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Hyperspectral imaging provides a powerful tool for analyzing above-ground

plant characteristics in fabricated ecosystems, o�ering rich spectral information

across diverse wavelengths. This study presents an e�cient workflow for

hyperspectral data segmentation and subsequent data analytics, minimizing

the need for user annotation through the use of ensembles of sparse mixed

scale convolution neural networks. The segmentation process leverages the

diversity of ensembles to achieve high accuracy with minimal labeled data,

reducing labor-intensive annotation e�orts. To further enhance robustness,

we incorporate image alignment techniques to address spatial variability in

the dataset. Downstream analysis focuses on using the segmented data for

processing spectral data, enabling monitoring of plant health. This approach

provides a scalable solution for spectral segmentation, and facilitates actionable

insights into plant conditions in complex, controlled environments. Our results

demonstrate the utility of combining advanced machine learning techniques

with hyperspectral analytics for high-throughput plant monitoring.
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1 Introduction

EcoFABs, or fabricated ecosystems, are innovative laboratory devices designed to

advance plant microbiome research by providing standardized and reproducible platforms

for controlled experiments. These compact growth chambers offer precise control over

environmental variables such as nutrient availability, light conditions, and microbial

communities, enabling researchers to study the dynamics of plant growth and root-

microbe interactions in a semi-high-throughput manner (Gupta et al., 2024; Novak et al.,

2024). By allowing spatially defined simultaneous imaging of root and shoot systems,

EcoFABs facilitate comprehensive analysis of plant growth above and below ground. Their

design also supports flexible sampling and the precise addition of microbes or materials,

making them a versatile tool for fundamental plant science, sustainable agriculture,

biosecurity, and applications such as nitrogen fixation, carbon sequestration, and even

exobotany (Gao et al., 2018).

A key capability in plant research is spectral phenotyping, which involves using

hyperspectral imaging to capture detailed information about plant health and stress

responses across a wide range of wavelengths (Jacquemoud and Ustin, 2019). This

technology enables the measurement of critical plant traits, such as photosynthetic

activity and biochemical composition, through analysis of specific spectral bands. It can

also identify stress indicators like drought or nutrient deficiencies by detecting subtle
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changes in spectral reflectance patterns (Bannari et al., 1995;

Behmann et al., 2018). In EcoFABs, hyperspectral imaging

is particularly powerful because it leverages the controlled

environment to study the effects of induced stressors, linking

lab-based observations to broader ecological or field-scale

imaging data.

Segmentation is a critical step in analyzing hyperspectral plant

data, allowing researchers to isolate regions of interest and extract

meaningful insights from high-dimensional datasets (Lei et al.,

2024). However, many segmentation methods rely on extensive

annotated training datasets, which are often impractical to generate

in dynamic and variable environments. Changes in lighting

conditions, experimental setups, or hardware configurations, as

well as the introduction of new plants or model systems, make

it challenging to create segmentation frameworks that generalize

across setups. To address this, we utilize sparse random mixed-

scale networks combined with an ensemble approach (Roberts

et al., 2024), enabling robust segmentation of hyperspectral data,

even under sparse training data conditions. By aggregating outputs

from diverse independent classifiers, our method produces robust

segmentation results while minimizing the need for labor-intensive

annotation. This economical approach ensures adaptability and

efficiency, even under variable conditions.

The hyperspectral imaging pipeline for EcoFABs generates

substantial amounts of high-dimensional data, requiring high-

performance computing (HPC) resources for efficient processing,

analysis, and storage. A single EcoFAB image contains 512 × 512

spatial pixels with 204 spectral bands—from 397 to 1,000 nm—,

and even a small-scale experiment with 40 plants, imaged from

three angles every other day for 4 weeks, can yield ∼650 GB of

data. Larger-scale, longer-term experiments withmore fine-grained

imaging schedules easily scale to tens of terabytes. These data

volume combined with the high-dimensional nature of the data

further emphasizes the need for robust, computing infrastructure.

HPC enables rapid segmentation, image alignment, and spectral

data processing, as well as the integration of machine learning

models for phenotyping and stress detection.

In this communication, we present an above-ground image

analytics pipeline tailored for EcoFABs, focusing on hyperspectral

image segmentation and analysis. We detail a workflow that

minimizes annotation requirements through ensemble methods

and sparse random mixed-scale networks (Roberts et al.,

2024). We also address data quality assurance through image

alignment and demonstrate how the results can be used to

monitor plant health. The integration of innovative methods and

HPC computational tools establishes a framework for bridging

controlled experiments in EcoFABs with real-world agricultural

and ecological applications.

2 Material and methods

2.1 Samples and imaging setup

Brachypodium distachyon, a model grass plant, serves as

the primary system for this study, leveraging its small size

and genetic tractability (Novak et al., 2024). This species

has emerged as an ideal candidate for EcoFAB experiments,

demonstrating reproducible growth patterns and well-defined

responses under external perturbations. These characteristics make

it particularly suitable for studying plant-microbe interactions in

controlled environments like EcoFABs, enabling standardized and

reproducible experimental setups.

Hyperspectral imaging is a central tool for analyzing plant

phenotypes, widely used in both field studies via drones or

satellites and in specialized phenotyping facilities. In this study,

we employ a Specim IQ hyperspectral camera (Behmann et al.,

2018) mounted on a custom-designed motorized actuator and

paired with a turntable module. This setup allows imaging from

multiple perspectives, including top-down, side, and front views,

capturing comprehensive data on plant structure and physiology

throughout the growth cycle. Illumination is provided by a

combination of LED spotlights and a custom-designed light source

that integrates halogen and LED elements, ensuring uniform and

extensive spectral coverage essential for accurate hyperspectral

data collection.

The Specim IQ camera utilized in this study operates within

a spectral range of 397–1,000 nm, divided into 205 bins at 7

nm intervals (Figure 1). However, due to the emission spectrum

of the light source used in the EcoFAB system, we truncate the

spectral range to a range from 430 to 800 nm. This refined

spectral dataset supports detailed analysis of plant health and

physiological responses, making it well-suited for phenotypic

research in the controlled environment of EcoFABs. This imaging

setup enables high-throughput, multi-angle data collection critical

for understanding the dynamics of plant growth and response in

fabricated ecosystems.

2.2 Image alignment

To ensure spatial consistency between hyperspectral images, we

employ a cross-correlation-based alignment method in the Fourier

domain. Each image is aligned to a high-quality reference image,

which is generated through an iterative process. This alignment

allows consistent placement of specific ecoFAB features across

different experiments, thus making it easier to incorporate prior

knowledge or to perform quality control of available data. The

alignment begins by creating a binary mask of the target image,

derived from the sum of its RGB channels. Otsu’s thresholding

method is applied to this sum to partition the image into a

foreground and background class. The binary mask is then aligned

to the reference image using Fourier techniques:

1 = argmax
x∈R2

F
−1

[

F(Ibin) · F(Iref)
∗
]

(1)

where Ibin is the binary image obtained by applying Otsu’s

thresholding (Otsu, 1979) to
∑

c Ic, the sum of the RGB channels

(c) of the target image; Iref is the reference image; F and F
−1

denote the Fourier transform and its inverse, respectively, and 1 =

(1x,1y) represents the offsets in the x- and y-directions needed to

align the target image with the reference. This approach robustly

identifies the spatial offsets that maximize the correlation between

the target and reference images, ensuring accurate alignment under

varying conditions.
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FIGURE 1

(Left) A front RGB view of an ecoFAB with Brachypodium grass under stress. (Right) Selected bands from the energy-resolved hyperspectral camera

provide detailed reflectance observations, which can be linked to plant health and phenotypes.

The reference image is generated by combining 40 RGB images

of plants captured in an EcoFAB across their growth cycle. These

images are iteratively aligned to an initial approximate mean, and

a new mean image is computed after each iteration. To enhance

the quality and stability of the reference, a Gaussian blur is applied

to the mean image at each step. This blurred mean serves as

the alignment target for subsequent iterations. The degree of

blur is gradually reduced over successive iterations, refining the

alignment and producing a high-quality reference image. This final

reference captures consistent structural and spatial features while

minimizing noise and artifacts, providing a robust standard for

aligning subsequent hyperspectral images.

Once the images are aligned, a static mask is manually

generated (Sofroniew et al., 2024) to exclude regions where no

plants are expected to be present. Such areas, often containing

spectral signatures from reflections or other artifacts, are

systematically masked out to improve the accuracy of downstream

analyses. Additionally, sharp edges of the EcoFAB setup, which can

distort views and introduce unwanted noise, are included in the

mask to reduce false positives.

2.3 Network design

For segmentation, we utilize DLSIA’s Sparse Mixed-Scale

Networks (Roberts et al., 2024), a convolutional neural network

architecture inspired by Mixed-Scale Dense Networks (Pelt and

Sethian, 2018). SMSNets incorporate random architectures and

sparse connections, leveraging stochastically configured topologies

with varying random connections and convolutions of different

random dilations assigned to each connection. The random nature

of these model architectures produces additional diversity and

higher variance among many models, making them particularly

suitable for ensemble methods (Ganaie et al., 2022). By combining

the efficiency of MSDNets with the benefits of randomness and

sparsity, SMSNets offer a flexible and powerful tool for image

segmentation tasks.

To enhance their performance for hyperspectral data, we

extend these networks with a preprocessing step: rather than using

the full spectral image directly in a convolution al neural network,

we deploy a non-linear spectral projector, consisting of a sequence

of linear projectors followed by a ReLU operator, to transform

the high-dimensional hyperspectral data into a more compact

representation. This latent image then serves as the input for

subsequent segmentation tasks. This design offers two significant

benefits. Firstly, it reduces the network’s size by minimizing the

number of channels carried through inter-layer skip connections,

thereby lowering computational overhead. Secondly, the compact

latent representation can be easily visualized, allowing one to

understand the network’s internal workings. This not only provides

insights into the segmentation process but also adds a layer

of transparency to the model’s decision-making. The non-linear

spectral projector and the SMSNet are trained end-to-end within

a single training loop, streamlining the process and ensuring

optimized performance. A schematic overview of these networks,

as well as two specific random realizations, are shown in Figure 2.

To enhance the robustness and reliability of segmentation,

we incorporate an ensemble approach. Because the SMSNets are

constructed via a stochastic network generator, every network

is different and analyzes the data in a slightly different manner.

By combining predictions from multiple independently trained

networks, a more stable estimator is obtained, improving accuracy
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FIGURE 2

Network design. (A) A hyperspectral image with 64 channels is passed through spectral preprocessor which reduces the number of channels down

to 4. This image with reduced channel count is passed through a random sparse mixed scale neural network for segmentation. (B) The latter

convolutional neural network is constructed form a random graph, with randomly assigned dilations. (C) Actual realizations of neural networks used

in this study.

particularly when handling noisy or sparse datasets. Additionally,

ensemble methods enable the visualization of predictor variance,

offering a variability estimate for the segmentation results.

This variance map is invaluable for highlighting regions of

high confidence while identifying areas where predictions

are uncertain or inconsistent, guiding further investigation

or annotation refinements. The proposed ensemble approach

provides a comprehensive solution for hyperspectral image

segmentation, balancing computational efficiency, interpretability,

and robustness to deliver reliable and high-quality results in the

presence of minimally annotated data.

2.4 Training and inference

Our training and inference approach leverages the qlty library

to extract patches from sparsely annotated data, maximizing the

utility of available training samples (Zwart P. H., 2024). During

training, qlty is used for a sliding-window augmentation approach

to enhance the diversity and quantity of our training data. This

technique systematically shifts a window across the image, creating

overlapping patches that expose the network to varied perspectives

of the same features.

To ensure economic use of computational resources, training

patches that do not contain any labeled pixels are discarded,

and labels that are too close to the patch edges are removed.

This approach enhances the quality of the training data while

simultaneously addressing the challenge of memory limitations

associated with high-dimensional data. By working with smaller

patches instead of the full dataset, we effectively manage out-

of-core data processing, enabling training and inference without

requiring the entire dataset to fit into memory. This method

ensures scalability and robustness, particularly when handling large

datasets in resource-constrained environments.

2.5 Spectral analysis

To analyze the spectral characteristics of the plants after

segmentation, we normalize the segmented plant hyperspectral

data to have zero mean and unit standard deviation. This

normalization ensures that the spectral data is unbiased by
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intensity variations—potentially due to anisotropic reflectance,

shadows caused by partial occlusions and other effects—enabling

a consistent and meaningful comparison across the plant.

Once images are segmented, we use Uniform Manifold

Approximation and Projection (UMAP) to embed the normalized

spectra into a two-dimensional space. This technique provides

a visualization of the spectral data manifold, providing insights

in the spectral characteristics of every plant pixel. By observing

the trajectories of pixel clusters across the UMAP manifold, we

can identify patterns and transitions in spectral characteristics,

offering a detailed view of the plant’s physiological changes at a fine-

grained spatial resolution. This approach complements an analysis

using a vegetation index like the Normalized Difference Vegetation

Index (NDVI), as it provides a more subtle, whole-spectrum based

analysis of plant components that might otherwise be overlooked

(Bannari et al., 1995).

3 Results and discussion

3.1 Data organization

The plant growth time series are organized in a bespoke python

object, combining RGB and hyperspectral data across measured

points in time. This object leverages the zarr storage format, which

is beneficial for handling large data sets encompassing various

modalities. In addition to placeholders for the actual imaging data,

associated metadata can be stored as well.

3.2 Reference image construction

Using the procedure outlined above, reference images were

constructed over 20 iterations by gradually reducing the blur

factor, refining alignment with each step. Analysis of independent

images revealed a median shift below a pixel, demonstrating

the reliability of the hardware in maintaining consistent sample

placement (Figure 3).While the segmentation networks used in this

study are inherently shift-invariant, the associated static masks are

not, necessitating precise alignment to ensure accurate downstream

processing.

Consistent registration of the EcoFAB within the frame

of reference also facilitates advanced analyses, such as the

fixed localization of the stem, which is constrained by the

EcoFAB hardware. This precise alignment can aid in identifying

specific plant regions, enabling more detailed phenotypic studies.

Additionally, the registration process serves a critical quality

control role, allowing the detection of potential issues such as

stalled motors and camera issues. By ensuring alignment and

consistency across datasets, this registration approach enhances the

robustness and reliability of the hyperspectral imaging pipeline.

3.3 Training

A training dataset for segmentation consisted of sparse,

manually annotated data, covering 5.7% of 21 images, each of size

512× 512 pixels. This resulted in∼21,000 plant pixels and 300,000

non-plant pixels. Manual annotation was performed using napari

(Sofroniew et al., 2024, 2022), and due to the sparse nature of the

labeling requirements, this took <20 min. To enhance the dataset,

we used sliding window augmentation via the qlty library with a

window size of 256 × 256 pixels and a step size of 64 × 64 pixels.

Images without any labels were discarded, and labels closer than 32

pixels to the border of these patches were removed. This process

increased the number of label-containing pixels in the final dataset

by a factor of 43. 50% of the patches were set aside for validation

purposes, driving a post-hoc early stopping criterion, where the

network with the best validation score was retained at the end of

150 epochs to improve generalization (Zhang et al., 2017).

The networks contains both a spectral compressor for reducing

the dimension of the data and a convolutional component that

handles spatial context. The spectral compressor used a fully

connected network with a channel progression of 64 → 32 →

4, including 25% dropout during training. Reducing the latent

dimension of the spectral projector below 3 resulted in a decreased

performance, and was fixed at 4. For the spatial component of

the network, we used a Sparse Mixed Scale convolutional neural

network (Roberts et al., 2024). The hyperparameters that govern

the layout of these networks, the depth-vs-breath control parameter

α, and the degree distribution parameter γ were chosen to balance

the effective depth and width and complexity of the network and

were both fixed at 0.5. Dilation factors, allowing the networks to

explore scale-space in an efficient manner (Yu and Koltun, 2015),

were randomly assigned to each convolutional operator between 1

and 5, inclusive. A coarse scan of the number of nodes in the graph

showed that while 15 nodes yielded reasonable results, increasing

it to 25 provided marginal but significant improvements. These

hyperparameter searches were not exhaustive but relied on trends

observed in rapid runs of a single network. Due to the stochastic

nature of these networks and the associated variability of the

results, exhaustive parameter tuning was deemed unnecessary and

impractical. Instead, the focus was on identifying a parameter set

that achieved robust-enough performance rather than optimizing

for absolute maximum performance. As a result, each network has

between 20,000 and 40,000 parameters, which includes the initial

spectral compressor. Note that a standard UNet typically contains

over 1million parameters, necessitatingmore training data or more

advanced regularization methods (Loshchilov and Hutter, 2019).

Training was conducted using a cross-entropy loss function

with class weights of 4 for plant pixels and 1 for non-plant pixels

(Goodfellow et al., 2016). The networks were trained for 150 epochs

with a fixed learning rate of 0.001. On an A100 GPU, training a

single network required∼20 min, using a batch size of 32. Training

an ensemble of five networks was completed within 40 min across

four cards- 20 min for the first 4 and 20 min for the last network. A

different 50%–50% random split for training and validation of the

full dataset was used for each network, increasing the diversity of

the resulting networks. Due to the embarrassingly parallel nature

of the ensemble approach requiring no communication between

networks and data, and the moderate amount of training data,

networks can be independently trained across different GPUs.

The training process resulted in an average macro F1 score of

98% on the validation set, across the ensemble of five networks,

demonstrating strong performance despite the imbalance in labeled

pixels and the low training volume. Themacro F1 score is calculated
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FIGURE 3

Result of the image alignment procedure. (Left) Distribution of estimated shifts after aligning images to the reference image, with bubble size

proportional to the number of observations with the indicated shift. (Center and Right) The mean and standard deviation of the shifted images

aligned to a common reference, without Otsu thresholding, highlight the consistency in placement and fabrication of di�erent ecoFABs.

as the unweighted mean of F1 scores for each class, ensuring equal

importance for plant and non-plant pixel classifications, regardless

of their imbalance (Wu and Zhou, 2017).

3.4 Segmentation

Inference was performed on images using a patch size of 256

× 256 pixels with a step size of 248 × 248 pixels, resulting in an

overlap of 8 pixels between neighboring tiles. The patches were

stitched back together using the qlty library (Zwart, P. 2024),

yielding a total of 108 patches for a full 12 time-point growth

series. For this data, the average inference time was 1.3 s. Reducing

the patch size to 128 × 128 pixels increased the total number

of patches to 300 and marginally improved inference efficiency,

reducing inference time to 0.8 s. Given absence of need for real-

time feedback for these inference tasks, further optimization was

deemed unnecessary.

As outlined in the methods section, class probabilities were

averaged across overlapping patches and multiple networks and

subsequently renormalized. This approach also provided a means

of estimating the predictive variations of the estimated class

probabilities. As shown in Figure 4, the inference results highlight

plant regions by overlaying the mean class probability (red) with

their standard deviation (green). The visualization shown here is an

illustration of typical performance across different plants and time

points, supporting the reliability of the inference pipeline.

The variation in standard deviations across neural networks

demonstrates the purpose of the ensembling approach: achieving

a robust performance by “aggregating knowledge across

imperfectly correlated sources” (Theisen et al., 2023). This
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FIGURE 4

Segmentation results. (Top row) RGB images of a brachypodium grass. (Bottom row) Ensemble-average renormalized class probabilities and

associated standard deviations based on hyperspectral data. The largest uncertainties in the segmentation are associated with the edges of the leaves

as well as ecoFAB housing reflected images of the plants.

effect is further visualized in Figure 5, where we perform Singular

Value Decomposition (SVD) (Jaradat et al., 2021; Eckart and

Young, 1936) to evaluate the impact of ensembling across an

extensive set of 30 networks and visualize how information is

transformed and distributed across the network.

For a single plant series, we computed the SVD across all

spectral data and visualized the top three singular images. The same

process was applied to the outputs of the spectral projector, where

the outputs of each network for each pixel were concatenated into

a single vector for analysis. Similarly, for the spatial networks, we

concatenated the final feature maps used in the linear projector that

produces unnormalized log-class probabilities and subjected this

to an SVD analysis. In Figure 5, each singular coefficient image—

the U matrix remapped to the original spatial layout—is shown

along with the fractional contribution of its corresponding singular

value (pi) to the total power spectrum. This analysis highlights

how different components—hyperspectral data, ensembled spectral

projectors, and ensembled feature maps—capture and distribute

the underlying information as the image is passed through the

network. The distribution of the singular values varies markedly

at each stage of the network. The effective rank, a measure of

the dimensionality of a dataset (Roy and Vetterli, 2007), of the

spectral data alone is 23, while for the concatenated spectral

projector data, this rank increases to 34. For the spatial data, it

increases further to 52. This growth in effective rank shows that

the total information content per pixel at each stage increases

due to incorportation of contextual information from neighboring

pixels. Given that each individual convolutional neural network

takes four channels per compressed spectral image after the spectral

preprocessor and yields on average 30 channels for the final feature

maps, the effective ranks of the data indicates the individual

networks within the ensemble provide unique perspectives on

the data, not equally shared with every representation provided

by other networks within the ensemble. The singular maps

indicate that while the convolutional neural network’s feature

maps focus primarily on differentiating plant versus non-plant

regions—enriching spatial and contextual cues in progressively

subtler forms (edges, low-resolution representations, and positional

indicators)—the latent representation derived from the spectral

projector encodes more specific plant spectral information, while
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FIGURE 5

A power analysis of the hyperspectral data and the ensembled latent images indicates flatter distribution of singular values as the image progresses

through the network. For the hyperspectral data without spatial context, 45.6% of the information is contained within the first three singular images.

When contextual information is added in via the spectral projector guided by human-labeled data, the first three singular images contain 35.1% of the

information. This number is reduced 20% when we analyze the final feature maps of the convolutional neural network. While the latter singular

images mainly reveal spatial context of the pixel, the singular images of the spectral projector show a suppression of non-plant spectral features as

compared to the raw data.

suppressing the importance of non-plant spectral components in

comparison to the raw spectral data.

3.5 Validation and spectral analysis

The final validation of the analytics pipeline is based on the

interpretation of the insights it provides. Visual inspection of

the segmentation, as shown in Figure 4, confirms the validity of

the high F1 scores achieved during training. However, the most

significant insights come from the UMAP (McInnes and Healy,

2018) embedding of the segmented spectral data (Figure 6A1).

This embedding reveals a major cluster that captures systematic

variations in plant spectra. The absence of large clusters of

spectra contain non-plant signatures is another indication that

the proposed segmentation pipeline generalizes well across the

provided data.

The UMAP manifold representation uncovers spectral trends

consistent with biological processes. For instance, traversing the

horizontal and vertical axes of the UMAP embedding corresponds

to changes in chlorophyll abundance and spectral characteristics

indicative of senescence. The color of the manifold represents the

RGB camera data, with similar colors used to highlight individual

spectra. While the embedding encodes both the hyperspectral

range and RGB data, only the hyperspectral spectrum was used
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FIGURE 6

Spectral analysis. (A1–A3) The learned UMAP manifold of segmented plant spectra provides insights in the type of spectra observed and their

respective similarities. The color of the manifold corresponds to the average RGB color observed in the images. (A2) When traversing the manifold

horizontally, the spectra transform from healthy, green leaves to stressed, brown specimen. (A3) A vertical traversal across the manifold is associated

with changes in chlorophyl concentration. (B1) Segmentation target of a ecoFAB. (B2) Details of segmentation results, with plant pixels colored by

their estimated NDVI. (B3) Segmented plant pixels are displayed within the UMAP manifold, now colored by the NDVI, highlighting the distribution of

plant health pixels throughout the plant.

for distance calculations in UMAP. Importantly, the spectral

analysis leverages an expanded spectral range of 430–800 nm,

surpassing the 450–650 nm range used during segmentation.

This expanded range is made possible by iterative improvements

to the instrumentation, showcasing both the added value of

hardware upgrades and the robustness of the segmentation pipeline

across different hardware configurations. The enhanced spectral

coverage highlights the broader utility of the analytics pipeline,

enabling a more comprehensive understanding of plant spectral

characteristics, as reflected in the segmentation and spectral

manifold presented in Figure 6. The extended spectral range can for

instance be used to compute the so-called Normalized Difference

Vegetation Index, a single numerical indicator indicative of plant

health. These trends validate the pipeline’s ability to capture

meaningful spectral variations beyond simple segmentation, and

can for instance be used to map out spectral components seen

across a single plant (Figure 6B).

4 Conclusions

In this study, we present a robust and scalable pipeline for

hyperspectral segmentation and spectral analysis of plants in

fabricated ecosystems, exemplified by EcoFABs. By leveraging

Sparse Mixed-Scale Networks (SMSNets), ensemble methods,

and data alignment techniques, we have demonstrated an

efficient workflow capable of achieving high segmentation

accuracy with minimal labeled data. The integration of advanced

machine learning approaches with precise imaging setups allows

us to capture meaningful spatial and spectral insights into

plant physiology.

The ensemble nature of the method requires independent

training a number of independent networks, as well as their

individual evaluation. Powerful compute resources, such as provide

byHPC centers can assist inmaking these robustmethod a practical

choice for a large number of scientific applications.

A key strength of the methods developed here is their broad

applicability to other multidimensional imaging techniques, such

as mass spectrometry imaging (Veličković et al., 2024; Rübel et al.,

2013), X-ray Fluoresence Imaging (XRF) imaging (Edwards et al.,

2018), Scanning Electron Microscopy with Energy Dispersive X-

ray Spectrosopy (SEM-EDX) (Rades et al., 2014) or any modality

involving high-dimensional data. By combining a spectral projector

coupled to a neural network, we achieve two critical outcomes:

first, the SMSNet ensures robust training, effective information

flow, and under reduced-data requirements, enhancing the overall

efficiency of the workflow. Second, the spectral projector, trained

end-to-end alongside the convolutional network, addresses the

challenges of high-dimensional input data by reducing the

memory footprint and learning capacity burden on the network.

This enables the pipeline to process high-dimensional data

more effectively, embedding context-specific information into the

spectral representations.

Moreover, the spectral projector introduces non-linear effects

that are guided by the segmentation outcomes, allowing the

network to capture spectral patterns and features directly relevant

to the task. This approach results in increased rank of the

processed data matrices, embedding richer contextual information

across the singular values, which enables better representation

of the underlying spectral data. While dimensionality reduction

techniques like SVD could be used as a preprocessing step,

they are inherently unsupervised and not influenced by human-

labeled segmentation data. In contrast, the spectral projector

developed here integrates domain knowledge through supervised

learning, ensuring that the representation aligns with the desired

segmentation outcomes.

Finally, the SVD-based analysis of the ensemble offers a

valuable tool for understanding and quantifying how information

is distributed throughout the network. The presented segmentation
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workflow has the potential to serve as a foundation for a

wide range of applications beyond plant phenotyping, including

imaging-based material analysis, environmental monitoring, and

biomedical imaging. By embedding spectral and spatial context

into the analysis, the methods presented here open new avenues

for exploring and interpreting complex multidimensional datasets

across diverse scientific domains.
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