acid

content decreased during the rhizogenesis period.
6.4 Other SE-based products

Ferrante et al. (2012), pointed out an experiment on cuttings of

Camellia japonica L. using Actiwave® (Valagro Spa) at the doses of

0.015 mL and 0.03 mL per application, for a total of eight

applications per month, directly on the substrate. The effect of the

biostimulant on the rooting of cuttings was evaluated by comparing

it with applications of gibberellic acid (GA3) at doses of 1.25 mg and

2.5 mg. These doses were administered at identical intervals of

Actiwave®, with nebulization on both the leaves and the substrate

of the cutting, resulting in a cumulative application of 10 and 20 mg.

After 127 days, the rooting percentage for cuttings treated with 0.12

ml/L Actiwave® was 82%, contrasting with the control group,

which exhibited a rooting percentage of 18%. By the end of the

experiment (161 days), the rooting value for the Actiwave®-treated

cuttings further increased to 88%, while the control group showed a

rooting percentage of 55%.

Toța et al. (2022) carried out a study on Crassula ovata clonal

propagation, comparing several biostimulants, including Raiza, a

liquid product containing bioactive substances extracted from A.

nodosum, 20 free amino acids including proline and serine,

phytohormones including cytokinins, auxins and gibberellins. The

experimental protocol lacks in SE doses and number of applications.

Abdel-Rahman et al. (2020) assessed the impact of a commercial

SE-based biostimulant (Tera at 3 mL L−1 or 10 mL/pot), IBA, both

independently and in combination with PGPR (Agrobacterium

rhizogenes) at 108 CFU mL−1, and Ple biostimulants (coconut water),

on the root quality of cuttings in Conocarpus erectus L. The treatments

were administered as follows: for IBA, at 100 ppm, the basal ending of

cuttings was soaked for 20 hours at the start of the trial; PGPR were

inoculated in the rooting substrate before sticking cuttings; Tera was

sprayed (3 mL L−1) or drenched (10 mL pot−1) once every 5 days for

three times in total. Finally, for coconut water, the basal ending of the

cuttings was soaked for either 3 min or 1 h before planting.

The findings revealed that all treatments involving IBA and/or

biostimulants significantly increased the rooting percentage, as well

as the root and vegetative characteristics of the rooted cuttings when

compared to untreated cuttings. Notably, the individual

applications of seaweed extract and coconut water demonstrated

greater efficacy than IBA or A. rhizogenes alone. Additionally,

treatments involving seaweed extract as a drench, with or without

IBA, outperformed those of seaweed extract treatments as a spray.

Gomes et al. (2018) tested a commercial SE product (name not

given) manufactured by Acadian Seaplants® in the greenhouse, to
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assess its impact when applied to the bases of P. actinia stem cuttings.

Five concentrations of the extract in distilled water were tested: 0, 10,

20, 30, and 40%. Stem cuttings were dipped for 2 min in solution

before planting. On average, a rooting percentage of 51% was

achieved. The rooting percentage exhibited a linear increase in

correlation with the concentrations of the brown seaweed extract.

In comparison to the control treatment, a notable 10% increase in

rooting was observed with the 40% seaweed extract treatment.
7 Conclusions

The ornamental’s worldwide production has increased in recent

years due to their great use in urban parks and green areas, ensuring

ecosystem services. Despite significant advancements in stem-

cutting propagation, a complicated process that starts from high-

quality rooted cuttings, insufficient rooting efficiency remains an

economic burden for the ornamental nursery industry. Synthetic

phytoregulator as IBA, with a high carbon footprint, when applied

exogenously to cutting, however, enhances AR formation.

In sustainable agriculture, the substitution of chemical inputs, with

alternative natural eco-friendly products presents a key challenge.

Biostimulants, renewable sources, can form part of a solution to

mitigate such risks deriving from the use of agrochemicals.

This review shows the positive effects of the main commercial

SE-based products on AR formation and quality of rooted cutting,

highlighting their effectiveness on rooting percentage, root number

and architecture. Moreover, they increase the overall quality of a

rooted cutting as dry biomass and organic compound content.

The findings show that the effects, unfortunately, are species-

specific and product-specific, depending on: (i) the type of seaweed

resource; (ii) the quality and composition of the extract; (iii) the

method, concentration, and frequency of application.

Especially, when the row material comes from macroalgae, it

turns out to be extremely complex, to identify the numerous

components exerting a role in the biostimulation mechanism.

Despite the intricate nature of this product, identification of its

bioactive ingredients is critical to building trust and credibility in

its commercialization.

To conclude, it is possible to state that:
Fron
- The same dose can prove effective if administered with one

SE commercial product and ineffective with another (i.e.

Kelpak vs Phylgreen);

- The same dose should be optimized with the species and

cultivar (i.e. Goteo® at a dose of 3 mL L−1 in wild sage and

1 mL L−1 in glossy abelia);

- The optimal dose depends on the growing season too: as

occurred in ‘GiSelA 5’ softwood cuttings;

- SEs as a drench with or without IBA surpassed those of SE

treatments as a spray (i.e. in C. erectus cuttings);
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- Where no relationships exist between the type of cutting

(herbaceous or woody, top or branch) and the most suitable

biostimulants, need to operate empirically.
This review also shows that the application of SE-based

biostimulants in replacement of IBA can ensure results of

comparable quality in ornamental cutting propagation.

Therefore, it will be necessary to create newly standardized

protocols to validate and give credibility to the effects of SE-based

biostimulants applied to clonal multiplication.

The specific application of other biostimulants, such as AMF and

PGPR, can be useful in the sector of ornamentals to pursue research.
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