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Introduction: Saffron is one of the most coveted and one of the most tainted

products in the global food market. A major challenge for the saffron industry is

the difficulty to distinguish between adulterated and authentic dried saffron

along the supply chain. Current approaches to analyzing the intrinsic chemical

compounds (crocin, picrocrocin, and safranal) are complex, costly, and time-

consuming. Computer vision improvements enabled by deep learning have

emerged as a potential alternative that can serve as a practical tool to

distinguish the pureness of saffron.

Methods: In this study, a deep learning approach for classifying the authenticity

of saffron is proposed. The focus was on detecting major distinctions that help

sort out fake samples from real ones using a manually collected dataset that

contains an image of the two classes (saffron and non-saffron). A deep

convolutional neural model MobileNetV2 and Adaptive Momentum Estimation

(Adam) optimizer were trained for this purpose.

Results: The observed metrics of the deep learning model were: 99% accuracy,

99% recall, 97% precision, and 98% F-score, which demonstrated a very high

efficiency.

Discussion: A discussion is provided regarding key factors identified for obtaining

positive results. This novel approach is an efficient alternative to distinguish

authentic from adulterated saffron products, which may be of benefit to the

saffron industry from producers to consumers and could serve to develop

models for other spices.

KEYWORDS

classification, Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), red
spices, saffron
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1 Introduction

Saffron (Crocus sativus L.), commonly known as the “red gold”,

for many decades now has been the world’s most expensive spice

(Gheshm and Brown, 2021). It is grown in a variety of nations,

including prominently Iran, India, Spain, Greece, Italy, and

Morocco (Fernández, 2004). In non-traditional saffron production

countries like the United States, the increased interest in saffron is

also becoming notable. An important amount of volume has

recently been grown in the northeastern USA. On the other hand,

imports continue to be the main source of the product in the US

local market with a 500% imports increase in the last few years

(United Nations, 2022). Saffron is used as a colorant or spice in

culinary dishes or for food products as well as a medicinal

ingredient for multiple purposes (Moghaddasi, 2010; Pitsikas,

2015; Khorasany & Hosseinzadeh, 2016; Kiani et al., 2018). The

popularity of saffron is steadily augmenting, with a global demand

for saffron expected to increase to 12% annually by the end of 2025

(Grand View Research, 2020).

A commercial pure saffron product is composed of only the

flower’s red stigma of the perennial herb Crocus sativus L. It is

harvested manually, which reveals why its elevated cost. Due to its

high-value saffron is frequently adulterated through the addition of

foreignmaterial that provides illicit economic profits. The methods to

adulterate saffron can be categorized as either conducted with

biological (naturally occurring) adulterants or synthetic/chemical-

based adulterants (Kumari et al., 2021). Since the last century, its

adulteration has enraged food businesses across the supply chain and

drawn public attention (Husaini et al., 2013). Saffron adulteration not

only misleads buyers but often raises major concerns due to the risks

that it may pose to public health. The reduced quality and nutritional

value of adulterated saffron have additional repercussions as it

eventually alters the final products in which saffron is used (e.g.

food, and medicine) (Heidarbeigi et al., 2015; Parihar et al., 2020). For

this reason, food regulation authorities have taken steps towards

more stringent approaches to control food adulteration and safeguard

consumers from fraudulent operations.

Numerous studies have been carried out on the detection of

adulterants of saffron using a variety of methods and techniques

(Kumari et al., 2021). These include physical and chemical analyses,

chromatographic techniques, microscopy, and spectroscopy

methods. Physical and chemical analyses are used to detect the

presence of foreign substances such as dyes, starch, or other

materials in saffron. Chemical analyses of ubiquitous compounds

such as crocin, picrocrocin, and safranal using sophisticated

chromatography techniques have proven reliable (Lage and

Cantrell, 2009; Garcia-Rodriguez et al., 2014), even when the

adulterant contains some of the same crocins that saffron does

like gardenia fruits (Gardenia jasminoides Elis), which has been

efficiently detected with UHPLC-DAD-MS analysis (Moras et al.,

2018). However, the complexity of these methodologies makes

them impractical for the everyday market dynamic. Other simpler

tests, such as those based on the maximum absorbance in the UV-

VIS range have shown low reliability to distinguish the presence of
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adulterants (Sabatino et al., 2011). Sensory assessments of the

aroma, shape, and color of saffron filaments also have limited

reliability as it depends much on the experience of the analyst

and the type of adulteration. Laser-induced breakdown

spectroscopy data analysis with partial least square (PLS) was

effective to distinguish pure samples from those adulterated with

turmeric, safflower, and marigold (Varliklioz et al., 2017). This

method improved the delivery time of results, concerning those

based fully on chemometrics, however, it still requires time-

consuming laboratory calibration and the acquisition of

sophisticated novel spectroscopy equipment.

Artificial intelligence (AI) has emerged as a powerful tool for

detecting food adulterants such as coloring agents, preservatives,

and other contaminants in food products (Goyal et al., 2022).

Elaraby et al. (2022a) demonstrated the feasibility of image

analysis-based AI in classifying citrus diseases. In another study,

Elaraby et al. (2022b) introduced an approach for plant disease

detection using image analysis-based AI. Fazal et al. (2018) reported

the potential application of image analysis-based AI in predicting

quality in food science and engineering fields. Computer vision

systems (CVS) techniques have allowed the development of efficient

applications of deep learning in image recognition, making it easy to

detect microorganisms of different natures (Zhang et al., 2021). AI-

based systems can be used to analyze large amounts of data to

identify patterns that may indicate the presence of adulterants. AI in

combination with smartphone technology data can be a practical

way to identify pure, homogenous food matrices, and flag

suspicious ingredients, allowing for more efficient and accurate

detection of food adulteration. The latest models of smartphones

possess cameras with a high-quality perception of images and

sounds, which has proven effective for determining the purity of

food matrices through color/texture (Kalinowska et al., 2021) and

sound vibration (Iymen et al., 2020).

In this study, the need for a deep learning approach capable of

accurately classifying the authenticity of saffron was addressed.

The study aimed at contributing with a methodology that can be

used to assess the quality and authenticity of saffron products.

Therefore, the objective was to propose a simple framework for

detecting saffron purity using deep learning. The classification of

saffron versus non-saffron was hypothesized to be achieved by

training a deep convolutional neural network (CNN) that extracts

high to low levels of attributes from digital images of saffron. The

initial hypothesis was that the criterion could be used to decide

whether the saffron digital images are genuine or not. Moreover,

it was proposed that the knowledge transmission from the main

task to the target job (saffron purity), could be examined by

transmitting knowledge from MobileNetV2, a pre-trained model,

to a novel classification task. The latter could be tested using the

same number of images CNN generated from the start. The

ultimate goal of the study was to demonstrate that saffron

purity identification can be achieved by using a pre-trained

modified MobileNetV2 with a Deep neural networks (DNN)

classifier that transmits knowledge to a new target job that is

sufficiently fine-tuned.
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2 Materials and methods

2.1 Sourcing and preparation of saffron and
non-saffron samples

Eleven saffron samples were sourced by Saffronsystems

(Towson, MD, USA) from diverse sites including Vermont

(North American Center for Saffron Research and Development),

Iran, Greece, Spain, Afghanistan, and Canada. Verification of

authenticity was based on certification provided by the

manufacturers of the samples. An authentic saffron sample

(ExoticBioNaturals, Afghanistan) was also subjected to different

types of adulterants commonly utilized in tainting saffron. The

experimental adulteration was done with whole saffron stigma

filaments (8 samples) and partially powdered stigma filaments (5

samples). The adulterated samples are listed below (Table 1),

including a 14th “saffron” Spanish Safrante sample that was

sourced without certification from a street market that was easily

determined as adulterated (unknown substance) through

observation (saffronsystems) and a commonly used water dilution

test (Shukla and Iqbal, 2015; Ahmed et al., 2021).

The techniques to apply the contaminants were as follows,

which were based on previous reports (Kumari et al., 2021). For the

yellow dye (Dr. Ph. Martin Daffodil Yellow; Sales International,

Inc.), the foundation saffron was modified in two ways: one was

partially crushed (mortar and pestle) and the other samples were

left whole. The stigma filaments and crushed tissue were then

placed on separate pieces of paper towels and the yellow dye was

added to each sample. The same process was followed for adding

turmeric (Curcuma long , local market Towson, MD,

commercialized as 100% pure). With the calendula (Calendula

officinalis; Monterey Bay Spice Co. via Amazon), the yellow

fibrous tissue (petals of the flower) was separated from the rest of

the flower. These were then added to saffron (whole stigma

filaments). With the safflower (Carthamus tinctorius; Nature Tea

via Amazon), the flower parts were mixed with the saffron (whole

stigma filaments). For the multi-adulterant mixtures, safflower,

calendula, and saffron (whole stigma filaments) were added

together in a small container and lightly agitated.
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2.2 Image acquisition

Digital images of the 11 authentic samples and the 14

adulterated samples were obtained with smartphones (iPhone 11

Pro). Several images were constructed out of each sample including

a. authentic, b. adulterated whole filament, c. adulterated in powder.

In total 205 images were shared with the Computer Science Lab of

South Valley University, Egypt, for subsequent image processing

and analysis. The images were acquired with at least 7 days delay

after the in-house adulteration of the samples to ensure that the

final product was homogenized and dried.
2.3 MobileNetV2 for image classification

The saffron classification dataset was trained using an

adaptation of the MobileNetV2 Convolutional neural network.

Due to image recognition, this network is built on the ImageNet

dataset (1000 classes of different objects and animals).

It was hypothesized that the MobileNetV2 CNN could solve the

saffron classification problem described in this research because it

requires considerably fewer training instances and classes. Early-

Stopping and Dropout have been proposed as methods for reducing

CNN overfitting. The architecture of the MobileNetV2 utilized in

this study is shown in Figure 1.

The choice for a Mobile-Net V2 was justified because it is a

lightweight model and performed very well with the available data

at the early stage of the study. The continuous trials provided a

narrow selection of architectures that were further analyzed to

determine the architecture with the best performance.

Deep separable convolution (C1) was used in MobileNetv2 with a

bottleneck residual block. The bottleneck residual block had three

convolution layers. We had determined the last two layers in

MobileNetv2. They are a depth-wise convolution layer (DW) and a

1 x 1 point-to-point convolution layer (PW), noting that in

MobileNetv1, pointwise convolution (PW) either keeps or doubles

the number of channels. The final, fully connected (FC) layers are the

layers that classified the extracted features from previous CNN layers.

For this study case, 1 x 1 convolution produced a reduced

number of channels (i.e. the projection layer), which given the lower

quantity of data that travels through it was also assumed as the

bottleneck layer. Thus, the 1 x 1 expansion layer was the first layer,

which expanded the amount of data that passed through it (by

increasing the number of channels). Its function serves in the

opposite direction to that of the projection layer. Based on the

expansion factor, the data expanded.

This is a hyperparameter that was discovered through various

architectural trade-offs. The expansion factor was set to 6 by default.

The depth-wise convolution layer was the second layer, which was

already known. A residual connection was another crucial

component of the bottleneck residual block. It was the same as

ResNet. The activation function ReLU6 was utilized so it became

in the form “(max (x, 0), 6).” Except for the project layer, each

layer contained a batch normalization layer and activation

function (ReLU6).
TABLE 1 Origin of products subjected to analysis in this study.

Product type subjected to imagery-machine-based
analysis

Whole Stigma Filaments Partially-Powdered Stigma
Filaments

o Safflower
o Calendula
o Saffron + Safflower
o Saffron + Calendula
o Saffron + Calendula + Safflower
o Saffron + Yellow Dye
o Saffron + Turmeric
o Saffron + Turmeric + Calendula

+ Safflower

o Saffron + Calendula
o Saffron + Turmeric
o Saffron + Yellow Dye
o Saffron + Yellow Dye + Calendula +

Safflower
o Saffron + Yellow Dye + Turmeric
o Saffron + unknown substance
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The projection layer used batch normalization given the output

from the projection layer was low-dimensional. Moreover, using

ReLU6 to introduce nonlinearity affected performance negatively.

In MobileNetV2, there were two types of blocks. One is a residual
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block with a stride of 1. Another one resulted in a block with a stride

of 2 for downsizing. Compared to MobileNetV1 which had a two

layers depth-wise convolution and 1×1 convolution MobileNetV2

produces three types of layers. The first layer is 1×1 convolution

with ReLU6. The second layer is the depth-wise convolution. The

third layer is another 1×1 convolution but without any non-

linearity, as shown in Figure 2.

The model for saffron was chosen after trying multiple different

architectures. Not having an automation technique, a pre-trained

CNN model was used instead. In the process, two primary sorts of

blocks were handled: bottleneck blocks with stride 1 and stride 2

blocks (Figure 3). As previously stated, each of the blocks had three

layers. Very importantly, the bottleneck block would not have a

residual connection if stride=2 was utilized for depth-

wise convolution.

Table 2 shows the architecture of MobileNetV2, which includes

the first fully convolution layer with 32 filters. The original authors

of Mobile-Net V2 used ReLU6 because of its robustness when used

with low-precision computation (Andrew et al., 2021). A kernel of

size 3 × 3 is used as it is a standard for modern networks and utilizes

dropout and batch normalization during training.
FIGURE 1

The architecture of the MobileNetV2 utilized in this study.
FIGURE 2

Bottleneck Residual Block.

FIGURE 3

Illustration of primary sort of blocks.
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MobileNetV2 was trained to learn the features of genuine

saffron and identify differences in color, shape, and texture that

are indicative of fake saffron. By analyzing two thousand images of

both genuine and fake saffron, the model was able to learn to

recognize patterns and features that differentiate the two. This

allows it to accurately identify genuine saffron and detect any

signs of adulteration, such as the presence of artificial colorants

or other additives, which can affect the color, shape, and texture of

the spice.

The model was trained using the Adam optimizer, a well-liked

and efficient optimization technique. Adam utilizes variable

learning rates for specific parameters, combining parts of both

RMSprop and momentum approaches, enabling it to converge

rapidly and effectively on challenging optimization landscapes.

The environment for training such a model was a high-

computation NVIDIA T4 GPU from Google Colab It is based on

NVIDIA’s Turing architecture and features 16 GB of GDDR6

memory enabling high-speed training for deep learning models

along with 16 GB RAM and virtual 80GB of disk space to store and

process the data efficiently.
2.4 Data processing

Deep learning models commonly use data augmentation as a

method of augmenting datasets. It entails applying transformations

to the current data, such as horizontal flipping, color space

enhancements, and random cropping, which produce

considerable variances in the data. These transformations deal

with the invariances that hampered the development of early

models for image recognition tasks. The model become more

robust and able to handle a variety of scenarios by increasing the

training data.

To generate training examples, the model selects photo

images from the dataset and applies different changes. When

the initial dataset is very small, horizontal, and vertical

transformations are utilized to expand the diversity of the

dataset. By adjusting, the model can more effectively adapt to

various inputs, while zooming the images further improves the

model’s comprehension of the data.

Along with a mixture of the methods, vertical image shifts, and

random horizontal shifts are used to enhance the data. In addition,

random shifts of up to 20% of the image’s width and height and

rotations of up to 45 degrees are used. The model becomes more

adaptive and precise in identifying different patterns and objects
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because of the usage of these various augmentations, which ensures

that the model is exposed to a wide range of changes.

The Keras Image Generator class in Python is used to

implement these enhancements. This class effectively enhances

the dataset while saving memory and storage space by efficiently

generating the augmented data on-the-fly during training. The

model can increase generalization and performance, yielding

superior outcomes in a variety of image-related tasks by utilizing

data augmentation approaches and the Keras Image Generator

class. (Tensor Flow V291, 2022).

Secondly, the data was divided into the train, test, and validation

to accurately measure the model performance. Table 3 provides the

number of images for each split.

The whole data set was 2034 images, and the training of the

model used 1627 images, out of which 205 were used for testing and

202 for validation (Table 3). The data is divided into three sets

including training, testing, and validation. The amount of data is

equal to 80%, 10%, and 10% respectively due to an uneven number

of images, and data was divided unequally.
3 Results and discussion

Computer vision techniques have shown strong power to

visualize model predictions. It has revealed a useful tool to

understand the patterns and relationships in data and to validate

the accuracy of the predictions through graphical representations of

the output generated by a machine learning model, such as scatter

plots or heat maps (Simonyan et al., 2013; Nguyen et al., 2015; Zhou

et al., 2016). This can further be used to identify areas for

improvement and to make more informed decisions based on the

insights gained from the visualizations. In this study, the set of

images (Figure 4) showed the features that make the model predict

the class of the image. The first image on the left side is the original

image, which is the input to the model. The second image is a

random feature map learned from the CNN filters, in which light

yellow color points at sections that are significant, while the darker

color indicates sections that are not in the specific feature. As the

layer of CNN has many filters and each one have a feature, they are

all combined at the end to make the classification. The third image

on the bottom left side of the image is the Class Activation Map

(CAM), which shows the section that lights in all featured maps

combined to produce the classification. Finally, the bottom right

image is the combination of all feature maps superimposed with the

original image. This shows the parts of the image that made the

model take the decision.
TABLE 2 Bottleneck residual block transforming from k to k0 channels,
with stride s, and expansion factor t, height (h), and width (w) explaining
the shape of the feature maps after each mentioned operation.

Input Operator Output

h × w × k 1×1 conv2d, ReLU6 h × w × (tk)

h × w × (t×k) 3×3 depth-wise S=s, ReLU6 h
s
� w

s
 � (tk)

h
s
� w

s
× (t×k)

Linear 1×1, conv2d h
s
� w

s
 � k
TABLE 3 Number of images in each directory from authentic and
adulterated saffron samples.

Saffron Non-Saffron Total no. of images

Train 372 1225 1627

Test 47 158 205

Validation 46 156 202
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In (a) the original image is the input for the model. (b) A

random feature map from thousands of activation maps. (c) A class

activation map is a combination of all feature maps together. (d)

The learned feature maps projected to the input image explain the

most parts that activate the model to produce the predicted label.

After 5 epochs of training, the model successfully achieved a

99.02% accuracy score (Table 4). However, the model could be

limited when handling complex input images. In such a case it may

require a lot of ram and graphics memory resources for the training.

The next table demonstrates the classification report of the model

performance on unseen data (test data).

Accuracy =  
Tp+ Tn

Tp  +  Tn + Fp +  Fn
,

Precision =  
Tp

Tp+  + Fp 
,

Recall =  
Tp

Tp+  + Tn
 ,

F1 − score = 2 � Precision � Recall 
Precision + Recall

True Positive (TP), False Negative (FN), False Positive (FP), True

Negative (TN)
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The model provided a high accuracy within a short time, which

showed that this type of model can be applied effectively to the

identification of saffron. While a fast-quality inspection of food

products using computer vision has been mainly focused on color

(Al-Marakeby et al., 2013), it has been suggested that deep

convolutional networks process objects through three variables:

shape, texture, and color (Bianco et al., 2018). Baker et al. (2018)

concluded that DCNNs (unlike the human eye that can integrate)

are not as accurate at classifying when the need is to target shapes in

their entirety. However, saffron appears to be a good food matrix to

use with DCNN, regardless of the form, as the model performed

well in both whole filament and powder versions. Thus, it is likely

that the intrinsic color of saffron is playing an important role in this

high performance. More research is needed to verify this with

different cultivars of saffron. Furthermore, the fact that similar CNN

and DCNN models (Zhong et al., 2021; Lanjewar and Gurav, 2022)

have been developed with excellent performance for identifying

texture characteristics and other properties of soil and allow their

classification, suggests these models can efficiently classify texture of

sample materials with different water and mineral content profile. If

the latter is confirmed to be the case with the high performance of

saffron, it is also safe to expect that similar results could be obtained

with trained models for detecting pure herbs of different colors.

MobileNetV2 performs very well on the saffron detection

problem for several reasons. Firstly, its lightweight architecture

allows it to efficiently process large datasets of saffron images,

making it a suitable solution for resource-constrained devices

such as mobile phones. Secondly, its use of depth wise separable

convolutions allows it to extract features from images with high

accuracy and low computation cost. Finally, MobileNetV2 can be

trained using transfer learning, which leverages pre-trained

networks to improve its accuracy and reduce training time. By

combining these features, MobileNetV2 can offer a highly accurate

and efficient solution for detecting fake saffron, making it a valuable

tool for ensuring the authenticity of saffron products.
FIGURE 4

Set of images and activation maps produced on an authentic and fake sample while applying the model.
TABLE 4 The classification report of the model accuracy on 205 test
images.

Precision Recall F1-score No. images

Non-Saffron 1.00 0.98 0.99 158

Saffron 0.94 1.00 0.97 47

Overall Accuracy: 99.02% 205
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The results presented in this study confirm that trained data

can achieve a high level of performance under different scenarios.

For classifying adulterated saffron Alighaleh et al. (2022)

obtained 99.67% accuracy in 36.26 ms using 7 different

samples. In our study, with twice the sample volume and

different substances, the accuracy levels were similar.

Nevertheless, there is a need to test this type of model in larger

volumes and optimize the system accordingly. The outlook is

promising as the model in its current form already produced high

performance. This performance in theory is achieving the ISO

requirement of up to 1% adulterant detection (Marieschi et al.,

2012), which should be encouraging as a rapid commercial

alternative to an official method. Simple detection tools should

be given special consideration in current times when production

volumes have declined in important areas of the world (e.g.

Kashmir, India) and supply chains are fragile and prone to

disruption as exemplified during the recent COVID-19

Pandemic (Fujii et al., 2022). Finally, while this work focused

on qualitative analysis, further research is warranted to assess its

use in combination with techniques such as near-infrared

spectroscopy to target quantitative detection that may provide

estimates of the levels of adulteration (Li et al., 2020).
4 Conclusion

This study with 205 validated images has shown that a CNN-

based model developed with trained data could be easily applied in

regular commercial trade operations. Further analysis with more

specific levels of contamination may serve to determine the

versatility and consistency of the model. The outlook is promising

for CNN to be used broadly as a tool to classify spices of high

market value given the high accuracy to classify the images. The

reason behind this high accuracy still requires confirmation but it is

likely that in addition to the intrinsic power of CNN, the texture and

color (and not necessarily shape) of saffron are the key variables for

the identification of pure samples.
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