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As next-generation scientific instruments and simulations generate ever larger

datasets, there is a growing need for high-performance computing (HPC)

techniques that can provide timely and accurate analysis. With artificial

intelligence (AI) and hardware breakthroughs at the forefront in recent years,

interest in using this technology to perform decision-making tasks with

continuously evolving real-world datasets has increased. Digital twinning is one

method in which virtual replicas of real-world objects are modeled, updated,

and interpreted to perform such tasks. However, the interface between AI

techniques, digital twins (DT), and HPC technologies has yet to be thoroughly

investigated despite the natural synergies between them. This paper explores

the interface between digital twins, scientific computing, and machine learning

(ML) by presenting a consistent definition for the digital twin, performing a

systematic analysis of the literature to build a taxonomy of ML-enhanced digital

twins, and discussing case studies from various scientific domains. We identify

several promising future research directions, including hybrid assimilation

frameworks and physics-informed techniques for improved accuracy. Through

this comprehensive analysis, we aim to highlight both the current state-of-the-

art and critical paths forward in this rapidly evolving field.

KEYWORDS

digital twin, high-performance computing, machine learning, artificial intelligence,

world models

1 Introduction

The concept of digital twin (DT) is gaining traction in both academic and industry
contexts, as shown in Figure 1 (Haße et al., 2022). DT-based approaches aim to offer
enhanced forecasting abilities (i.e., “what if ” scenarios) that more closely represent
reality (Thelen et al., 2022a). Through the use of data from the physical system with
which they are associated, they improve over time. There are countless examples of
computer models being used to great effect in real scientific and industrial applications,
ranging from simulations of molecular dynamics to quantum computer models, to global
weather (Stocks et al., 2024; Liu et al., 2021; Taylor et al., 2023; Schmude et al., 2024; Dunbar
et al., 2024). A DT goes further and allows for even more in-depth analysis by focusing on
a single instance of a physical system and using finer-grained and more accurate modeling
techniques (Grieves, 2014).
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FIGURE 1

Number of publications related to digital twins. Note that the

numbers from 2024 are incomplete and thus an underestimate as

only published works are shown.

In recent years, various deep neural network-based machine
learning techniques have shown promise in a wide array
of prediction, analysis, and even general-purpose reasoning
tasks (Touvron et al., 2023a,b; Radford et al., 2019). Examples
include language models tuned to follow instructions (Brown et al.,
2020), models capable of generating visual and auditory art (Yang
et al., 2023), AI systems capable of scoring highly on difficult
mathematics competitions (Trinh et al., 2024), programs that use
a variety of techniques to give a model the ability to think step-
by-step (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024), and
models developed to predict the structure of proteins (Jumper et al.,
2021; Abramson et al., 2024). Other recent work has conducted
early investigations on how generative AI models can be used
for simulated prediction tasks (Yang et al., 2024). Although it is
conceivable that the current level of growth is unsustainable for
general techniques due to compute requirements or lack of data
availability, there are already many areas where such techniques
can be applied in the context of HPC and scientific computing.
Furthermore, digital twins offer opportunities to take advantage of
previously untapped data streams for learning tasks.

A digital twin is, at the fundamental level, a learning system.
It must react to changes in the behavior of the physical system by
updating its internal knowledge of the physical system’s dynamics
so that it can more accurately model the physical system’s behavior.
A digital twin without this learning characteristic is more accurately
described as a simulator (we discuss our definition in depth in
Section 2.4). For these reasons, digital twins and AI/ML techniques
are inherently synergistic. With few exceptions, AI/ML models
improve with exposure to and adequate processing of increasing
amounts of high-quality data (Halevy et al., 2009; Sun et al.,
2017; Sutton, 2019). Due to the assumption that digital twins are
associated with a single physical system, one can assume that the
data collected will be more specific and more high quality as a
result.

However, the promise of digital twins cannot be fully
realized without adequate computing power. Recent data-driven
“frontier” models were reported to have taken millions of GPU-
hours to train, effectively requiring high-performance computing
(HPC) resources (Touvron et al., 2023a). Luckily, fine-tuning of
pre-trained models can be performed with fewer resources (Hu

et al., 2021; Dettmers et al., 2023). However, we identify HPC as
a key component of digital twin development moving forward.

1.1 Key contributions

Through this work, we aim to achieve the following:

1. Definition: present a simple and generalizable language for
formulating digital twins and their associated procedures that
enables building on a rich body of existing literature from
multiple disciplines.

2. Fundamentals: survey the foundational concepts upon which
digital twins are built supported by a review of a carefully
curated set of digital twin case studies.

3. Taxonomy: introduce a taxonomy formachine learning-enabled
digital twins rooted in an analysis of the literature.

4. Review and future directions: present case studies
demonstrating the state of the art in digital twins and
explore promising future research directions and enabling
technologies with a specific focus on scalable digital twins.

1.2 Related studies

There are other digital twin survey studies that are worth
specifically mentioning. There are a set of two surveys (Thelen
et al., 2022a,b) that provide a comprehensive view of digital twins
as they exist today. These surveys focus on discussing the many
existing techniques that can be combined to design digital twins,
which are covered at a high level. Jones et al. (2020) attempts to
characterize digital twins from a manufacturing perspective but
does not discuss internal details of the digital twin. Haße et al.
(2022) suggests certain digital twin design principles that may be
useful in business contexts. VanDerHorn and Mahadevan (2021)
uses a case study of a container ship to motivate the use of digital
twins.

Other surveys choose to address the area of digital twins
comprehensively, but at a higher level of abstraction, or in the
context of specific applications. In this survey, we highlight the
distinctive learning component of digital twins. Our analysis
specifically addresses the interaction between machine learning
methodologies and digital twins.

2 Preliminaries and digital twin
definition

The term “digital twin” has been used to describe a wide variety
of different approaches to modeling, making the design of a single
comprehensive abstraction difficult. However, there are certain
processes and rules that apply to many examples of digital twins
that we find particularly interesting or useful. We also notice that
there are numerous common elements across the world modeling,
digital twin, and dynamic modeling domains. To provide a clearer
understanding of digital twins (DTs), we present a focused definition
and a high-level schematic that give us insight into their core
functionalities. In addition, we break down the DT into a set of
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abstract tasks, illustrating the specific operations that occur within
digital twins. We then connect each of these tasks to a set of digital
twin axioms. Furthermore, we aim to unify the key underlying
concepts for digital twins by grounding them in the context and
language of established fields such as control systems, decision
processes and reinforcement learning, world modeling, machine
learning, as well as existing works on digital twins specifically.

There is a substantial amount of prior work concerning
sequence models and decision-making processes. These include
Markov decision processes (POMDP) (Åström, 1965), the
probabilistic graphical models (PGMs) (Pearl, 1985) that
inspired (Kapteyn et al., 2021), and recent work on learned
interactive environments (Valevski et al., 2024). We draw on
many of these ideas to build a definition suited to the task of
digital twinning.

2.1 Definitions

2.1.1 Physical system
The physical twin or physical system is the object or system that

the digital twin attempts to mirror through modeling and updates
based on observations from the real world. Some examples include
a nuclear power generation plant, a manufacturing facility, and a
spacecraft operating far from human reach on the moon (Digital
Twins, 2023; Jones et al., 2020; Allen, 2021). A key feature shared
by all of these examples is the availability of data from the physical
system; each can be instrumented to provide data for the DT
using sensors, internet of things, or even human observers. It is
also possible to create the digital twin before or alongside the
physical twin, as accurate models can be used for tasks such
as finding optimal sensor placements (Wang et al., 2024). In
other cases, the digital twin may be created after the physical
twin (Grieves, 2014).

2.1.2 Digital twin
A digital twin is a virtual representation of a single instance of

a physical system. Critically, a digital twin possesses a mechanism
to integrate or “assimilate” data collected from the physical
system to better estimate the state or predict the behavior of the
physical system. Also at the core of a digital twin is a model
that attempts to mirror the behavior or characteristics of the
physical system for a set of goals defined by those designing the
DT (Grieves, 2014; Zhang et al., 2023). While DTs themselves are
not only simulations, the core of every DT contains a simulation,
capability, or model that is constructed to depict the physical
system. Simulation is a well-studied field, and there are numerous
lessons that can be adapted for use within DTs. Models or
simulations can be used for a variety of purposes, from testing
performance characteristics to making predictions about future
behavior and potential failures in the physical system (Grieves,
2014; Kapteyn et al., 2021). Outside of DT, models need not be
overly complex; there are many situations where highly abstract
models are sufficient, or even preferable. However, digital twins
are most powerful when used in non-trivial cases where the
models are detailed, highly-annotated, and have outputs that

closely resemble the behavior of the physical system (Grieves,
2014). It is important to note that a given DT may employ multiple
simulations or models, in which different approaches are selected
for different contexts. Light-weight versions of more detailed
models that eschew certain details that are not required for the
specific task under consideration may be essential for applications
where latency, power, or available computational capabilities are a
concern (Grieves, 2014).

2.2 Digital twin phases

We outline the fundamental stages that a digital twin undergoes
as the construction phase, tuning phase, control and insight

phase, and decommissioning phase, all of which are visualized
in Figure 2 (Kapteyn et al., 2021). The DT is designed and
implemented in the construction phase according to the design
resources of the physical system or by studying the physical system
if it already exists. The DT is then tuned and calibrated using
data collected from the physical system during the tuning phase.
At this point, the physical system exists and is operational, but
the digital twin is not yet providing insights or making control
decisions. The insight and control phase is the longest-running
portion in which the digital twin provides insights, controls, or
both. Simultaneously, the DT updates its internal model based
on data gathered from the physical system as they becomes
available. Decommissioning takes place when the links between
the physical system and the digital twin is severed. Data from
the physical system are no longer available to the digital twin,
and the digital twin no longer provides insights or controls the
physical system.

2.3 Axioms

Here, we state a set of axioms that we use to guide our definition
and problem formulation.

1. States are influenced by past states and any events that occur.
Therefore, we say that states are causally linked.We explicitly do
not consider the possibility that future states or actions impact
past states.

2. A digital twin receives data from the physical system in the
form of observations, which may or may not represent the true
underlying state of the physical system.

3. The digital twin is a learning system; data from the physical
system are assimilated into the internal model of the digital twin,
providing the internal model with additional information about
the behavior of the physical system.

4. A digital twin possesses what we refer to here as the “prediction
anytime” property. Once constructed, a digital twin can start
generating predictions immediately, although predictions might
initially lack accuracy or precision. As more data are assimilated,
the predictive capabilities of the digital twin improve. This
is similar to the “anytime” property (Zilberstein, 1996) for
computation where the algorithm’s solution improves by some
metric when given increasing amounts of processing time.
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FIGURE 2

A high-level overview of digital twin phases.

2.4 Digital twinning is sequence modeling

After reviewing the existing digital twin literature, we observe
that previous work does not adequately capture the centrality
of learning in the digital twin context. Therefore, we start by
formulating the problem of digital twinning as one of sequence
modeling, which has strong support in the literature (Yang et al.,
2024; Micheli et al., 2023; Lin et al., 2024; Valevski et al., 2024).
States st ∈ S at discrete points in time t causally influence future
states s>t , as demonstrated in Equation 1. Here, S is the set of all
possible states. In the episodic case, an episode τ consists of a set of
T states τ : = {si}

T
0 where τ ∈ ϒ and ϒ is the set of episodes. The

central goal of a digital twin is to predict the sequence of states that
most closely match the actual states of the physical system at each
discrete point in time.

In the simplest case, a simulator must be able to predict
future states given some initial state or trajectory “stub” (i.e., an
unfinished trajectory). The simulator’s job is to complete these
trajectories, which are sequences of states and events. We identify
each component with a specific time t ∈ T where T is the index
set for a given trajectory. Note that we do not require the wall time
between time steps to be consistent.

Our formalization assumes that the particular physical system
can be mirrored using a digital twin that operates on discrete
moments in time. It assumes that individual events to not occur
at exactly the same time. It does not assume that any particular
assimilation or update method is used, and does not assume that
the actual amount of time that passes between different discrete
time steps is uniform. This is beneficial because it means that the
practitioner can choose the assimilation method and simulation
strategy that fit their particular needs. The relationship between
the physical state, the observation, and the belief state is shown in
Figure 6.

2.4.1 System function modeling
If, for a moment, we assume that both the physical system and

the digital twin are deterministic and reduce the physical system
to a simple function f :Cfull → S where Cfull : = {si}

t
0 ⊆ S

is the set of states that have already occurred, then the goal of
twinning is to learn some function f̃ :Cfull → S that approximates
f . Although the optimal digital twin function f ∗ would produce
states that exactly match those of the physical system function1,
f ∗ = f , this outcome is unlikely to be achieved in practice.

f̃ ({si}
t
0) = st+1 (1)

1 Remember that we are discussing the deterministic case here.

This formulation abides by Axiom 1. However, using the entire
history of a trajectory may be prohibitively expensive for two
reasons. The first is in long-running or high-frequency situations,
storing entire trajectories may occupy a large amount of space.
The second is that even when a large amount of space is available,
the cost of determining the next state by processing all of the past
states grows, at a minimum, linearly with T. Even worse, if we
cannot assume that the trajectories are episodic, then the space and
processing cost are unbounded.

As this is clearly unacceptable, one must find a way to reduce
the size of the recorded or relevant history. We represent this
subset of the history as Csub. If one can assume that the sequence
is Markovian, then one only needs to know the state st to determine
st+1 and can ignore the rest of the history (Weisstein, 2024).
However, many applications do not have the luxury of assuming
Markovianness, or cannot assume Markovianness without storing
the entire history within each state (Sutton and Barto, 2020;
Tennenholtz et al., 2023). To illustrate the limitations of the
Markov property, consider a natural language processing system
trying to understand the meaning of pronouns2 to help predict
future sentences. A purely Markovian model that only looks at the
current sentence would struggle to determine what “it” refers to
in a passage such as: “The airplane flew two loops over his head.
He looked up. It was red with yellow stripes.” In a Markovian
model, only the most recent sentence is used, so the system will
lack the information that “it” refers to the airplane. We show
this example visually in Figure 3. In practice, many language tasks
need to consider contextual information from multiple previous
sentences or paragraphs. Hence, these tasks violate the strict
Markov assumption because crucial information can be buried
further back in the text than just the immediately preceding
sentence.

Naturally, then, the question becomes “if we must keep history,
how do we determine which parts of the history to throw away and
which parts to keep?", or more importantly, “which data should

we use during computation to determine the next state?” A naive
approach to generate Csub would be to treat it as a sliding window
of sizeW, as shown in Equation 2.

f̃ ({si}
t
t−W) = st+1 (2)

While easy to implement, bounded in cost, and simple to
understand, the windowed approach clearly fails when there
are long temporal dependencies between states. A simple but
unfortunate example of this might be a medical model that fails to
take into account an accident involving radiation exposure early in

2 Pronoun resolution is a well-studied but di�cult problem in NLP (Denis

and Baldridge, 2007).
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FIGURE 3

Markovian and Non-Markovian models compared through a simple example.

a person’s life that causes him to become observably ill decades later,
despite intervening years of good health. One potential solution
is to use some heuristic function k :S → R that at each time
step assigns a value to the state, and therefore whether it is worth
keeping or whether it should be thrown away. This approach
is in many ways analogous to human record keeping. Cprio

sub is

represented by a priority queue of bounded size l, where |Cprio
sub | ≤ l.

States are inserted into Cprio
sub until it becomes full. When |Cprio

sub | = l,

either the current state or lowest-priority entry in C
prio
sub is dropped

depending on which is less valuable. Then, only the current state
and the most important parts of the history are taken into account
when determining the next state, as shown in Equation 3.

f̃ (st ,C
prio
sub ) = st+1 (3)

Yet, this approach requires the creator of the digital twin
to have advance insight so that the heuristic function k can be
concretely defined, making it unattractive for most applications.
Another solution is to use a fixed-size “hidden” state h similar to
how a recursive neural network (RNN) operates, which we show
in Equation 4. This is attractive if computation on the history is
infeasible and the modeling approach is capable of automatically

learning how to generate these hidden states.

f̃ (st , ht) = st+1, ht+1 (4)

However, empirical results with RNNs show that this approach
may have significant limitations compared to history-preserving
attention-based approaches, demonstrating how important history
can be (Peng et al., 2023). In addition, the method of creating these
hidden states is not clear for modeling approaches that are not
based on neural networks, making the technique less generalizable.

The problem of history is not unique to digital twins nor
to world modeling, and has been extensively studied in the
machine learning community (Huang et al., 2024; Tennenholtz
et al., 2023; Lin, 1992; Eysenbach et al., 2019; Fedus et al.,
2020). Overall, the best approach to history keeping is context-
and application-dependent; currently, there is no single solution.
Different modeling approaches require different amounts of
history, andmay require keeping the history in different forms. This

pattern is clearly evident across many previous works (Das et al.,
2024; Zeng et al., 2023; Bodnar et al., 2024; Yin et al., 2024; Liu H.
et al., 2024).

Furthermore, if we assume that the dynamics of the physical
system are instead stochastic rather than deterministic, then our
formulationmust change to account for this. Instead of the physical
system function returning a single “next state” st+1, it instead
returns a probability distribution over all possible states, f (st+1|s≤t).

Stochasticity also introduces additional complexity for
predictions, especially those that extend far into the future. Luckily,
there are numerous methods for computing predictions with
stochastic models, many of which are highly scalable and fit for
HPC applications, such as the variousMonte Carlo methods, which
are often described as “embarrassingly parallel” due to their usual
lack of inter-simulation dependencies (Metropolis and Ulam, 1949;
LeBeau, 1999; Meeds and Welling, 2015). Another benefit of this
approach is that ensemble forecasting often allows one to quantify
uncertainty in the predictions of a stochastic model (Leutbecher
and Palmer, 2008; Parker, 2013).

2.4.2 Event-based sequence modeling
Intuitively, changes to the state of the physical world we live in

do not “just happen.” Instead, changes are caused by events. The
system function-based modeling strategy is conceptually simple,
however, it lacks the capacity to explain the underlying causes of
state transitions. Therefore, interventions are also ignored, despite
the vital importance of these components in “what-if ” analyses.

Here, we formulate the digital twin as an event-based

sequence model that explicitly takes stochasticity into account.
This formulation, shown visually in Figure 4, is heavily inspired
by Markov Decision Processes (MDP), but does not require the
Markov Property.

• Event: at ∈ A(st) ⊆ A where the shorthand A(st) gives
the set of events that can take place given a state st . The set
A represents all possible events across all states. Critically,
events can be related to specific interventions, such as a choice
of how much fertilizer to use in an agricultural application,
or related to the natural behavior of the physical system,
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FIGURE 4

The sequence of event decisions and simulated dynamics can be

visualized as a tree or directed acyclic graph.

such as whether or not it rains. The ability to “force” certain
events to occur (i.e., interventions) is not easily representable
in the simpler system function approach, nor in standard
probabilistic graphical models, where causal relationships are
defined only between states. Interventions may not have
deterministic effects on the state, so the ability to model
stochastic event outcomes is critical. Put simply, interventions
let us perform “what if ” predictions. MDPs fail to capture
the influence of history. Though one can theoretically include
history in the state to get close, this is often very difficult to
learn effectively due to the state space explosion (Sutton and
Barto, 2020).

The use of events between as the fundamental driver of
state changes also more closely resembles reality. In the real
world, state does not change on its own. Instead, events cause
changes that are reflected in the state.

• Event selection policy: at ∼ π(at|s≤t) is responsible for
selecting the next event to simulate in the sequence. The event
selection policy can heavily influence the dynamics of the
digital twin, but can be “overridden” to test interventions.

• Physical transition probability function: st+1 ∼

p(st+1|s≤t , at), which represents the dynamics of physical
system when events occur.

This framework, while more descriptive, is equivalent to the
system function modeling approach described previously when a
dummy event is used and always occurs with complete certainty.
The outcome of the dummy event, given the current state, leads to
the next state.

2.4.3 Partial observability
Physical systems cannot be perfectly observed by digital means

for a variety of reasons, including measurement error, limitations
of sensors, the scope of what they can reliably observe, and even the
discretization that is required in order to represent data in a digital
format. A digital twin must rely on observations o ∈ � to improve
its internal knowledge of the physical system. Here, � is the set
of all possible observations. The observation function O :S → �

represents the process of actually observing some property of the
physical system, including any noise or error that such an action

may entail. The handling of partial observability is required by
Axiom 2.

• Belief state: b :S → [0, 1]. Every belief state is a probability
distribution over S. Consequently, we can say that in the
discrete case

∑
s∈S b(s) = 1, and in the continuous case∫

s∈S b(s) ds = 1. This naturally gives rise to the question
of how a belief state can be updated, given that one of the
most prominent goals of the digital twin is to assign higher
probabilities to states that actually occur at their respective
times. The answer to this question lies in the data assimilation

approach (see Section 3.3) chosen by the practitioner.
Predictions can be conditioned on ground-truth

observations from the physical system as they become
available, similar to the teacher forcing technique (Williams
and Zipser, 1989) used in recurrent neural network training.
This approach helps prevent divergence between the physical
system and digital twin models.

• Observation: ot ∈ �where� is the set of all observations. An
observation ot is obtained through the observation function
O(st). An observation represents a partial or potentially
noisy view of the physical system, often collected by some
sensor as the actual state of the physical system cannot be
directly examined. The observation function is an abstract
representation of the sensing process.

2.4.4 The digital twin improvement loop
Previous work has conceptualized the prediction of future

states as a sequence modeling task and proposed formulations to
describe this behavior (Yang et al., 2024). In fact, the formulation
we present above has much in common with these works.
However, previous work misses the most critical aspect of the
dynamic world model: updates from the physical system. In
past work, samples from the physical system were used only
to condition future predictions, and not to update the model’s
underlying representation of the physical system. Note that both
state estimation and system dynamics prediction must be updated.
We explicitly include the update step in our formulation.

A digital twin can operate in either an online, such as in
Figure 5, or an offline capacity. In the conceptually simpler online
case, the digital twin internal state evolves in lockstep with the
physical system’s state. The digital twin’s predictions are compared
to physical system observations immediately upon availability. In
the offline case, the digital twin can evolve entirely independently
of the digital twin while still assimilating information in the form
of observations from the physical system as they become available.
In our formulation, updates may come from the specific physical
system instance associated with the digital twin or possibly from
other instances in a manner similar to off-policy reinforcement
learning (Sutton and Barto, 2020).

2.5 Controlled-environment agriculture
example

Agricultural AI involves a spectrum of attributes that include
interacting biophysical processes (both known and unknown), high
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FIGURE 5

The physical system and its associated digital twin are shown

undergoing discrete transitions as time progresses during the insight

phase. This online digital twin is coupled to the physical twin

through regular updates up until the current moment. The digital

twin is then shown making predictions of the future trajectory of the

physical system, annotated by “DT prediction.” In this example, no

control component is displayed.

uncertainty, multiscale spatio-temporal data, a range of decision
timescales, and multiple decision point workflows (Kalyanaraman
et al., 2022; Ng et al., 2023). Thus, it makes an ideal testbed for DTs.
To illustrate our formulation, we present Controlled Environment
Agriculture (CEA), or greenhouse-based food production systems,
as an example that uses our event-based sequence model. CEA
has several advantages for sustainable food production as they
are optimized for resource efficiency and continuous high-quality
production. Such integrated physical and simulated environments
are the basis for autonomous food production systems (Avigal et al.,
2021).

This example CEA system is equipped with sensors that
measure the time of day, temperature, relative humidity, average
soil moisture, and the CO2 concentration once per time step
(Axiom 2). For simplicity, we assume that these measurements
perfectly describe the true state of the physical system, so ot = st

3.
A greenhouse environment responds to both natural phenomena
and controlled events, such as fluctuations in outdoor temperature
and the activation or deactivation of climate control systems such
as irrigation and heating. These events are represented by at . We
know that st+1 depends on s≤t due to physical processes such as
evaporation and heat exchange with the outside world (Axiom
1). It is also clear that events should have some impact on the
state of the system. The model p(st+1|s≤t , at) predicts the time
of day, temperature, relative humidity, soil moisture, and CO2

concentration for the next time step based on the history and
an event. During data assimilation, p learns these dynamics. For
example, the model may learn that the event of turning on the
irrigation system for the current time step often results in an
increase in soil moisture for the next time step, or more rarely
a slight decrease if, perhaps, the water tank is empty (Axioms
3 and 4). However, some exogenous events are not controllable
but are predictable, such as the outside temperature becoming
colder at night (event), impacting the internal temperature of the
system (state). The event selection policy π learns to predict such
events. Together, π and p form the model component of the digital
twin. This example demonstrates how an event-based sequence

3 We highlight that this is a simplifying assumption—partial observability is

a more general case.

FIGURE 6

A focused view of the relationship between actual states,

observations, and the belief state in a control context. For simplicity,

the details of the digital twin are not shown.

model provides a structured, learnable representation of real-world
dynamics, forming the core of a digital twin that continuously
refines its predictions over time.

3 Fundamental tasks

In order to disambiguate digital twins from conceptually
similar techniques and to clarify the means through which digital
twins operate, we present a set of fundamental tasks that digital
twins perform. We start by explaining each task at an abstract level
and then discuss concrete methods for completing each task along
with examples from the literature.

The digital twin problem can be thought of as a system
containing two co-evolving components: the physical system and
the digital twin tasked with mirroring the physical system. A visual
representation of this pattern is shown in Figure 6.

3.1 Data acquisition

Data acquisition is the process of sensing, collecting, and
transmitting data from their origin and other monitoring
equipment in a physical system to a digital representation that
can be stored, retrieved, and used by the digital twin (Correia
et al., 2023). The scope of the digital representation of the physical
system can vary widely ranging from individual machines or a
group of machines to entire cities, farms, or industries (Friederich
et al., 2022; Uhlemann et al., 2017). Data acquisition can be
manual, automated, or some combination of the two. The manual
acquisition entails documenting changes that happen in the system
through direct human action. However, manual collection is slow,
tedious, expensive, and often low-frequency. In the past decades,
automated sensors have become widespread and low cost (Mao
et al., 2019). As a result, many digital twins implement automated
data acquisition (van der Valk et al., 2020).

3.1.1 Pre-deployment
As outlined in Figure 2, the a digital twin must first be

constructed and tuned before it can be used (during “control and
insight"). Data from the physical system play an important role in
both of these phases. The nature of the data depends on the digital
twin being constructed, what knowledge is already available, and
what sensing systems can be deployed.
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3.1.1.1 Design artifact re-use

In general, the manufacturing process for complex physical
items involves creating annotated three-dimensional models,
along with bills of processes (BOPs) and bills of materials
(BOMs) (Grieves, 2014). When these resources are available,
crafting digital twins can become simpler and less expensive as
these design artifacts can be re-used or modified to support the
creation of the DT. In many cases, DTs may also be able to exploit
the relationships between data stored in existing comprehensive
lifecycle management systems.

3.1.1.2 Manual measurement and 3D design

One of the more common types of modeling in the literature is
the manual creation of three-dimensional computer-aided design
(CAD) models of the physical system (Kapteyn et al., 2021; Matulis
and Harvey, 2021). A human’s “highest-bandwidth” method of
absorbing information is through visual sight, and a three-
dimensional (3D) model is conducive to this as it can be directly
viewed (Grieves, 2014). While helpful for visualizing data, the same
models can also be used within simulations. There are a variety
of approaches to creating these models, but a common approach
is to have a human worker take measurements of the physical
system, then use the measurements as well their own knowledge of
the system to create a three-dimensional representation using 3D
modeling software. This technique can produce extremely detailed
and accurate 3D models, but is extremely costly and the results
entirely depend on the skills of the human worker.

3.1.1.3 Active and passive sensing

As the name implies, laser scanning uses an array of lasers to
find precise distances between the scanner and the object being
studied. These distance measurements are combined with known
information about the orientation of the scanner relative to the
object to create a three-dimensional point cloud. The point cloud
is then transformed into a 3D mesh that under ideal conditions,
precisely reproduces the object’s physical representation in virtual
space (Scott et al., 2003).

Another technique is photogrammetry, where 3D models
are recreated from many 2D images. Unlike laser scanning,
photogrammetry generally does not require specialized equipment
in the field other than a camera and some measurement tools.
Photogrammetry-derived 3D models have been used in popular
software tools such as Google Earth (Google Maps 101, 2019). The
relatively low cost of this technique makes it attractive for creating
DT assets, however, the accuracy and precision of the resulting
3D models are often lower than both laser scanned and manually
created assets.

3.1.1.4 Generative AI

High quality 3D meshes are necessary for many digital
twin applications. Recent advancements in generative artificial
intelligence (GenAI) have led to massive improvements in the
capabilities of publicly available GenAI technologies for creating
meshes. Siddiqui et al. (2023) explored how transformer models
can be used to generate triangle meshes, thereby creating 3D
models without manual design effort. Their MeshGPT approach
demonstrated significantly better performance than previous mesh
generation solutions in multiple benchmarks while retaining its

ability to generate novel shapes, that is, not directly output training
data. This is vital for DT applications, as DTs must represent single
instances of physical systems, no two of which are exactly alike.

3.1.2 Post-deployment
Once the digital twin is constructed, tuned, and ready for

the control and insight phase, continuous data streams must be
created, establishing the link between the physical system and the
digital twin as required by Axiom 2. Some examples of the tools
used to collect these data are sensors, unmanned aerial vehicles
(UAVs) and satellite imagery (van der Valk et al., 2020; Huang
et al., 2021). In many cases, these data are collected autonomously,
often by systems that can be described as “internet-of-things”
(IoT). IoT frequently serves as a way to get an efficient, reliable,
and continuous flow of data for the digital twin. This is because
the combination of frequent data acquisition (high frequency),
remote access, and automatic collection are highly desirable for
DT applications. An example of this is from Guo et al. (2023)
where the authors employed IoT to assist in acquiring data for their
performance on Array Antennas Segovia and Garcia-Alfaro (2022).

This information is recorded and stored in large databases
located on cloud servers or data application servers, which we
discuss in detail in Section 3.2 (Correia et al., 2023). The collected
data are divided into categories such as static information, which
includes specifications or performance information that do not
appreciably or regularly change, and dynamic information, which
includes parameters and measurements that change or are subject
to change over time (Friederich et al., 2022; Uhlemann et al., 2017).

Ideally, these data are collected and stored seamlessly; however,
several factors prevent this from being the case. Because digital
twins often ingest data from multiple disparate sources, these data
are not uniformly structured, meaning that the raw inputs vary in
format between structured data like tables and unstructured data
like videos. Raw data can also be recorded in different serialization
formats, adding an extra level of complexity when organizing
for data analysis (Correia et al., 2023). Additionally, digital twins
demand high precision, low latency, and continuously flowing data
to provide real-time updates.

Optimally, the post-collection data would be updated and
processed quickly enough for real-time changes to reflect almost
immediately in the digital twin; however, slow computing times as
well as problems with data storage space filling up from the large
data pool prevent this from happening.

3.2 Data storage

Data frequency and reliability are crucially important to
maintaining the link between the physical system and the
digital twin, thus preserving accurate modeling, assimilation, and
prediction. Reliability requires secure, fault-resistant, and well-
documented access to the data. The high update frequency of
physical twin sensor and data collection systems requires designs
capable of accepting, storing, and organizing incoming information
with minimal delay. This section tracks the flow of data from
post-acquisition to storage and through organization, outlining

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1536501
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Weingram et al. 10.3389/fhpcp.2025.1536501

the methods used in data management and data storage, and
highlighting notable trends in storage literature that pertain to
digital twins.

We break the storage process into five subtasks, namely: (1)
communication of data from the acquisition system to the DT
storage system, (2) validation and annotation of the received data
by the storage system, (3) organization of the data and write to
storage media within the storage system, (4) retrieval of data by the
digital twin, and (5) transmission of data from the storage system
to the digital twin.

Data may originate from IoT sensors as outlined in Section
3.1, or alternatively, it might be synthetic in nature (Zheng et al.,
2019). Before it is sent to long-term storage, the data must be pre-
processed. The original analog electric signals of varying formats
are often first converted to digital representations and preprocessed
by edge devices to filter out noise, de-duplicate, detect errors and
apply compression for more efficient communication (Li et al.,
2023). The data, metadata, and information about the origin of
the data are combined to form a package which is then sent to the
storage system, generally over some kind of network.

Once the data arrive in the storage system, additional
transformations may be performed. These include normalizing
data to create uniformity among fields and records, allowing for
easier retrieval and standardization (Gorelick et al., 2017). Other
important pre-processing steps can involve indexing that will later
allow more efficient access (Lü et al., 2011).

In general, data receipt, handling, management, and querying
take place within a central storage system where all data are
stored and maintained at one location (Lü et al., 2011). However,
a single logical data storage system may actually consist of
multiple specialist systems working together in a distributed
fashion. Organizing the data by group (“silo") is one sharding
method. Creating silos is a simple way to organize information
systematically across the network. This method is formalized
by decentralized policies such as outsourcing or splitting the
organization into separate entities and providing these groups
with individual budgets for infrastructure, thereby encouraging
independent data management (Cromity and De Stricker, 2011).
However, this configuration is frequently undesirable for building
DTs as these silos restrict data sharing and access, and can lead
to duplicate or incomplete data. Although sharding was common
in the past, it has now become a problem when building DTs
that require access to organization-wide data (Sun et al., 2020).
Some works have called for a shift in the traditional approach
to more accessible data through policies such as software-defined
infrastructure or data ecosystems (Sun et al., 2020). Such a
system can be created with the advice of experts of respective
data areas.

Distributed data storage uses data that are physically scattered
with limited access across clouds, data centers, edges, networks, etc.
To connect disparate sources, Uhlemann et al. (2017) envisions a
storage fabric infrastructure that can aggregate data into a more
interconnected system. This idea is based on software-defined
infrastructure, which offers a continuously adaptable infrastructure
that is hardware-agnostic and scalable. This configuration shares
similarities with the federated infrastructure resource pooling
approach, in which each system remains autonomous while
collaborating to share resources.

3.2.1 HPC storage challenges for digital twins
Digital twins create unique demands on HPC storage

systems that extend beyond traditional scientific computing
workloads. HPC centers are designed to support large-scale
parallel computations; however, digital twin applications introduce
additional complexities that require careful consideration.
Whereas many large-scale scientific applications exhibit relatively
regular access patterns, digital twins can generate data requests
at varied frequencies and granularities, spanning multiple
time scales.

As discussed in previous sections, this can require the
continuous ingestion of sensor and observational data in real-
time while simultaneously providing fast access to large volumes
of historical data for model updates, analytics, and prediction tasks.
This dual requirement has the potential to strain existing systems
that typically assume more predictable I/O patterns.

Existing HPC deployments sometimes leverage advanced
caching, burst buffers, or object-based storage to mitigate these
issues, but the demands of continuous and unpredictable data
queries can still result in performance bottlenecks (Liu et al., 2018;
Romanus et al., 2015; Khetawat et al., 2019). Overall, the impact of
existing parallel storage designs on digital twin applications has not
been adequately studied.

3.3 Data assimilation

Data assimilation may be the most important and fundamental
task that a digital twin performs, as the process serves as the
bridge between information obtained from the physical system and
the digital twin’s internal understanding of the physical system.
Assimilation is required as part of our definition of a digital twin
(Axiom 3). The data assimilation process uses information from
the physical instance to update and improve properties of or
representations in the digital twin. Such updates may be useful for
a variety of purposes, ranging from improving context awareness
to tuning a model to more accurately predicting physical twin
behavior, as shown in Figure 7 (Rodríguez et al., 2023). Data types,
update frequency, veracity, and other properties can be determined
by considering the requirements for the specific digital twin system
being implemented (VanDerHorn and Mahadevan, 2021).

The specifics of the update strategy are also important to
consider. Although the strategy chosen is often application-
specific—there is no “one-size-fits-all solution"—there are methods
that serve as excellent starting points once certain properties of the
desired system are known.

We outline two distinct areas where data assimilation plays a
role. The first is to improve state estimation, where observations
are used to infer the state of the physical system. The second is
to improve prediction, where the digital twin predicts the future
states of the physical system or events that they may be influenced
by. There are numerous ways in which one can approach the
problem of data assimilation, though many are based on Bayes’
rule, such as Kalman Filtering and Particle Filtering (Bertsekas,
2020). These smoothing algorithms are often implemented offline
to refine state estimates by incorporating past and future data
points. The accuracy of state estimation is strongly influenced by
the chosen state representation, the fidelity of the dynamics model,
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FIGURE 7

An abstract example of a DT model’s predictions becoming closer

to the ground truth, and thus more accurate over time as additional

observations are taken into account. Blue “X"s represent the DT’s

prediction for a given time step.

the quality of sensor data, and the chosen estimation technique.
Other more recent techniques involve pre-training or fine-tuning
deep neural networks.

However, there is a key gap in the research. Although the
crucial role of data assimilation in digital twin technology is widely
acknowledged, its implementation remains a significant challenge
and an area that requires further investigation. Current research
on data assimilation within the context of digital twins is still in
its early stages.

The reasons for this gap are multifaceted. The complex and
heterogeneous nature of physical systems, coupled with the
diverse range of modeling and simulation techniques used in
digital twins, pose significant challenges for developing universal
data assimilation methods (Grieves, 2014). Furthermore, the
computational demands of real-time data assimilation, especially
for high-fidelity digital twin models, can be substantial, requiring
efficient algorithms and potentially specialized hardware (Thelen
et al., 2022a,b). Addressing these challenges through rigorous
research and development of robust, scalable, and computationally
efficient data assimilation techniques will be crucial for
unlocking the full potential of digital twin technology across
various domains.

3.3.1 Deep neural networks
DNNs excel at learning complex patterns and relationships

from vast datasets, enabling them to model intricate system
dynamics and improve prediction accuracy (LeCun et al., 2015).
In fact, the universal approximation theorem states that when
the number of neurons is not bounded, a neural network
is theoretically capable of representing any function and is
therefore a “universal approximator,” though learnability is not

guaranteed (Hornik et al., 1989). Notably, transformers, recurrent
neural networks (RNNs), especially long short-term memory
(LSTM) networks, have shown promise in handling temporal
dependencies in data, which is crucial for capturing the evolving
behavior of physical systems. Furthermore, techniques like transfer
learning and pre-training on large, generic datasets can accelerate
the development of effective data assimilation models by leveraging
existing knowledge.

3.3.2 Physics-informed neural networks
Traditionally, our understanding of physical systems has been

built upon physics-based models. These models are rooted in
fundamental physical laws and first principles. We translate
these laws into mathematical equations and use constitutive
models to describe how materials interact, their properties,
and how forces affect them. The beauty of physics-based
models is their interpretability. Each parameter has a clear
physical meaning. Beyond prediction, physics-based models
allow for extrapolation, meaning we can often predict behavior
in situations beyond the data we have observed. However,
these complex simulations can be computationally expensive,
demanding significant time and resources. Also, in our efforts to
simplify reality enough to represent its behavior with analytical
or numerical models, we make assumptions that can sometimes
lead to discrepancies between our model and the actual physical
system.

Machine learning has been proposed as an alternative to
these simulations and models, built on the idea that if we have
enough data, we can train these models to have essentially the
same behavior as a physics model. However, regular data-driven
machine learning has drawbacks, including extremely poor out-
of-distribution behavior. Furthermore, the results of an ML-based
model can only ever be as good as the data it has seen so far.
Critically, machine learning model architectures are not based on
physical laws, and may predict impossible outcomes (Ritto and
Rochinha, 2021).

Physics-informed neural networks (PINNs), thus, aim to take
advantage of both approaches. PINNs integrate the rigor of
physical laws with the adaptability of neural networks, and they
often work by introducing known physics as a regularization
term (Karniadakis et al., 2021). In simple terms, the neural
networks are being taught to respect the fundamental rules of
physics while still learning from data; that is, the models should
fit the data while ensuring the output is consistent with the
physics equations we know about. This leads first to improved
accuracy. By incorporating physical knowledge, we can guide the
learning process and enhance predictive capabilities, especially
in data-limited scenarios. Second, PINNs promote enhanced
interpretability. The physical constraints act as metaphorical
guardrails, helping observers understand the model’s predictions
and identify potential inconsistencies. Lastly, physics-informed
models often have less stringent data requirements. Physical
knowledge acts as a powerful supplement when data quantities are
limited, making PINNs more versatile and sample-efficient. This
type of model holds immense potential for building more robust
digital twins, as DTs are modeling the real world to begin with.
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3.3.3 Attention and transformer architectures
Transformer models have been shown to be extremely

successful for language modeling tasks, and have became popular
for their strong ability to generate coherent text from prompts
and even follow user instructions (Radford et al., 2019; Brown
et al., 2020; Touvron et al., 2023a,b; Ouyang et al., 2022). In
a natural language context, tokens represent words, or more
frequently, sub-word chunks arranged in order (Sennrich et al.,
2016). Tokenizing with sub-word units has demonstrated benefits
compared with entire-word dictionary encoding and is intuitively
well-founded (Sennrich et al., 2016). A positional encoding is
used to capture the temporal dependencies between tokens as the
attention mechanism is not by itself order-aware (Vaswani et al.,
2023).

By the definition presented in Section 2.4, digital twins
are a form of time series modeling because they operate over
the temporal domain (i.e., time steps). Unfortunately, for such
time series modeling applications, traditional applications of the
transformer architecture often struggle to perform well and are, in
fact, frequently outperformed by extremely simple alternatives that
do not use the attention mechanism (Zeng et al., 2023; Das et al.,
2024). To address these shortcomings, recent work has proposed
the use of an “inverted” transformer design, frequently referred
to as an iTransformer (Liu Y. et al., 2024). The key to this idea
is using the attention mechanism across variates (i.e., variables)
rather than across time steps, treating the entire input time series
for each variate as a single token. In the process, the model is able
to learn multivariate correlations. One benefit of this approach is
its greater interpretability compared to traditional transformers, as
the score maps from iTransformers can be easily inspected. The
original iTransformer uses an encoder-only architecture and does
not modify any of the encoders’ internal components. Generation
is handled by linear layers.

3.3.4 Transfer learning
Traditionally, transfer learning is used to create models

with limited domain-specific data. Appropriately applied, transfer
learning can help one take knowledge learned from one domain
or task (the “source") and apply it to improve learning in another
domain or task (the “target") (Weiss et al., 2016). Transfer learning
has contributed to recent developments in deep learning and
assimilation. Specifically, foundation models have shown promise
in general tasks, meaning they are often able to learn about target
tasks from source datasets more easily. We discuss this in the next
section.

3.3.5 Foundation models
In line with existing literature, we define foundation models as

general-purpose deep learning models that have been pre-trained
on diverse and massive datasets, which can then be fine-tuned to
perform new tasks or those that the model was not adequately
trained on (Bommasani et al., 2022). Essentially, they provide a
“foundation” upon which more specialized models can be built.

Presently, the most well-known foundation models are large
language models (LLMs), products of the field of natural
language processing (NLP). These include models such as GPTs,

LLaMAs, and BERTs (Radford et al., 2018; Touvron et al.,
2023a,b; Devlin et al., 2019). Multimodality in LLMs is also
becoming increasingly popular (Radford et al., 2021). As a whole,
foundation models’ use cases extend far beyond language and into
domains like climate, biology, and computer vision. The most
popular current foundation models are based on the Transformer
architecture (Bommasani et al., 2023; Bommasani and Liang, 2021;
Vaswani et al., 2023).

Two defining characteristics of foundation models are transfer
learning and scale (Bommasani et al., 2022; Thrun, 1998). We
have discussed transfer learning and what makes it a powerful
technique. Specifically in the context of foundationmodels, we look
at pre-training and fine-tuning as the primary means of transfer
learning, where models are initially trained on broad datasets
through “surrogate tasks” to capture relationships in the data. Then,
these models are further trained for specific downstream tasks
through fine-tuning, all while retaining the overall context. Scale,
then, encompasses the general idea of growing to expand model
capabilities, which was enabled by three components: improved
computer hardware, the scalability transformer model architecture,
and the increased availability of training data. Everything hinges
on the availability of data and the ability to extract information
from data.

This cycle of pre-training followed by fine-tuning for specific
tasks is adjacent to assimilating data into an existing digital twin,
and advancements in this technology should be monitored as
foundation models continue to be investigated in the digital twin
space. One example of a geospatial model with digital twin potential
is Prithvi (Jakubik et al., 2023), a transformer-based foundation
model specializing in analyzing multispectral satellite imagery of
the Earth’s surface. Pre-trained on over 1TB of data from the
Harmonized Landsat Sentinel-2 (HLS) dataset (Claverie et al.,
2018), which provides global surface reflectance data, Prithvi excels
in capturing spatial patterns and relationships relevant to land
surface applications. This model has been successfully fine-tuned to
achieve state-of-the-art performance on downstream segmentation
tasks such as flood mapping, wildfire scar identification, and
crop type classification. Prithvi’s ability to learn from large-
scale, unlabeled satellite imagery showcases the potential of
foundation models for data-efficient and generalizable geospatial
artificial intelligence.

Ultimately, they promote a sort of centralization, in which
one single model can be the backbone for countless smaller tasks
and various implementations, paving the way for the future of
AI systems and other areas like multi-task learning. This is not
unlike the way digital twins can also be regarded as a set of models.
The applications of foundation models outside natural language
processing is an active area of research, especially in areas where
highly complex simulations are traditionally used, such as weather
prediction. Interest in applying foundation models to future digital
twins in these domains has been published (Roy and Schmude,
2024). We conclude that the investigation of foundation models is
a future research direction with strong prospects.

3.3.6 Low-rank adapter tuning
Low-rank adaptation (LoRA) has gained popularity in recent

years because it requires vastly fewer resources than full model
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pre-training, or even full model fine-tuning (Hu et al., 2021).
The resulting trained adapters have zero runtime cost and can
be easily shared. Many variations of LoRA have been created,
including QLoRA (Dettmers et al., 2023) andDoRA (Liu S.-Y. et al.,
2024). These techniques are often applied in combination with the
foundation models discussed above, and can serve as a much more
efficient way to perform data assimilation (Bodnar et al., 2024).

3.3.7 Surrogate models
Surrogatemodeling, also known asmetamodeling, is a powerful

technique employed to approximate the behavior of complex
and computationally expensive systems. Surrogate models can be
simplifiedmathematical representations or function approximators
that capture the input-output relationships of the original
system, often computationally demanding, high-fidelity model.
This simplification is achieved by training the surrogate model
on a dataset of input-output pairs generated by the high-fidelity
model. The surrogate, once trained, can then be used to predict
the system’s response to new inputs, significantly reducing the
computational burden associated with evaluating the original
model. This efficiency gain makes surrogate models particularly
attractive in scenarios where numerous model evaluations are
required, such as optimization, uncertainty quantification, and
design exploration (Willard et al., 2022; Chakraborty et al.,
2021).

The process of constructing a surrogate model typically
involves several steps. First, a design of experiments is employed
to strategically sample the input space of the high-fidelity model.
This sampling strategy aims to maximize the information gained
about the system’s behavior with a limited number of simulations
or experiments. Next, the high-fidelity model is evaluated at the
selected input points, generating a dataset of the corresponding
outputs. This dataset is then used to train the surrogate model,
which can be chosen from a variety of mathematical forms,
including polynomial regressionmodels, Gaussian processes, radial
basis functions, and neural networks (Willard et al., 2022). The
choice of surrogate model depends on the characteristics of the
system being approximated, the desired level of accuracy, and the
computational resources available. Finally, the trained surrogate
model is validated against additional data points to assess its
predictive accuracy and ensure its suitability for the intended
application.

Surrogate models can be particularly valuable in the context
of digital twins, where computationally efficient models are often
used for real-time decision support and analysis. By approximating
the behavior of complex physical models, surrogate models can act
as simplified digital twins, enabling rapid analysis and prediction
without the computational burden of the original model. Surrogate
models can also be used to explore a wider range of scenarios
and sensitivities within a digital twin framework, as they can
be evaluated quickly and efficiently; that is, surrogate models, in
conjunction with digital twins, can be used for simulation tasks.

One generally wants to ensure that a digital twin in use
adheres as closely as possible to the physical system it represents.
Previously, we described physics-informed neural networks and
their advantages. The digital twin, being based on real systems and
intended to mimic the behavior of its physical counterpart, could

benefit from introducing first principles and other “guardrails” to
optimize performance in machine learning-based digital twins. As
long as the physical twin is already constrained by some established
physical or mathematical law, that law can be translated into some
regularization term. Neural networks especially tend to suffer from
problems such as overfitting and hallucination. Another benefit is
less dependency on large datasets, which PINNs can alleviate in
cases where data acquisition is expensive or difficult due to the
aforementioned “guardrails" (Karpatne et al., 2017). PINNs, then,
can serve as both a surrogate model for computationally expensive
physical models and as a machine learning framework that is
guided by fundamental physical principles. The main challenge lies
in determining the appropriate laws, meaning domain expertise is
required and highly pertinent.

3.3.8 Future research directions for data
assimilation

To address the crucial gaps in data assimilation methods for
digital twins identified at the start of this section, we highlight
several promising research directions that warrant investigation:

First, hybrid assimilation frameworks that combine traditional
techniques like Kalman filtering with modern machine learning
approaches may offer a path forward. These frameworks could
leverage the theoretical guarantees of classical methods while
benefiting from the flexibility and scalability of deep learning.

Second, specialized architectures for handling multi-modal,
multi-scale data streams need development. Digital twins often
need to assimilate heterogeneous data types (images, time series,
text) at different temporal and spatial scales. Transformer-
based architectures with hierarchical attention mechanisms could
potentially address this challenge by learning to appropriately
weight and combine different data sources.

Third, physics-informed assimilation techniques that explicitly
incorporate domain knowledge and physical constraints could
improve both accuracy and computational efficiency. These
methods could build on recent advances in physics-informed
neural networks (PINNs) while adding mechanisms for sequential
updating and uncertainty quantification.

Finally, distributed and federated assimilation algorithms that
can operate across computing resources deserve exploration. Such
approaches could enable digital twins to scale to larger systems
while maintaining real-time performance requirements. Recent
work in federated learning provides promising building blocks for
this direction.

These research directions should be pursued while considering
the specific challenges of digital twin applications, including real-
time performance requirements, the handling of streaming data,
and the need for uncertainty quantification.

3.3.9 Connection to world modeling
In the literature, world modeling and digital twins are treated

as separate topics. Here, we will draw connections between these
two concepts by highlighting similarities and overlapping ideas.
Both involve creating virtual representations of systems—world
models focusing on learning generalizable models of environment
dynamics and digital twins aiming to mirror specific physical assets
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or systems (Ha and Schmidhuber, 2018). But physical twins do
not exist in a vacuum; the environment as a whole should be
accounted for. Thus, we identify a first key intersection point
in digital twin development, where the world model is used to
provide that critical context. This notably parallels the methods
discussed above.

However, integrating world models into digital twin
frameworks presents challenges, particularly in aligning the
general nature of world models with the specificity of digital twins.
World models are typically designed to learn broadly applicable
representations of environments, while digital twins focus on
representing a particular physical asset. At the same time, the
digital twin should be flexible with the capacity to generalize.
Bridging this gap requires carefully tailoring the world model to
capture the specific features and constraints of the target system
while retaining its capacity for learning and prediction. Once more,
this seems to point at potential solutions like foundation models,
lending to a seemingly inevitable convergence between digital
twins and emerging AI solutions.

3.4 Simulation and prediction

The goal of simulation and prediction is to generate predicted
future states of the physical system. These predictions can then
be used to make control decisions. Currently, two of the most
prevalent methods of modeling a Digital Twin that exist are
computational models and data-driven models. Either can be used
as the primary model or the surrogate model, which can reduce the
cost of running predictions. Computational models use numerical
processes and simulations to reflect the characteristics and events
that occur within the physical twin system while surrogate models
employ the use of simplified or data-driven AI/ML models to
approximate the state of the physical twin, reducing computational
costs and enhancing efficiency (Bauer et al., 2015; Chakraborty
et al., 2021). For the purposes of digital twins, the model needs
to be capable of generating predictions even when it has not had
the opportunity to assimilate new data from the physical system, as
outlined in Axiom 4.

3.4.1 Simulation fundamentals
For various reasons, many problems cannot be solved

with analytical methods. It is also possible that closed-form
representations are possible but have not yet been found.
Additionally, physical systems in active use can be extremely
complicated, requiring more abstract renderings that leave out
important information. In these situations, numerical methods or
simulation techniques are often the best option.

Unlike other applications of simulation, the DT paradigm
requires updates to be made to the simulation component based
on data and observations from the real world. There is no
hard limitation on the form that such simulations can take
when applied within DTs; only that they must be able to accept
updates based on observations collected from the physical system
(see Section 3.3 where data assimilation is discussed in detail).
Here, we outline multiple types of simulation employed in digital
twin contexts.

3.4.2 Discrete time simulation
In contrast to continuous simulation where time itself is

continuous and differential equations are used to calculate outputs,
discrete time simulations (DTS) break time into a set of discrete
time steps, t0...tN , where N is the number of time steps in an
episode. Each time step is associated with a state sk ∈ S where S
is the set of all possible states. A time step tk is associated with a
state sk. A simplified version of a discrete time simulation is given
in Algorithm 1.

N : = Total number of time steps to simulate

t← 0

s0 ← s ∈ I

while t < N do

st ← Simulate for time step t, st ∈ S

t← t+ 1 ⊲ Move to next time step

end while

Algorithm 1. Simplified discrete time simulation loop.

The specific method used to discretize a real-world process can
have large impacts on the results of the simulation. It is important
to note that the discretization process itself can introduce accuracy
issues.

3.4.3 Discrete event simulation
While similar in name to discrete time simulation, discrete

event simulations (DES) do not have a time loop that iterates over
time slices. Instead, the core of DES is an event loop. Events happen
at specific moments in time and are processed in order. By avoiding
explicit time steps and dealing only with events, DES avoids many
of the accuracy issues inherent to DTS. An example of DES is shown
in Algorithm 2.

N : = Total number of events to simulate

E : = Sorted list of events

k← 0

while k < N do

ek ← Next event from E

sk ← Simulate event ek

k← k+ 1

end while

Algorithm 2. Simplified discrete event simulation loop.

3.4.4 Data-driven approaches
In some cases, data-driven approaches can yield excellent

results, especially when paired with more traditional massive
mathematical modeling. In Frnda et al. (2022), a small neural
network was used to augment and correct ECMWF short-time
weather forecasts. The accuracy of the neural network closely
resembled that of the much more computationally expensive
numerical weather prediction models at much finer geographical
granularity. There are many other prominent and effective
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applications of AI techniques for weather modeling, and there is
currently a significant amount of interest and work conducted in
this area (Lang et al., 2024; Nipen et al., 2024; Nguyen et al., 2023;
Bi et al., 2023; Bodnar et al., 2024; Chen K. et al., 2023; Keisler, 2022;
Pathak et al., 2022; Chen L. et al., 2023).

DT simulations can be deterministic or stochastic in
nature. In one example of a stochastic model deployment
for DT, Li et al. (2017) developed a technique that uses a
Bayesian network to predict aircraft wing fatigue crack growth
over time.

In Section 3.3, we discussed inverted transformers (Liu Y. et al.,
2024). In addition to the benefits to assimilation, iTransformers
have strong benefits for the generation and simulation phase as
well. During generation, iTransformers use only the linear layers
and not the attention mechanism. This makes generation much less
computationally intensive (Liu Y. et al., 2024).

It can be significantly more difficult to apply purely data-
driven techniques like machine learning in applications where
available data are insufficient to fully describe the system, such as
in the geosciences (Carrassi et al., 2018). In these situations, other
techniques may be considered instead of, or in addition to, data
driven techniques.

3.5 Analysis

After simulation and prediction is complete, the resulting
outputs must analyzed and either presented to human decision-
makers, or used by automated controllers to make decisions
that impact the physical system. We label this fundamental task
“analysis” as it encompasses both of these sub-tasks. The analysis
task is extremely important because it serves as part of the interface
between the digital twin model and the physical system.

After algorithms are run on the data to make inferences, these
results need to be displayed in a coherent format for human
consumers. Therefore, visualization is a key component of human-
in-the-loop configurations. The results of predictions are typically
presented through visual interfaces that display data analytics,
predictive models, and trends. Although mentioned less frequently
than visualization, interaction must also be carefully considered.
Visualization as a topic in computer science has been studied
for decades. However, many digital twin prototypes use simple
visualization techniques such as dashboards and two-dimensional
projections of three-dimensional models (VanDerHorn and
Mahadevan, 2021). Interaction, where discussed at all, often
requires expert-level knowledge as the user must know how
to configure, set the initial conditions of, and run the digital
twin. More recent digital twin works have begun to adopt more
ambitious uses of visualization and interaction technology, such
as augmented reality (AR) and virtual reality (VR) (Brewer et al.,
2024; Vysocký and Riha, 2024). AR and VR mediums have a
significantly higher potential information “bandwidth” than 2D
dashboards and text output as they have more dimensions to
work with and provide fundamentally new ways to interact with
data. Although there are still many research avenues to explore
and engineering challenges to overcome, VR and AR interfaces
are exciting new directions for truly interactive digital twins
(Cruz-Neira, 2024).

Most papers do not mention where the data are stored after
being worked on, showing that this field is up to each niche case.
These interfaces often feature dashboards, graphs, and charts to
allow users to interpret and interact with the predictions easily.
Using a long history of previous output data also allows for
predictions from machine learning-based digital twins, to have
higher accuracy compared to general methods. This also appears in
a more digestible fashion when being displayed in graphs (Fahim
et al., 2022).

3.6 Feedback and control

The feedback loop or control system, a cornerstone principle
within control theory (Åström and Hägglund, 2006; Dorf Bishop,
2017), recontextualized within DTs, depicts interactions between
the physical and digital twins. Data from the physical twin are
processed by the digital twin; then, insights gleaned from the digital
twin are applied back to the physical twin, which will generate new
data for the digital twin. The digital twin should update accordingly.
This process continuously repeats. The essence of a feedback loop
lies in the continuous monitoring of a system’s output, comparing
it to a desired setpoint, and then using the discrepancy to adjust
the system’s input to drive it toward the desired state (Åström and
Hägglund, 2006).

A similar pattern is applicable to digital twins. While data
assimilation forms the “right” side of the feedback loop shown
in Figure 6, the feedback and control system forms the “left”
connection from the digital twin back to the physical system. We
“unroll” this process in Figure 8. We outline two main approaches
for the implementation of the control link, though the boundary
between these two is somewhat fuzzy.

3.6.1 Human-in-the-loop
The first is “human-in-the-loop” approaches, where real-time

feedback from the digital twin provides actionable insights to a
human operator (Nunes et al., 2015). The human operator then
performs operations that impact the physical twin. The objectives
can include performance optimization and the prediction and
advance correcting of potential problems (Errandonea et al., 2020).
Currently, human-in-the-loopmodels are popular (Pylianidis et al.,
2022; Ritto and Rochinha, 2021; Verdouw et al., 2021) and
there is a growing emphasis on real-time feedback (Dang et al.,
2022; Cao et al., 2023; Bordukova et al., 2024); digital twins are
increasingly expected to provide immediate insights and enable
prompt responses to dynamic changes in the physical twin.

3.6.2 Full autonomy
The second approach is fully autonomous control, or the typical

closed-loop control system, where control systems are integrated
into the digital twin to automate responses such as optional
parameter adjustment and maintenance actions (Glaessgen and
Stargel, 2012). Fully autonomous control can be difficult to achieve
for non-trivial real-world systems, often lacks generalizability,
and may be dangerous if applied in the wrong contexts (Huang
et al., 2023). Control theory is a long-studied discipline with
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FIGURE 8

A physical twin and its associated digital twin evolve alongside and

influence one another. In this diagram, we unroll the interaction

loop from Figure 6 and expand the digital twin and controller into

discrete parts to highlight the nature of these co-evolving

components over time. Note that in our definition, we do not

prescribe a strict order for the predictions, updates, and controls.

many applicable techniques. Modern control theory, building upon
classical foundations, has expanded the scope of feedback control to
encompass non-linear systems, stochastic processes, and adaptive
control strategies. The choice of technique is often specific to the
application and practitionersmust take into account the complexity

of the system and the desired control objectives. One prominent
example is proportional-integral-derivative (PID) control, which is
a widely used technique that utilizes a combination of proportional,
integral, and derivative terms to calculate control actions, providing
flexibility in tuning the system’s response (Åström and Hägglund,
2006). Others include robust control, which addresses systems
with uncertainties or disturbances by designing controllers that
maintain stability and performance despite variations in the
system’s parameters or external factors (Zhou et al., 1996), model
predictive control (MPC) which uses a dynamic model of the
system to predict future behavior and optimize control actions
over a finite time horizon, enabling more sophisticated control
strategies (Camacho and Bordons, 2007), and various forms
of optimal control, which focus on minimizing or maximizing
some defined cost function (e.g., energy consumption, time to
reach the setpoint) by employing mathematical optimization
techniques (Kirk, 2004). These techniques can be used in
combination with digital twins (Abro and Abdallah, 2024).

3.6.3 Partial autonomy
As a result of their close relationship with infrastructure,

digital twins must be designed to preserve public trust. Safety
is paramount, especially in critical applications such as power
plant management or transportation systems, where a single faulty
automated control could have severe consequences. Developers
and stakeholders must prioritize ethical frameworks and establish
safeguards to ensure fairness, safety, and the protection of personal
privacy in emerging DT applications.

Partially autonomous approaches aim to combine the
advantages of full autonomy with the presumed relative safety
of human-in-the-loop designs. Despite their attractiveness, there
remain significant ethical concerns related to responsibility,
accountability, and human agency in partially-autonomous
systems. One key consideration for the implementation of the
feedback loop lies in determining the optimal level of automation;
that is, how can human oversight be balanced with autonomous
control? Questions relating to responsibility and accountability
become particularly complex: If the recommendation of a digital
twin leads to harm when combined with a human operator’s
judgment, it is often unclear whether the fault lies with the
technology or the user.

This conversation is at the intersection of ethics and human
safety. On the one hand, autonomous control, where the digital
twin makes decisions and implements actions without human
intervention, offers significant benefits. It enables real-time
responses to dynamic changes, optimization of complex processes,
and potentially even the prevention of accidents or failures that
humansmight miss. However, relinquishing complete control to an
automated system raises clear ethical concerns, particularly if the
system’s decision-making process is opaque or poorly understood.

Partial autonomy can be desirable because it can blend benefits
from both approaches, but also requires careful design with
human considerations taken into account, such as automation

complacency, or worse, automation bias, where operators become
hesitant to override system recommendations even when their
experience suggests otherwise (Kim and Yang, 2017; Lyell and
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Coiera, 2017). The optimal level of automation in a digital twin’s
feedback loop depends on various factors, including the specific
application domain, the complexity of the physical system, the
maturity of the AI control algorithms, and the societal acceptance
of autonomous decision-making.

4 A taxonomy for digital twins

Here, we present a taxonomy for digital twins that explores the
interface between DT technology, high-performance computing
(HPC), AI, and ML techniques. We observe that this interface is
not static and that there are a wide variety of approaches currently
under exploration.

4.1 Machine learning and HPC for digital
twins

High-performance computing resources provide new
opportunities to create highly accurate and precise digital twins.
High-performance networking technologies, such as Infiniband,
lower communication latency and increase bandwidth (Panda
et al., 2022). Graphics processing units (GPUs) and specialized
accelerators, such as Google’s Tensor processing units (TPUs)
and Amazon’s Trainium, make highly parallel operations much
faster (NVIDIA, 2023; Google, Inc., 2024; Amazon Web Services,
2024). Advanced I/O technologies such as NVMe bring some
of the designs from high-performance networking technologies
to I/O, along with increases in speed (Ng et al., 2024). Many
universities have HPC systems that can be accessed by faculty and
students for research tasks. In the United States, the Department
of Energy and National Science Foundation make supercomputers
available to researchers (High Performance Computing, 2024;
National Science Foundation, 2022). Cloud providers such as
AmazonWeb Services (AWS), Microsoft Azure, and Google Cloud
offer cloud-based HPC systems as well (AWS High Performance
Computing, 2024; Microsoft Azure, 2024; Google Cloud, 2024),
making HPC technology much more accessible than it once was.
Recent advancements in low-power hardware capabilities have
enabled the execution of certain machine learning tasks at the
edge (Hui et al., 2020).

One core component of digital twins is the model, which is
designed to map to the real-world physical system with which the
digital twin is associated. Modeling non-trivial real-world systems
accurately and precisely often requires intensive manual effort. In
order to make effective use of DTs without spending large amounts
of time in the modeling stage, automatic updates must be made to
the digital twin as information about the physical system comes in.
It is also probable that the physical system itself will experience
changes over time that are not included in the original digital
twin model. By updating the digital twin from the observations
of the physical twin via assimilation, the digital twin can adapt
to unforeseen events that would otherwise render the digital twin
useless for decision making (Kapteyn et al., 2021). Recent trends in
machine learning and optimization are applicable to such tasks.

Overall, we see HPC and machine learning technologies as
critical components of current and future digital twins. Next, we

will explore case studies that show the diversity of data-driven
digital twins that are being created for scientific applications.

4.1.1 AI weather models
Aurora (Bodnar et al., 2024) is a foundation model for

atmospheric simulation and prediction, pioneering a large-scale
model trained on an unprecedented volume of diverse weather
and climate data that can handle both regular forecasting and
extreme weather at an impressive resolution. It uses an architecture
specifically suited for large heterogeneous datasets: a multi-scale
3D Swin Transformer U-Net backbone with a 3D Perceiver
encoder and decoder. The authors report that it is efficient
and versatile; Aurora can quickly predict various atmospheric
phenomena, including air pollution, on par with or better than
existing state-of-the-art technology. At the time of writing, this
paper was only recently submitted and thus has not yet been
published in any journal; however, as Aurora was spearheaded by
researchers at Microsoft’s AI4Science, the company is currently
promoting the model. Aurora’s position as a foundation model
and the paper’s methods lend themselves to further research in
modeling other Earth subsystems; ultimately, this paper introduced
a new paradigm in atmospheric modeling with numerous practical
implications, from climate studies to weather forecasting. Aurora
is a foundation model for atmospheric simulation and prediction,
pioneering a large-scale model trained on an unprecedented
volume of diverse weather and climate data that can handle
both regular forecasting and extreme weather at an impressive
resolution. Aurora makes use of ECMWF reanalysis products in
its training, which are continuously updated. It uses an architecture
specifically suited for large heterogeneous datasets: a multi-scale 3D
Swin Transformer U-Net backbone with a 3D Perceiver encoder
and decoder. The authors report that it is efficient and versatile;
Aurora can quickly predict various atmospheric phenomena,
including air pollution, on par with or better than existing state-
of-the-art technology. Aurora’s position as a foundation model
and the paper’s methods lend themselves to further research in
modeling other Earth subsystems; ultimately, this paper introduced
a new paradigm in atmospheric modeling with numerous practical
implications, from climate studies to weather forecasting. However,
Aurora is not the only AI-based model for predicting weather and
climate. This topic has generated much interest and research in
recent years, which is visible in the literature (Lang et al., 2024;
Nipen et al., 2024; Nguyen et al., 2023; Bi et al., 2023; Bodnar et al.,
2024; Chen K. et al., 2023; Keisler, 2022; Pathak et al., 2022; Chen
L. et al., 2023).

4.1.2 Data-driven calibration and evolution of a
UAV structural twin

One instance of a machine learning-based digital twin in the
context of robotics is presented in the 2021 paper “A Probabilistic
Graphical Model Foundation for Enabling Predictive Digital Twins
at Scale” where the authors utilized a Bayesian statistical approach
to model an unmanned aerial vehicle (UAV) (Kapteyn et al., 2021).
The primary goal was to create a predictive structural simulation of
the UAV’s airframe.
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The authors broke the DT update process into two distinct
phases. The first was the initial calibration phase where geometry,
material properties, mass, and damping aspects were tested, post-
processed, and used to calibrate the digital twin. The second,
matching the standard DT approach, was the dynamic phase,
where the digital twin performed automatic updates based on
sensed data.

An important takeaway from this work is that the authors
specifically designed the state in such a way that real-world variance
can be represented. This is important when formulating the DT.
It is also clear that as a result of the limited computing power
available in “edge” deployments, such as use with UAVs, one must
very carefully design their DT approach. Deep neural networks
and detailed simulations can be extremely computationally
expensive (Touvron et al., 2023a) and are therefore often
infeasible to deploy at the edge. Instead, one can use effective
low-cost methods, such as simpler Bayesian data assimilation
or LoRA.

4.1.3 Metamodeling and digital twins in
simulation-assisted machine learning

As digital twins want to mirror their physical counterparts
with as much accuracy as possible, and knowing the existing
success of machine learning as an alternative to typically expensive
computational models, there have been attempts to combine
the surrogate models and machine learning to enable greater
accessibility.

Pylianidis et al. (2022) took a metamodeling approach to
construct a machine learning-based digital twin for predicting
pasture nitrogen response rates (NRR). Driven by the need for
accessibility and operability in real-world agricultural settings,
their research addressed the challenge of limited data availability
and the computational expense of traditional process-based
models (PBMs). To overcome data scarcity, they used the
Agricultural Production Systems Simulator (APSIM), a well-
established process-based model, to generate a large synthetic
dataset encompassing various environmental conditions and
management practices. This dataset served as a virtual laboratory
for exploring pasture nitrogen dynamics.

This study showcases the potential of simulation-assisted ML
for operational digital twins in data-constrained domains like
agriculture; we see that their machine learning-based digital twin
can provide accurate NRR predictions in both sampled and
unsampled locations. Overall, the major shortcoming lies in how
the study did not explicitly implement a complete feedback loop
with dynamic data assimilation.

4.1.4 Cloud-based digital twins for structural
health monitoring

Dang et al. (2022) outlines a feedback loop that uses the digital
twin’s analysis to provide real-time alerts and guide maintenance
decisions for the physical structure. When the digital twin detects
anomalies or potential damage based on the assimilated data, it
triggers alerts to notify engineers, who can then take action to
improve the physical system.

4.2 Digital twins for HPC

HPC systems also serve as interesting physical targets for digital
twins. Recent work has demonstrated that digital twins can be
highly effective for modeling supercomputers. ExaDigiT (Brewer
et al., 2024) is an example of such a digital twin that is capable
of simulating power, cooling, and other important parameters of
the current second most powerful supercomputer in the world:
Frontier.4 These components are brought together through an
advanced visualization layer that leverages augmented reality
to provide intuitive system interaction. This architecture allows
operators and engineers to study complex behaviors that may occur
in the physical system and explore “what-if ” scenarios.

The ExaMon framework represents another example of an
HPC digital twin, providing an integrated approach to monitoring
and maintaining supercomputing systems (Borghesi et al., 2023).
ExaMon combines lightweight data collection infrastructure with
specialized databases suited for heterogeneous data sources with the
purpose of enabling real-time analysis and prediction. The authors
of the framework report that it has been successfully deployed
across several production supercomputers, including CINECA’s
Marconi system, demonstrating its ability to handle the scale and
complexity of modern HPC environments.

These examples demonstrate how digital twins can transform
HPC system management from reactive to predictive, enabling
more efficient resource utilization and reduced downtime. They
also validate our DT definition’s emphasis on learning and
adaptation capabilities, as these systems continuously improve
their predictions through the assimilation of new data from their
physical counterparts.

4.3 Digital twins for machine learning

Another way of approaching the intersection of AI and digital
twins is by using digital twins to generate data for machine learning
models. Many machine learning methods may derive benefit from
inexpensive or parallelizable virtual training environments, as
access to training data in the appropriate quantities is frequently
a challenge (Sun et al., 2017). Typically, synthetic data generation is
considered in the context of machine learning from the other way
around; that is, machine learning models are the ones doing the
data generation and annotating when real-world data are scarce or
unavailable. Digital twins, as representations of a physical system,
can serve a similar purpose and further augment datasets for
training machine learning models.

Digital twins can be used as training environments for
reinforcement learning algorithms. One case of this approach being
applied is in Matulis and Harvey (2021). The authors first designed
a robotic arm using CAD software and then used 3D printers
to create a physical manifestation of the design. Stepper motors
were inserted into the printed components to give the arm motion
capabilities. However, as with many examples of digital twin in
literature, this study does not attempt to address how the particular

4 See the full Top500 list: https://top500.org/lists/top500/2024/11/.
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application of DT explored could scale beyond the laboratory,
especially with regards to compute.

The robotic arm work is another example of how digital twins
can be powerful tools when used to train reinforcement learning
algorithms. The relatively low cost of training—a result of the
lower risk to expensive physical systems—greater parallelization,
and the lower required human intervention, suggest that digital
twins should be strongly considered for training tasks that will
eventually be applied in physical environments. Additionally, users
of the digital twin may realize many of the other benefits described
in previous sections in addition to simply providing an updated
training environment once the digital twin is implemented and the
model trained.

5 Conclusion

Digital twins (DTs) are a class of virtual replicas of real-world
objects that are modeled, updated, and interpreted to perform
decision-making tasks with continuously evolving datasets. This
paper has explored the interface between DT technology, scientific
computing, and machine learning (ML) by presenting a consistent
definition for the digital twin, performing an analysis of the
literature to build a taxonomy of digital twins and AI/ML, and
discussed case studies from various scientific domains. Looking
ahead, we highlighted several promising research directions and
outlined the ways in which digital twins, AI/ML, and HPC
techniques are synergistic. As the field continues to evolve, these
research directions will be crucial for realizing the full potential of
digital twins across scientific and industrial applications.
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