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High Performance Computing (HPC) systems are among the most energy-

intensive scientific facilities, with electric power consumption reaching and

often exceeding 20 Megawatts per installation. Unlike other major scientific

infrastructures such as particle accelerators or high-intensity light sources,

which are few around the world, the number and size of supercomputers

are continuously increasing. Even if every new system generation is more

energy e�cient than the previous one, the overall growth in size of the HPC

infrastructure, driven by a rising demand for computational capacity across

all scientific disciplines, and especially by Artificial Intelligence (AI) workloads,

rapidly drives up the energy demand. This challenge is particularly significant

for HPC centers in Germany, where high electricity costs, stringent national

energy policies, and a strong commitment to environmental sustainability

are key factors. This paper describes various state-of-the-art strategies and

innovations employed to enhance the energy e�ciency of HPC systems within

the national context. Case studies from leading German HPC facilities illustrate

the implementation of novel heterogeneous hardware architectures, advanced

monitoring infrastructures, high-temperature cooling solutions, energy-aware

scheduling, and dynamic power management, among other optimisations.

By reviewing best practices and ongoing research, this paper aims to share

valuable insight with the global HPC community, motivating the pursuit of more

sustainable and energy-e�cient HPC architectures and operations.

KEYWORDS

high-performance computing (HPC), energy e�ciency, data center, cooling,

monitoring, hardware, heterogeneous compute architectures

1 Introduction

High Performance Computing (HPC) systems are indispensable instruments in

scientific research, but at the same time energy-hungry infrastructures. Although the

computational capacity per Watt of computers and processing units is improving over

time (Strohmaier et al., 2024a; Koomey et al., 2011), the demand for more compute
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capacity—recently strongly driven by large-scale computations

for Artificial Intelligence (AI)—is outpacing any emerging

efficiencies, leading to the deployment of even more computing

infrastructures and services (e.g., EuroHPC Joint Undertaking,

2024a). Existing and upcoming HPC facilities must provide

significant computational power and, consequently, require large

amounts of energy for Information Technology (IT) and cooling,

making their sustainability a major concern.

The two most significant issues pertaining to these energy

demands are the economic viability of maintaining the necessary

infrastructure in the light of rising electricity prices and

the considerable environmental impact of generating this

electricity, which raise concerns in society. Germany is the

second country worldwide in the amount of deployed data

centers (Shankar, 2024), and at the same time is characterized

by higher-than-average electricity costs in comparison to other

countries, which is attributed in part to its particular energy

mix and reliance on imported resources. To address societal

concerns, policies have been implemented with the objective

of addressing environmental impact. The German Energy

Efficiency Act (German Federal Government, 2024a) mandates

that businesses, in particular commercial data centers, and research

institutions, including supercomputing centers, observe stricter

energy consumption limits. Furthermore, the European Supply

Chain Directive (European Parliament, 2024) has the objective of

accounting for the energy consumed and CO2 generated during

the entire life cycle of a given product, from the moment of

fabrication until its end of life. For hosting sites to estimate the

embedded carbon footprint in HPC systems, they must rely on

manufacturers to explicitly state the embedded carbon in their

products. From all the above it becomes imperative that energy

efficiency measures have to be integrated into the design and

operation of HPC sites in order to align with national and EU-wide

sustainability goals and legislation. Numerous national and

European R&D projects have developed specific components and

strategies for energy efficiency, e.g., improved cooling and energy

reuse, monitoring infrastructures, or hardware architectures. These

new developments are first demonstrated on a small scale (e.g., on

prototypes or test implementations) before being implemented in

the production environment (Eicker, 2015; Kreuzer et al., 2021;

The eeHPC Consortium, 2024).

This paper examines the latest developments and

trends in energy efficiency at major German HPC centers,

including Deutsches Klimarechenzentrum GmbH (DKRZ),

Friedrich-Alexander-Universität Erlangen-Müurnberg (FAU),

High-Performance Computing Center Stuttgart (HLRS),

Jülich Supercomputing Center (JSC), Karlsruhe Institute of

Technology (KIT), Leibniz Supercomputing Center (LRZ), Max

Planck Computing and Data Facility (MPCDF) and Technische

Universität Dresden (TUD). These institutions host and operate

supercomputing facilities at European, German, and regional level.

In November 2024 all together they host 20 machines ranging

from ranking 18 (JETI at JSC) to 491 (HoreKa-Blue at KIT) in the

Top 500 list, and 4 out of the 10 most energy-efficient systems

in the Green 500 list (Strohmaier et al., 2024b). All these HPC

centers balance the need for advanced computing infrastructure

with sustainability efforts by exploring cutting-edge solutions

such as energy-efficient hardware, advanced system monitoring

and management, and optimized cooling systems. By presenting

the experience applied by these institutions in production

environments, we aim at inspiring others on applying similar

techniques to reduce the energy footprint of HPC infrastructures.

The paper reports the experience from a representative set

of German HPC sites, but our exchanges with international

collaborators show that our observations are representative for

the international landscape. The conclusions can therefore be

generalized for other geographies. The contributions of this paper

are:

• Report on the energy consumption and cost trends in the

deployment and operation of HPC systems in Germany,

the country with the second largest amount of data

centers (Shankar, 2024).

• Describe energy efficiency trends at the infrastructure, system,

monitoring, and software level.

• Give an overview of energy efficiency approaches at a number

of major German HPC centers, covering European, national,

and regional facilities. All participating hosting sites are

publicly funded governmental institutions (research centers

or universities) and provide compute time free of charge to

academic users based on peer reviews. Systems are typically

overbooked, not oversized, and the target in operations is to

achieve maximum resource utilization at minimum energy

consumption.

• Report on current techniques applied already in production,

approaches explored in research activities, and observed

trends.

2 Motivation and cost trends

Over the past decade, computing performance of HPC systems

has continued to grow exponentially, driven by advances in

microarchitecture and semiconductor technology (Strohmaier

et al., 2024b). Manufacturing processes have been scaled

down to single-digit nanometer units (Taiwan Semiconductor

Manufacturing Company, 2024). Finer structures allow more

transistors per chip, increasing computing power per physical

area and per Watt, since signals have to travel shorter distances

across the chip. However, with the breakdown of Dennard scaling

and Moore’s Law also coming to an end, the power draw of HPC

systems is steadily increasing. While the power efficiency per

Floating Point Operation (FLOP) has grown consistently, the

demand for compute capacity has outpaced those improvements.

For example, in the period from 2008 until 2024 the aggregate

performance of all Top500 systems has increased 1,000-fold,

while the energy efficiency has grown by only a factor 146

(see Figure 1) (Strohmaier et al., 2024b). Apparently, the HPC

community is willing to keep up with the ensuing cost of energy

and the challenges in terms of infrastructure, sustainability,

economic viability, and technical feasibility.

The increasing performance has led to an increase in power

density, making traditional air cooling methods inadequate for

heat dissipation. Direct liquid cooling, particularly with hot water,

is advantageous in terms of energy reuse and infrastructure

efficiency (see Section 3.3). However, as components such as
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FIGURE 1

Supercomputer performance and energy e�ciency over time:

Performance (red, Rmax) measured with the HPL benchmark per

Top500. Energy e�ciency (green) calculated as the ratio of HPL

performance and reported power consumption. Both are shown

relative to the respective values in 2008. Data source (Strohmaier

et al., 2024b). In 16 years, performance has grown by a factor of

1,000, while energy e�ciency has grown by a factor of 146.

Graphics Processing Units (GPUs) generate more and more heat,

the demand for chilled water cooling systems has increased,

creating a mismatch between cooling technology trends and energy

efficiency goals.

Figure 2 shows the development of energy efficiency in terms

of double precision (FP64) GFLOP/s/Watt over the last decade

for Central Processing Units (CPUs) and GPUs. Intel was able to

deliver a steady increase in energy efficiency up to the Skylake

micro-architecture in 2017. Still this development stagnated in

the last five years, because Intel struggled to further improve and

shrink their in-house manufacturing process (Anton, 2018; Paul,

2018; Chaim, 2021). AMD on the other hand, due to technological

limitations, was forced to go for a multi-die setup. This allowed

them to employ more energy-efficient manufacturing processes

more quickly, while at the same time delivering higher core

counts, which Intel was not able to deliver with their monolithic

chip designs. 2025 will show if multi-core chips can provide

significant energy improvements again. While Intel is catching up

with a smaller core, a multi-chip setup, and a competitive in-

house manufacturing process, AMD for the first time employs

full-width AVX512 execution units. It has to be seen if they can

be implemented in an energy-efficient manner without sacrificing

frequency. Taking into account the efficiency improvements that

multi-core CPUs can deliver, Figure 2 also shows that they are not

currently competitive with more specialized GPU accelerators in

terms of theHPL energy efficiency, which is driven by peak floating-

point throughput. Of course, this does not necessarily reflect energy

efficiency for real-world application workloads. It is interesting that

while GPUs deliver a superior energy efficiency compared to multi-

core CPUs, the efficiency did not improve significantly over the

last 10 years. Both GPU vendors provide even higher efficiencies

when using the more specialized tensor core units. This leads to the

conclusion that the largest increases in energy efficiency are enabled

by specialization.

The fact that increases in computational performance

necessarily come with a higher power envelope has several

implications. Although power capping or power limiting can

be used successfully (cf. Section 4.3, and Zhao et al., 2023

and references therein), there is a delicate balance between

power consumption and throughput. Electricity prices in

Germany vary widely and are much higher for households

(≈ €0.40 per kWh) than for industry (≈ e0.20 per kWh) (der

Energie and Wasserwirtschafte, 2024). Given the large amount of

electricity consumed by HPC infrastructures, the prices centers

pay fall into the latter category. Figure 3 shows how electricity

costs for industrial consumers have evolved over the last few years,

based on statistics published by the German Association of Energy

and Water Industries (der Energie and Wasserwirtschafte, 2024).

The costs are broken down into the categories of procurement,

network charges, operation (in blue), governmental levies to finance

the development of the electricity network and new energy

sources (in green)1 and the electricity tax (in orange). Until 2022,

Germany’s energy mix relied heavily on gas supplies from Russia,

which stopped after the invasion of Ukraine and the subsequent

international sanctions on Russian goods. This led to a sharp

increase in electricity procurement costs in 2022, which the

German government partially offset by reducing taxes and levies.

Prices fell again in 2023, but even leaving aside the 2022 peak, the

general trend shows an annual increase in electricity costs of≈ 3%.

These cost trends are based on averages, and it is important to

note that the electricity prices paid by HPC sites vary considerably

(from e0.15 kWh to e0.29 kWh for the sites in this study), as the

institutions hosting the HPC centers have very different ways of

purchasing electricity.

The contribution of operational costs (including electricity and

cooling costs) to the Total Cost of Ownership (TCO) of HPC

systems hosted by our institutions ranges from 12% to 50%, where

50% means that running the system over 5 years costs the same

amount of money as the initial purchase of the hardware (which

typically includes a 5-year maintenance contract). Since the hosting

site has little influence on the initial acquisition cost (only its

negotiating skills), improving operational energy efficiency is the

only strategy an HPC site can use to significantly reduce the TCO.

Legislation is a further driver enforcing energy efficiency

measures in Germany. The Energy Efficiency Act (German

Federal Government, 2024b), which has been derived from the

European Energy Efficiency Directive (European Commission,

2024), mandates that: (i) data centers that are currently in operation

must reach a Power Usage Efficiency (PUE) of less than or equal

to 1.3 on a permanent basis by July 1st, 2030; and (ii) data centers

that go into operation starting July 1, 2026 must be constructed and

operated in such a way that at least 10% of the waste heat is reused

(this share grows to 20% for data centers going into operation

on July 1, 2028). The law also regulates air cooling temperatures,

mandates the establishment of an energy management system, and

contains further reporting duties.

The HPC centers involved in this study currently operate

(as of September 2024) production supercomputers with an

average power envelope per site ranging from ∼1.1MW (KIT) to

4.7MW (MPCDF). However, all sites have plans to upgrade their

infrastructures for their next generation systems, e.g., the JUPITER

exascale system will raise the bar to 17MW when added to JSC’s

existing computing infrastructure. It is interesting to note that,

1 We show separately (in light green) the highest levy, the levy for

renewable energies, which was in force until 2021.
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FIGURE 2

Energy e�ciency for FP64 throughput of a selection of CPUs (left) and GPUs (right). Determined with theoretical peak performance and Thermal

Design Power (TDP) of one socket/GPU using the “top-bin” Stock Keeping Unit (SKU) of each generation. For CPUs, the frequency used to determine

peak performance is the lowest frequency measured with a very hot benchmark. For GPUs, the base frequency is taken, assuming continued

computations. For GPUs, results with and without considering tensor cores for dedicated acceleration of matrix multiplication are shown, labeled as

Matrix and Vector, respectively. The graphs compare similar, albeit not identical frequency types (measured vs. computed); cross-graph

comparability is only limited.

FIGURE 3

Average electricity price for new industrial consumers in Germany.

Annual consumption 160,000 to 20 million kWh, medium-voltage

supply. Data source (der Energie and Wasserwirtschafte, 2024).

despite the relatively wide range of system sizes, the breakdown of

power consumption across the various components within the data

center is quite homogeneous. We have collected in Table 1 average

values, aggregating for each site the contributions of all systems

it currently hosts. Most of the energy (78% to 86%) is consumed

by the computer itself, where unfortunately it is not possible to

separate the contribution from the processing units, memory and

network in the measurements.2 The second consumer (7% to 15%)

is the data center infrastructure, which needs electricity to run

uninterruptible power supplies (UPS), pumps, climate machines

(for air-cooled systems3), chillers (for cold-water cooled systems),

dry coolers, etc. The remaining energy (3% to 8%) is consumed

by storage systems. In the following, we look in detail at the

approaches actively applied or planned to save energy at the data

center level (Section 3) and the computer and storage systems

(Section 4).

2 Some research projects provide these details, but reliable statistics for the

large production systems are not yet available.

3 A clear trend over the last 10 years shows that all sites are moving away

from pure air-cooled systems toward direct liquid cooling (see Section 3.3

for details), but some specialized systems still require air cooling.

TABLE 1 Total power supply (in average) to each of the centers, broken

then down on the relative consumption by three main components:

infrastructure, compute, and storage.

Center Average
total
power
supply/
MW

Infrastructure Compute Storage

DKRZ 2.1 13% 80% 7%

FAU 1.2 15% 80% 5%

HLRS 3.6 14% 83% 3%

JSC 3.4 10% 82% 8%

KIT 1.1 10% 82% 8%

LRZ 2.8 7% 86% 7%

MPCDF 4.7 15% 85% –

TUD 1.9 15% 78% 7%

Notice that in the case of MPCDF the power consumption of storage cannot be measured

separately and it is comprised in the compute part.

3 Infrastructure

Data centers, whether for HPC or cloud systems, consume

resources in the form of electricity and water, with a significant

fraction being used for their infrastructure. The growth in

computing power comes with higher computing density and

heavier equipment, which has consequences for the hosting data

center. Cooling strategies are moving away from air-cooling to

direct liquid cooling, utilizing higher operating temperatures to

enable free cooling. Adiabatic cooling expands the range of free

cooling but induces an increased demand for water. The following

subsections describe these and further trends to reduce energy

consumption at the data-center level.

3.1 Electricity supply

To keep HPC operations sustainable, the growth in energy

consumption needs to be compensated by increased usage of
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green energy so as to not increase the carbon footprint of HPC.

Recent legislation in Germany requires data centers to continuously

increase their energy efficiency and newly built data centers will

have to source their energy completely from renewables by 2027,

although several data centers have been doing this voluntarily for

quite some time already.

The fraction of renewables in the German grid already exceeds

50% [Statistisches Bundesamt (Destatis), 2024] and with the

ongoing expansion of wind and solar power generation, this

fraction is only set to increase. While the intermittent generation

of renewable electricity causes the grid stability to degrade [Federal

Ministry for Economic Affairs and Climate Action (BMBK), 2025],

HPC centers could act as dynamic loads that increase their power

consumption at times of high availability of green energy and

reduce it when wind and solar generation is low. This would not

only stabilize the grid and help with the green transition, but

also provide economic incentive for HPC operators as electricity

prices can even turn negative when renewable production exceeds

demand, meaning that consumers able and willing to absorb

production peaks pay lower electricity costs or even get paid by the

electricity company.

The technologies to implement such grid-demand-response

schemes are available: power management capabilities as described

in Section 4.3 can be used to modulate the power consumption

of HPC systems dynamically and historical monitoring data of

previous job executions could be leveraged to identify jobs with

high power draw and schedule them at times of abundant energy

(Section 6).

3.2 Data center

In past years, the state-of-the art HPC data center in Germany

was usually planned, designed and built from scratch relying on

highly customized buildings with energy and cooling infrastructure

tailored to 2–3 generations of HPC systems. After about 10 years,

infrastructure upgrades had to be put in place in order to keep

up with the rise in energy consumption, cooling demands, and

weight load of the HPC systems to be installed. After several

decades and upgrades, delivering more energy and cooling into

these customized buildings becomes more and more difficult as

can currently be seen at the MPCDF, HLRS and JSC, where

new data centers are now under construction or being planned

for. While JSC has decided to set up a Modular Data Center

(MDC), MPCDF, and HLRS are again setting up highly customized

buildings. The MDC approach, or generally spoken container-

based data centers as they are nowadays also used by commercial

companies, allow for an exact match of the system requirements

and data center provisioning without installation of over-capacities

in infrastructure. In addition they significantly shorten planning

and construction times, especially when it comes to standard IT. On

the other hand, traditional building-based data centers, as planned

at MPCDF and HLRS, provide a longer-term solution that can

be tailored to wider campus infrastructure plans to maximize the

waste heat utilization. In all cases a new data center construction

does not imply the old facility will be dismantled, but rather its life

will be extended as the older buildings will remain in operation

hosting smaller scale HPC systems, cloud and storage systems,

or regular IT services. In those cases infrastructure demands did

not increase as significant as for large-scale GPU-accelerated HPC

systems.

As of 2024, the trend to renew HPC data center infrastructure

is not only forced due to system demands but also by the

requirements of legislation (German Federal Government, 2024b).

Legislative demands are fulfilled by both MDC and customized

buildings, but they will become stricter in the future. After July

1st 2026, Data Centers (DCs) shall be constructed and operated

in such a way that their proportion of reused energy reaches at

least 10%, while those starting operation one or two years later

must already reach 15% to 20% energy reuse, respectively. Taking

these requirements into account, a foreseeable trend in Germany

will probably be a change in data center operation away from a

singular focus on the efficiency of the HPC system or the DC,

toward integrated efficiency optimisation of the HPC system, DC

and surrounding waste heat-absorbing district infrastructure.

3.3 Cooling

Compared to traditional air cooling, the adoption of DLC adds

cost and complexity at the interface between IT systems and data

centers. However, due to the size and homogeneity of their compute

clusters, HPC centers are ideally positioned to employ DLC.

Operating DLC loops at higher temperatures (warmwater, typically

30◦C to 40◦C inlet temperature) allows in Germany for year-round

free cooling, eliminating the need for chillers and thereby reducing

both capital and operating expenditure. In addition, the ever-

growing Thermal Design Power (TDP) of today’s CPUs and GPUs

mandates DLC for HPC centers aiming for highest performance.

The experiences with operating DLC systems have been largely

positive. In particular, fully integrated cooling solutions (w/o fans)

have demonstrated excellent performance, achieving high delta T

values (>10K) and transferring more than 95% of the heat

generated by HPC systems into the water.

Some vendors upgrade air-cooled compute nodes with

purpose-designed coldplates for liquid cooling. This approach

greatly increases the range of configurations to choose from, but,

depending on the temperature, typically only captures about 70% of

the heat in water as some parts of the mainboards as well as power

supply units and networking equipment remain air-cooled.

Table 2 summarizes information on water cooling adoption in

German HPC centers, some of which have more than 10 years of

experience operating DLC clusters. Some aspects are common for

most centers: All large storage systems and special compute node

configurations that require more flexibility (fat nodes, test systems,

and similar) remain air-cooled but are supported, e.g., by using

water-cooled doors. For air-cooling installations, there is little room

for further innovation that could lead to improve, e.g., efficiency

and operational aspects (Hackenberg and Patterson, 2016). Other

thermal management technologies, such as immersion or two-

phase cooling (Curtis et al., 2023), are currently not utilized

in HPC operations at our German sites. For some centers the

adaptation to warmer cooling temperatures has been delayed

by site-specific infrastructure legacy constraints such as local
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TABLE 2 Direct liquid cooling for various German HPC centers.

Site DLC since # Clusters Power per
cluster/kW

Inlet/◦C Outlet/◦C B C Q H Remarks

DKRZ 2015 1 2,500 40 48 ✓ ✗ ✓ ✓ Building loop and cooling

tower loop are combined (all

water/glycol)

FAU 2021 3 750, 250, 1,000 30 >40 ✗ ✗ ✗ ✓ DLC only for CPU-only

cluster (#1) and hybrid

CPU/GPU cluster (#3)

HLRS 2019 1 3,100 25 35 ✗ ✗ ✗ ✓

JSC 2012 3 1,580, 2,046, 894 36 >40 ✗ ✗ ✓ ✓

KIT 2016 1 1,084 42 47 ✗ ✗ ✗ ✓ Only Tier-2 system HoreKa

LRZ 2012 5 3,000, 200–600 46 52◦C ✗ ✗ ✗ ✓ SuperMUC-NG: 46◦C inlet,

newer systems: 43◦C

MPCDF 2008∗ 4 300–1,000 16/40 >20/47 ✗ ✗ ✗ ✓ 3MW of spring water cooling

(14◦C/20◦C max)

TUD 2013 4–5 >500 35 48 ✗ ✗ ✓ ✓

B: Biocide in direct cooling (building) water loop.

C: Corrosion inhibitor in direct cooling (building) water loop.

Q: Experienced water quality challenges in direct cooling (building) water loop.

H: Heat exchanger/CDU between direct cooling (building) water loop and rack/system.
∗Initial experiences since 1991 with various Cray systems.

cooling networks. However, all of those centers are in the process

of transitioning to year-round (warm water DLC) free cooling

without chillers for their compute clusters. Typical operating

regimes comprise multiple DLC clusters at 2MW total power,

or more.

The design of the cooling loops needs to be carefully considered

for DLC data centers, e.g., with respect to the number and

placement of heat exchangers, while considering vendor interfaces.

Most centers in this study operate three loops, separated by heat

exchangers: water/glycol for the (closed loop) cooling towers, water

for the main building loop, and typically some vendor-specific

coolant for the rack-/system-level internal loop. Eliminating heat

exchangers can improve efficiency. When building-loop water

is circulated directly through compute nodes, maintaining high

water quality (e.g., filtration and particle size) becomes critical,

balancing efficiency with operational challenges (see below).

Similarly, circulating building-loop water through cooling towers

can improve efficiency, but preventing damage to the cooling

loops is challenging when (unscheduled) system downtimes occur

during freezing outside temperatures; alternatively, one large glycol

loop can be operated at the expense of increased pump energy

while saving heat exchanger installation and losses (cf. DKRZ).

Alternative cooling strategies, such as using spring or lake water

(cf. MPCDF), may offer highly efficient cooling, but only for

certain locations.

Concerning operational challenges for DLC installations,

maintaining stable water quality is key. The warm water of

DLC loops stimulates bacteria and/or micro-algae proliferation.

Vendors address this issue with proprietary formula in the

rack/system cooling loops. For the building water loop, it may

be managed through chemical treatment (biocide), or through

maintaining extremely clean (e.g., deionized) water, with most sites

in this study choosing the latter. However, any water additive

(glycol contamination, corrosion inhibitor, or even biocide) may

eventually become food for some form of biology, creating an

environment in which the additive balance must be continuously

tuned. Therefore, regular (external) water quality analysis or

continuous monitoring (pH, conductivity, total organic carbon) is

required in any case.

The use of polyethylene/polypropylene piping can offer

financial and flexibility advantages, but may also lead to

uncontrollable oxygen diffusion into the water and hence increase

the risk of corrosion. Particular caremust be takenwithmetal mixes

in the cooling loops and the associated chemical interactions that

may strongly accelerate corrosion.

Another potential issue are water leaks, which do not happen

frequently but have been seen in isolated cases, in particular

located at the quick-connects inside the rack or at the connection

between the water loops of rack and building. Leakage sensors with

automatic monitoring and alarm systems can mitigate this risk.

Operational challenges for large centers may also include

multi-MW load swings on timescales of seconds. However, this

issue is much more prevalent on the electrical side (sub-second

time scales) and can be managed particularly well for chiller-

free (direct water) free cooling loops with a reasonably sized

buffer tank (water storage), enabling simple control loops and very

steady operation.

Looking ahead, cooling temperatures may decrease,

as suggested by guidelines from the American Society of

Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE) (American Society of Heating Refrigerating and

Air-Conditioning Engineers, 2021). This trend is understandable,

because the density of compute power currently exceeding 150 kW

per rack, and in the future 200 kW per rack and more, can no

longer be sustained through improved processor manufacturing

processes or higher acceptable device temperatures; lower cooling

temperatures allow for higher heat dissipation. However, it may

necessitate the reintroduction of chillers, which would be a
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TABLE 3 Heat reuse for various German HPC centers.

Site Currently in operation Planned for future

Since Avg./max. ERF HP Consumer Year Avg. ERF HP Consumer

DKRZ 2019 340kW/760kW 0.20 ✗ Neighboring labs Possibly extent current installation with next HPC system in 2027

FAU - - - - - Considerable reuse starting 2029

HLRS 2011 2kW/4.2kW 0.009 ✓ Office heating 2028 5.5MW 0.5 ✓ Campus district heating

JSC 2024 0/1.800kW - ✗ Neighboring buildings >2025 3.6MW 0.24 ✓ Campus building

KIT 2016 30kW/200kW 0.04 ✗ Office heating Future plans (2030+) for >2MW heat reuse, potentially campus district heating

LRZ 2014 240kW/600kW 0.06 ✗ Office heating Potentially extend to neighboring campus

MPCDF - - - - - Future plans (2,030+) for up to 70% heat reuse on campus (offices and labs) and

potentially city district network

TUD 2016 205kW/360kW 0.12 ✗ Local heating network 2025 2MW 0.77 ✓ City district network

Avg.: Average heat load over 12 months of a reference year.

ERF: Energy Reuse Factor (reused heat/total heat).

HP: Heat Pump.

significant setback in terms of both efficiency and environmental

impact.

3.4 Heat reuse

Waste heat reuse is among the most effective means to improve

sustainability of data center operations. Due to their increased

cooling temperatures, DLC installations are particularly well-suited

for efficient heat reuse.

Any such project strongly depends on the local environment

of the data center, because the waste heat needs to be consumed

locally. Our survey in Table 3 shows energy reuse factors ranging

from 0% to 20% for these DLC-enabled German HPC data centers.

The current potential is not fully utilized, even though highly

ambitious plans exist at several sites.

In particular, year-round high levels of heat reuse are

difficult to achieve, because heat generation of HPC centers often

exceeds the heat demand of surrounding buildings even during

winter. Usually, the most promising large scale heat sink are

city-wide heat networks. In Germany, these usually operate at

temperatures close to 100◦C, requiring heat pumps to inject low-

temperature data center waste heat. Operating heat networks at

temperatures that would allow reusing HPC waste heat without

heat pumps would be technically viable and overall more energy

efficient. However, retrofitting all consumers (i.e., residential

heating) is impractical within the typical life span of HPC

data centers.

Political regulations have been put in place to mandate 20%

heat reuse for data centers that go into operation in 2028 and

later, but this would strongly influence the range of viable building

sites and potentially harm data center business in Germany.

The practical implications of this legislation are therefore still

fiercely debated.

So far, no noteworthy projects that feed HPC data center heat

into industry processes with year-round demand have emerged.

Table 3 shows that, for now, the most promising approach is to use

large heat pumps to increase the temperature to the levels required

by district heating networks of cities or very large campuses (usually

around 70◦C to 90◦C). At TUD, such a system will be fully

operational in Q1 2025.

Ideally, heat reuse becomes the primary heat rejection

mechanism, and cooling towers of the DLC loop will be

relegated to a backup role. This may alter the cooling loop

design in the future: the focus shifts from cooling-first to

heat-reuse first, with a greater emphasis on strategically

placing heat exchangers to optimize for efficient energy

recovery, while the efficiency of the backup cooling becomes

largely irrelevant.

Other ambitious projects exist, e.g., in the planning for the

new HLRS data center, water-cooled CO2 compression chillers

shall reuse waste heat from lower temperature cooling circuits,

which are also necessary for air cooling and climate control. An

innovative concept to use waste heat to drive adsorption chillers for

cold water production has been evaluated by LRZ with convincing

results (Wilde et al., 2017), but recent trends to lower water

temperatures in DLC rendered this technology inefficient for data

center use.

4 System hardware

The physical limits to ever-shrinking structure sizes and

the associated manufacturing challenges are slowing Moore’s

Law (Huang, 2015). The computing industry, and the HPC

community in particular, are now trying to increase performance

through diversification and specialization (Milojicic et al., 2021;

Shalf, 2020).

4.1 Processor heterogeneity

Processing units are the most power-hungry part of an HPC

system. Since the introduction of cluster computing, HPC systems

have predominantly been built using high-speed networks to

interconnect CPUs from the server market (Becker et al., 1995).

Since around 2010, such clusters have started to integrate GPUs
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and other accelerators to increase performance perWatt (Carabaño

et al., 2013; Enos et al., 2010; Betkaoui et al., 2010; Véstias and

Neto, 2014). Compared to CPUs, accelerators pack a much larger

number of simpler cores or execution units per area, sacrificing

single-thread performance in favor of higher parallel computing

throughput. They further increase energy efficiency by specializing

their architecture to solve specific computations, relying on CPUs

mainly for service tasks. The result are higher FLOP/Watt ratios

for accelerated systems,4 at least when considering arithmetically

intense applications such as the HPL benchmark (Strohmaier et al.,

2024b).

The goal of heterogeneous HPC systems is to offer users

different compute devices, allowing them to select those best suited

for their applications. Depending on how tightly the CPU and

accelerators are tied to each other, different heterogeneous system

architectures are possible. The two extremes can be classified

as monolithic and modular system architectures. A monolithic

system packs many different kinds of processing units inside

each node creating a system-wide homogeneous cluster (all nodes

look the same) made of highly heterogeneous nodes (various

compute devices inside the node). This approach minimizes the

communication latency between host and accelerators (Schulz

et al., 2021), but it can lead to low resource utilization

and higher energy consumption. This can be mitigated by

applying advanced scheduling techniques—to efficiently co-

schedule complementary jobs and keep all accelerators busy—

and dynamic power management—to switch off all unused

devices (Suarez et al., 2021). Modular systems, on the other hand,

are system-wide heterogeneous supercomputers made of a diversity

of homogeneous clusters (modules) interconnected to each other

via a high speed network (Suarez et al., 2019, 2021). Each module

has a specific node architecture, with ideally only one kind of

processing unit.5 This resource disaggregation makes it easier for

the scheduler to reserve only the kind and amount of nodes

needed by each job without blocking resources for others, but relies

on a coarse-granular partition of the application codes to ensure

that performance does not suffer from the larger inter-module

communication latency (Kreuzer et al., 2021). It is worth noting

that resource disaggregation can be beneficial for compute, but also

for memory devices (Michelogiannakis et al., 2022; Aguilera et al.,

2023). Interconnect technology is already supporting the creation

of memory pools accessible via the network with network protocols

such as Compute Express Link (CXL) (Gouk et al., 2023).

In the German landscape, all HPC centers included in this

study host heterogeneous computers combining CPUs and GPUs.

These are either operated as independent systems (e.g., FAU,

4 Abundant literature exists studying the performance and energy

e�ciency of di�erent kernels and applications on CPUs, GPUs, or other

acceleration devices (e.g., McIntosh-Smith et al., 2012; Qasaimeh et al., 2019;

Cebrian et al., 2012; Samsi et al., 2023; Hu et al., 2022; Afzal et al., 2023);

hence we decided not to show additional benchmarking results here.

5 Many-core accelerators (e.g., Intel Xeon Phi) could be used to build

an accelerator-only cluster. For modules based on GPUs, which require a

host CPU, the latter is chosen with few cores and lowest possible power

consumption, purely to steer the GPU, not for application computation.

LRZ) or partitions or modules in integrated machines (e.g.,

DKRZ, JSC, and MPCDF). The CPU systems/partitions consist

of dual-socket nodes with x86 CPUs (Intel or AMD), sometimes

organized in sub-partitions with different memory configurations

(e.g., standard and large memory capacity). Only the planned

JUPITER Booster at JSC will utilize non-x86 Arm CPUs in the

NVIDIA Grace-Hopper configuration. The GPU systems currently

all employ NVIDIA GPUs, mostly NVIDIA Ampere (A100) or

NVIDIA Volta (V100), depending on the year of deployment,

while a number of NVIDIA Ampere A40 are also installed, e.g.,

at FAU. Most recent and planned installations are foreseen with

AMD MI300 GPUs (MPCDF and HLRS). All centers use Slurm

as their batch scheduling system (SchedMD, 2024), supporting

heterogeneous jobs and allowing applications to allocate resources

across different compute partitions.

More hardware heterogeneity exists in small test platforms and

also in cloud infrastructures operated by the German centers, e.g.,

MPCDF, TUD, KIT, and JSC all host a small number of different

devices, e.g., AMD GPUs, Graphcore, Field Programmable Gate

Arrays (FPGAs). In fact, with Moore’s Law reaching its limits, a

variety of accelerators addressing different use cases are emerging,

many of which are targeting the vast AI market (Matsuoka, 2018).

GPUs are still the most widely used accelerators in HPC, but

new Application-Specific Integrated Circuit (ASIC) designs are

attracting attention [e.g., Tensor Processing Units (TPUs) (Google,

2024), Graphcore (Graphcore, 2024), Cerebras (Cerebras, 2024),

Groq (Graphcore, 2024), and SpiNNaker2 (SpiNNcloud Systems,

2024), etc.]. A common trend across all these accelerators is a strong

focus on lower precision arithmetic. This shift is justified by the

fact that the number of operations per second a processor can

perform is inversely proportional to the number of bits required

to encode its floating point numbers. The same applies to energy

efficiency, which improves as arithmetic precision is decreased.

However, lower precision arithmetic comes at the cost of higher

uncertainty and less reproducible results. While this is acceptable

for AI training applications, it remains to be seen how many

traditional HPC codes can make the leap.

Hardware heterogeneity goes down from the node into

the package level. Chiplet-based processor designs combine

different kinds of technologies and manufacturing processes

to achieve higher performance without continuously growing

the die area. For example, AMD EPYC Rome mounts CPU

and Input/Output (I/O) chiplets on top of an interposer to

create an integrated processor with more than 100 cores (Suggs

et al., 2020; AMD Corporation, 2024). Chiplet-based designs

offer more flexibility and customization, as they allow to define

for a processor generation a diversity of Stock Keeping Units

(SKUs) with different numbers of CPU, accelerator, memory,

and I/O components, keeping the rest of the architecture more

or less untouched. Interesting trends also include the increasing

number of companies developing CPUs for the server, HPC and

AI markets using the Arm Instruction Set Architecture (ISA),

[e.g., Fujitsu (Sato et al., 2020; Fujitsu, 2024), Ampere (Ampere

Computing LLC, 2024), Apple (Apple, 2024), SiPEARL (SiPEARL,

2024), andNVIDIA (NVIDIA, 2023)], and the growing community

around the open source RISC-V ISA (RISC-V Foundation,

2024). The European projects EPI (The EPI Consortium, 2024),
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EUPILOT (The EUPILOT Consortium, 2024), and EUPEX (The

EUPEX Consortium, 2024), for example, work on Arm-based

CPUs and a variety of RISC-V-based accelerators, targeting

excellent energy-efficiency. These and upcoming R&D projects

in Europe target future chiplet-based integration combining

some of the developed processing technologies (EuroHPC Joint

Undertaking, 2024b).

However, all the above discussed hardware heterogeneity

comes at the cost of higher programming complexity, since

most accelerators require specific programming models and force

application codes to be ported and refactored (see Section 7).

4.2 Storage

Storage systems consume a smaller portion of total energy

compared to the processing part. The German HPC centers

reporting here offer 100s of Petabytes of storage space using a

variety of file systems, in a mix of Non-Volatile Memory Express

(NVMe), Hard Disk Drive (HDD), and Tape. Nonetheless, these

HPC centers see no more than 8% of total power being consumed

by storage, with some as low as 3% (see Table 1). On the other hand,

storage systems tend to be unique, are tightly coupled with the

HPC systems, have higher availability requirements, and represent

higher risk on outages. Therefore, any power saving techniques

need to be well tested and adhere to further stricter rules.

There are three aspects to consider when analyzing power

consumption and evaluating energy-saving strategies for storage

systems: (i) energy consumption for data at rest or idle, (ii) energy

consumption for data access, and (iii) effect of storage components

on energy consumption in other parts of the system.

Storage systems are sized for both capacity and performance,

and this in turn determines a baseline power consumption. This

baseline, or energy consumed while the data is at rest, represents

the largest share of a storage system’s overall power usage, and it is

hardly possible to reduce it. For example, the strategy of switching

off idle components used in computing clusters is not feasible for a

storage system without large data migrations or risking data loss.

Over time, storage systems have benefited from the advances in

semiconductor technologies, leading to drives with larger capacity

and a smaller set of servers required for the same number of drives.

This has led to newer, bigger, faster storage systems consuming

less energy. For example, the JSC’s storage cluster JUST5 (Jülich

Supercomputing Centre, 2024b) consumed an average of 157kW

power offering 70PB storage capacity and ∼400GB/s bandwidth,

while the newly installed JUST6 consumes about 108kW (0.7×)

offering 150PB (2.1×) and∼600GB/s (1.5×). Future cheaper high

capacity Solid-State Drives (SSDs) replacing HDDs shall reduce

power consumption per storage unit (Tomes and Altiparmak,

2017) but require a larger number of servers to leverage.

Regarding the second aspect (energy consumption for data

accesses), storage systems under load consume only slightly more

energy than at idle. For example, observations on JSC’s, HLRS’s as

well as LRZ’s storage clusters show that power consumption during

operation does not vary by more than 12% from the highest peak.6

6 For JSC’s storage cluster (IBM Storage Scale) the variation observed is

12%, for HLRS’s (Luster) 9.4%, and for LRZ’s (IBM Storage Scale) 8.8%.

This observation is supported by the fact that storage appliances

typically run their corresponding processors in performance mode

and disks are not turned off, whereas idling HPC compute nodes

could be turned off or at least put into powersaving modes. At the

same time, vendors only commit to a certain performance when the

appliances power settings are not touched.

The third aspect is the effect of the storage system on the

energy consumption of other components, for example, idling

compute nodes due to slow I/O. There are strategies that could

help mitigate this effect: accurately sizing the storage system,

adding local storage, improving caching, asynchronous I/O, etc.

However current observations show that the peak performance

of storage systems is rarely reached during production (Maloney

et al., 2024), suggesting that optimizing applications’ I/O behavior

would be a better approach. Alternatively, deploying NVMe based

storage systems, which are less sensitive to I/O patterns, could

automatically reduce idle times on I/O.

4.3 Power management

As HPC systems are growing ever larger and becoming

increasingly power hungry, managing their power consumption is

important for their (energy-efficient) operation. All modern CPUs

and GPUs provide software interfaces to either limit their power

consumption directly or by controlling the operating frequency

and voltage (Dynamic Voltage and Frequency Scaling (DVFS)) and

hence the power consumption indirectly.

While higher clock frequencies in general translate into higher

performance of these devices, they are usually detrimental to

their energy efficiency: depending on the characteristics of a

particular workload, the highest frequency may not always yield

the shortest runtimes, e.g., because CPU cores are waiting for

slow memory transfers. In particular, memory-bound workloads

typically do not benefit from higher frequencies and can

be executed at lower frequencies with negligible impact on

performance and runtime (Bhalachandra et al., 2017). Indeed,

as the energy consumption of an application run is the product

of its runtime and average power consumption, a reduced

frequency can yield energy savings for such workloads. In

contrast, the energy efficiency of a compute-bound workload

may benefit from higher frequencies as a potential increase in

average power consumption may be compensated by shorter

runtimes (Auweter et al., 2014).

Multiple approaches exist to leverage such energy saving

schemes in production HPC environments: the simplest approach

is to let the user select a frequency as they should know the

characteristics of their applications best.7 Batch schedulers

such as Slurm provide control parameters for job scripts that

allow users to set the frequency for their jobs. However, a

single frequency may only be optimal for some phases of an

application run, but inadequate for others (Corbalan et al.,

7 Unfortunately, experience shows that users are not well informed about

the performance and energy properties of their applications, not even about

simple things likememory boundedness. This might change if centers started

to account energy (kWh) instead of CPU or GPU hours, giving users a stronger

incentive to care about resource e�ciency.
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2020). To deal with such situations, more sophisticated runtime

systems such as EAR (Corbalan et al., 2020) (deployed at

LRZ), GEOPM (Eastep et al., 2017) or HPE PowerSched

(Simmendinger et al., 2024) (deployed at HLRS) are required.

They dynamically set optimal frequencies at runtime and

use online monitoring to assess the current characteristics

of the workload and hence can accommodate different

execution phases.

Another important field for power control are over-provisioned

systems, i.e., systems that have a peak power consumption above

the limits of their supporting electrical or cooling infrastructure. In

day-to-day operations, HPC systems typically draw around 65% of

their peak power consumption. So, it can be cost-effective to design

the supporting infrastructure for this lower power limit. However,

this requires the system to stay below this limit at all times. The

simplest approach here would be to enforce the same static power

cap on each individual compute node to ensure that the total power

limit is not exceeded. However, this may leave compute capacity

stranded as the power characteristics of the various workloads

running on the system could be very different. Here, again, a

dynamic approach as implemented by HPE PowerSched and

deployed at HLRS can assign dynamic power limits to individual

jobs to best utilize the supporting infrastructure and maximize

system throughput.

Even though HPC systems strive for a high utilization, idle

power consumption is also of concern as certain situations

(backfilling, maintenance) can lead to entire compute nodes being

fully idle for longer periods of time. Recent CPU-based systems

exhibit a wide range of power consumption in idle (Tröpgen

et al., 2024), which puts a new emphasis on considering idle

power consumption for procurement and its optimisation during

operation (Ilsche et al., 2024).

5 Monitoring system

The energy efficiency of a system as complex as an HPC

infrastructure can only be optimized if it is first properly quantified,

which requires careful monitoring of all the components that

contribute to energy consumption. The size and complexity of HPC

center environments place high demands on the collection and

storage of metrics. Table 4 showcases the range of requirements

of the represented German HPC monitoring systems with up

to 8 million total metrics and up to 10 updates per second for

each time series. At the same time, agents collecting data on

the compute nodes should not interfere with regular production

codes. Batch jobs with complex sets of used resources are

typically not directly supported in generic monitoring stacks.

Because performance is a key focus of HPC systems, continuous

cluster-wide measurement of hardware performance counters

provides critical data to judge the efficiency of batch jobs.

In addition, HPC is a multi-user environment with different

levels of trust, therefore strict security and access control are

required, especially if unprivileged HPC users have access to the

monitoring system.

Figure 4 shows typical components of a monitoring stack in

HPC environments. For data collection, a node collector running

on all compute nodes retrieves metrics from various interfaces.

These values are then either sent to or fetched by a communication

component, typically a message broker, for processing, storage,

and visualization. Metrics from infrastructure components such

as power distribution, cooling infrastructure, file systems, and

network are retrieved out-of-band using different communication

protocols. Because the central notion of work on HPC systems is

a batch job, the monitoring system must integrate with the batch

job scheduler (e.g., PBS, LSF, Slurm, etc.). Typically, a web interface

provides access to the monitoring data. Different user groups (HPC

users, project managers, support staff, and administrators) may

have different data access restrictions and require specific views.

Automatic analysis of jobs and general system attributes can be

used to focus attention on where immediate action is required,

including automatic alerting (e.g., via e-mail).

5.1 Data collection and organization

Monitoring of HPC systems and their supporting infrastructure

require the collection of relevant metrics from a wide variety of

different sources: the compute nodes, the network infrastructure,

the storage system, and ideally also the building infrastructure.

There is no common Application Programming Interface (API)

to collect such data and multiple different interfaces need to

be queried for different sub-components. For example, within a

compute node, there are many sub-components such as CPUs,

GPUs, and network interfaces, each of which has their own and

often vendor-specific interfaces. Some sub-components even have

multiple interfaces, depending on the type of metric to be collected.

Most metrics for compute nodes need to be collected in-band,

i.e., by a daemon running on the compute node itself (the node

collector). This daemon will perturb other processes and great

care must be taken to keep the overhead minimal in order to

not interfere with the user applications running on the node. In

particular the measurement of Hardware Performance Monitoring

(HPM) metrics involves a significant overhead (Röhl et al., 2014).

A common practice is to benchmark a very demanding application,

as e.g., the HPL benchmark, with and without monitoring, to proof

that there is no measurable influence. Even if there was a small

overhead, the benefit of a monitoring system that allows to detect

pathological jobs and gives support personnel and users critical

insight into job runs, usually overcompensates any potential cost.

Also, for some metrics, such as HPM, exclusive access is required,

which may conflict with other tools, e.g., for performance profiling.

There exist multiple generic node collectors that already implement

the data collection, namely collectd (The collectd Project, 2024),

cc-metric-collector (part of ClusterCockpit) (Eitzinger et al.,

2019), and Telegraf (InfluxData, 2024c). The access to HPM

metrics can be provided via the PAPI (Browne et al., 2000)

and LIKWID (Hager et al., 2010) libraries, or using the Linux

perf_event interface.

Other components such as network switches, power

distribution units, or the data center building infrastructure

can be queried out-of-band from a management node via the

network without involving the compute nodes. Rather than

minimal perturbation, such software is optimized for covering a

large number of devices and high message throughput. While there
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TABLE 4 Characteristics of monitoring installations on German HPC data centers.

Center #Metrics Intervals [s] Long-term storage Tech stack

DKRZ 960k (42/node + 9/socket + 2/core) 1–60 Meta: indefinite, Metrics: 6 months Collectd, Prometheus, ClusterCockpit∗ ,

Elasticsearch, Grafana

FAU 660k (8/node + 7/core + 3/socket + 6/GPU) 60 Job data including metric dataL indefinite ClusterCockpit∗ , NATS, Grafana, Munin

HLRS 500k 1–120 8 weeks - indefinite collectd, Telegraf, LDMS, Kafka, BarrelEye,

TimescaleDB, Influx, Opensearch, MS SQL,

Grafana

JSC 3.4M (∼600/node) 60 14 weeks - indefinite Prometheus, Promtail, Loki, Grafana,

LLview∗

KIT 115k (144/node) 30 3 months JobMon, ClusterCockpit∗ , InfluxDB,

MPCDF 100k (40/node) 3–240 Indefinite hpcmd, rsyslog, Splunk, PDF reports

LRZ 8M (56/node + 12/core) 0.1–30 30 days, sub-samples indefinite DCDB, MQTT, Cassandra, Grafana

TUD 330k (24/node + 4/core + 4/GPU) 0.25–30 Indefinite MetricQ, RabbitMQ, PIKA∗ , Grafana

Most elements of the monitoring Tech Stack target system administrators. Those that (also) provide users with monitoring information on their own jobs (typically over a web interface) are

marked with a symbol (*).
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Typical components of a monitoring setup in HPC-Cluster environments.

is a trend, at least for IT components, toward the RedFish standard

to make monitoring data available via a well-defined and well-

documented API out-of-band, other decades-old protocols and

interfaces such as Simple Network Management Protocol (SNMP)

and Intelligent Platform Management Interface (IPMI) or Modbus

and BACnet are still widespread. Many of these out-of-band

interfaces have high latency and are hence not suitable for high

frequency telemetry. Additionally, the timestamp associated with

the measured event may be inaccurate if it is not provided by the

device itself but by the querying daemon. Some of the existing

node collectors also support accessing external components via

out-of-band plugins.

Collection of monitoring data needs careful planning. The

number of metrics available, particularly on compute nodes, can

be overwhelming (Netti et al., 2019). For some metrics it may

not always be clear what exactly is being measured and where.

The collection interval needs to be carefully chosen, based on

the update frequency of underlying sensors, frequency of change,

and expected data volume. Most importantly, a versatile naming

scheme for metrics needs to be chosen that works for all metrics
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regardless of their domain. For example, HPC systems are typically

hierarchically organized (e.g., partitions, racks, nodes, sockets,

CPUs, and cores), while their supporting infrastructure may not

be. Once the naming scheme has been settled and the metrics to be

collected chosen, it is also important to recordmeta information for

all metrics: what exactly are they measuring, unit of measurement,

update frequency, etc. The ClusterCockpit project proposes a

generic data structure specification as JavaScript Object Notation

(JSON) schema, that also includes metric lists (The ClusterCockpit

Project, 2024).

5.2 Data aggregation, processing, and
storage

Processing the collected data can be challenging due to the

number of metrics, varying update rates, the number of monitored

nodes, and the overall event/data rate. Generic solutions for time

series data that cover ingestion, processing, storage, retrieval, and

often specific data collection agents can be used in the HPC

data center monitoring context. InfluxData (2024a), for example,

ingests data from clients via a simple line protocol, particularly in

conjunction with Telegraf. The Prometheus Project (2024), another

popular solution with its origins in cloud computing and clearly

focusing on collecting metrics, uses a centralized server that pulls

data from clients. A hierarchical setup can be used to address

scalability demands in case of a large amount of clients or metrics.

JSC for instance uses Prometheus to collect all metrics for its HPC

systems, storage servers and their surrounding infrastructure. A

pull-based mechanism enables centralized control of update rates

and simplifies client configuration. In contrast, the push method

offers easier network access configuration, particularly for clients

in restricted networks, and incurs lower latency between data

collection and processing.

Additionally, there are several solutions focusing on HPC

data center monitoring, namely ClusterCockpit (Eitzinger et al.,

2019) (FAU), DCDB (Netti et al., 2019) (LRZ), HPCMD (Stanisic

and Reuter, 2020) (MPCDF), and MetricQ (Ilsche et al., 2019)

(TUD). In these systems, the data collecting agents publish

data to messaging systems (NATS, MQTT, rsyslog, RabbitMQ

respectively), which enables flexible consumption for storage,

transformation/aggregation or live analysis. NATS and MQTT

are more lightweight whereas RabbitMQ allows metric-identifier-

based routing of messages, enabling full decoupling of clients

from consumers.

Given the high cardinality and in some cases high individual

data rate, scalable time series storage is particularly challenging.

The specific solutions differ in their implementation8: DCDB

uses Apache Cassandra, a scalable, open-source NoSQL database.

ClusterCockpit implements a custom in-memory database using

fixed-duration ring-buffers for fixed-rate time-series data. Long-

term data in ClusterCockpit is aggregated by job and stored

in a job archive. MetricQ leverages the Hierarchical Timeline

Aggregation (HTA) concept, which aggregates data in different

8 All solutions provide interchangeable storage back-ends, listed are the

defaults.

levels on ingestion. This scheme allows efficient and complete

aggregate queries over large amounts of data points.

5.3 System-wide data analysis

Efficient system operation relies on data—including energy

monitoring data—to provide actionable insights. For day-to-day

operations, the data is often presented in dashboards (Bates et al.,

2016), but the information is also used in form of reports for

strategic decisions, e.g., capacity planning.

A widely-used (for example at DKRZ, JSC, and LRZ) web-

interface for visual data presentation is Grafana (Grafana Labs,

2024), which supports many built-in data sources (e.g., InfluxDB

and Prometheus) but also custom data sources. It is highly

customisable, offering a “bird’s-eye” view of a full system down

to single rack or even node analysis, where multiple data

sources allow the integration of e.g., additional infrastructure

information. TUD uses the MetricQ WebView interface for

explorative interactive monitoring data visualization. This custom

implementation supports low-latency zooming and displays time-

series statistics using a min/max/average band for each metric.

ClusterCockpit and PIKA (Dietrich et al., 2020) provide their

own custom web-interfaces, including user interface elements and

authentication mechanisms that might be difficult to implement in

generic solutions. In ClusterCockpit a special emphasis is put on a

flexible search, filter and sorting user interface with high plot render

speed.

Monitoring data is also used for alerting, i.e., directly notifying

operators about anomalies, e.g., power consumption that is

outside of the expected range. For example, the TICK-stack

around InfluxDB, includes Kapacitor (InfluxData, 2024b), which

pushes alerts to handlers, including email or instant messengers.

Prometheus provides a dedicated Alertmanager service, which

queries Prometheus for metrics and can render different alerts

across multiple different channels. As another example, TUD uses

a custom agent subscribed to the stream of metric monitoring

data that checks if values exceed thresholds or are not updated

in expected intervals. This agent then pushes alerts via the

NSCA protocol to a Centreon installation that covers the

general IT-Infrastructure of the university and handles notification

via E-Mail.

5.4 Job-specific analysis and insight
extraction

Job-specific analysis refers to the detection of job features

or the classification of jobs, which allows for more meaningful

cluster-usage statistics and detecting faulty jobs or jobs with

high optimisation potential. One use case is to detect the actual

application or software stack used in a job. This enables HPC center

administrators to gain insights about how a system is used by a

specific application and in turn for a better tailoring of the system

hardware to the application mix.

For classifying job performance or energy behavior often simple

job statistics (called job footprint in the following) are used, e.g.,
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average or maximum for a set of metrics. This job footprint is often

based on metrics that describe the resource utilization of a job, e.g.,

flop rates, memory bandwidth, load, memory capacity used, and file

and network I/O utilization. There are attempts to formulate simple

rules based on this job footprint and use threshold-based binning

of jobs to classify them. Due to the varying length and number

of resources used, Machine Learning (ML) on the time series data

is feasible but challenging. There are ongoing investigations how

ML can be used to provide additional insights, but none of the

German sites in this study are using this in production at present.

A use-case for classification is automatically notifying support

personnel or users from a job or user requiring attention. Some

centers already use script based notification of users for faulty jobs,

but detection of such jobs or users is still performed by manual

monitoring of the job data at many of the centers participating in

this paper.

For administrators and support personnel, overview of and

insight into the data after the classification can be obtained

by routinely inspecting graphical dashboards that list recent

problematic jobs. JSC uses LLview to monitor the overall system

utilization and provide detailed insights into specific jobs via

detailed job reports available to end-users (Jülich Supercomputing

Centre, 2024a). It significantly simplifies spotting under-utilized

resources without the need for additional instrumentation of the

used codes. LLview is designed to re-use the data provided by Slurm

and by the abovementioned systemmonitoring Prometheus, where

the latter is continuously extended to support additional metrics

of particular interest, e.g., GPU utilization. MPCDF uses Splunk

dashboards that identify jobs with harmful behavior (e.g., issuing

file open and close operations at high frequency on the shared

file system) or wrong resource requests (e.g., not using GPUs on

GPU nodes). Based on similar logic, HPC users get notified for

individual jobs via the stdout stream at the end of a job about

obvious inefficiencies.

Another use-case of job footprints and classifications is cross-

job analysis to investigate similarities or differences across user

groups, application classes, and applications (Maloney et al., 2024).

Statistics about the resource utilization of jobs are very important

for preparing cluster procurements, decide on what systems are

suited for a user or application class, and to optimize scheduling

and resource management policies.

6 Scheduling and resource
management

Energy efficiency is as much about keeping the power

consumption of the system and its infrastructure as low as possible,

as it is about ensuring that hardware resources are optimally utilized

to deliver the maximum overall throughput of application results.

Resources are shared betweenmany users simultaneously executing

their codes on HPC systems. Jobs are submitted via a batch system,

which establishes a schedule to decide which jobs enter the system

at which time to utilize certain resources. Scheduling and resource

management systems are responsible for fairly allocating those

resources according to the users’ requests, the system capabilities,

and a number of constraints and scheduling policies decided by

the system owner. In contrast to commercial data centers, in the

public funding and academic context of the HPC sites in this study

maximum system occupancy (90% or even above) is targeted, so

that typically oversubscription of user requests is the norm, and

hardware overprovisioning the exception.

While in the past a number of scheduling software solutions

were used (e.g., Torque/Maui, PBS, LSF, etc.), today basically all

German (and European) HPC centers employ Slurm (SchedMD,

2024). This product has become the de-facto scheduling solution

in HPC. This has some advantages for the users, who can use

almost the same job scripts to launch their jobs on different

systems, but constrains all HPC sites to the limitations of this

particular scheduling software, e.g., the limited capabilities of

Slurm on dynamic scheduling or support of heterogeneous jobs.

Furthermore, this bares the danger of a monoculture, since there is

only one private company controlling the development of the code

and offering commercial support for this solution. A promising

alternative is the Flux scheduler (LLNL, 2024), which has been first

used at large scale with the El Capitan system (LLNL, 2025) at

Lawrence Livermore National Laboratory (LLNL).

The scheduling policies used today at German sites statically

allocate a number of full nodes for a given time window, according

to the user’s request. But users tend to be conservative in their

estimations, asking for longer time-windows than their jobs

actually need. Therefore, when a job’s execution finishes, most

probably the scheduler has to drop the current schedule and create

a new one. Furthermore, since free nodes were filled with smaller

jobs by the backfiller, the next large job will not be swiftly started

but has to wait according to the original schedule. Overall, this

will result in a disadvantage of large jobs and creates fragmentation

of resources, that might require queue cleaning actions to get an

appropriate combination of nodes to allocate new large jobs, at the

cost of idle resources.

Several studies have shown that a significant amount of user

jobs do not fully utilize the node resources (Peng et al., 2020;

Michelogiannakis et al., 2022; Li et al., 2023; Maloney et al., 2024).

Even worse, recent systems come with very fat nodes hosting

dozens of CPU cores, multiple GPUs, and other accelerators,

making it more challenging for an individual user to fully employ

all available devices. Node-sharing and co-scheduling of jobs with

complementary profiles (e.g., compute bound with memory bound

jobs, and CPU-only with GPU-centric jobs) could allow HPC

centers to increase the amount of jobs simultaneously running

on the system, with the potential to increase system utilization

and throughput. However, it also bears the risk of disturbing

interference between those jobs to appear.

Energy-aware scheduling policies are applied in production

already at several German sites. At JSC, idle nodes are powered

down by Slurm, which can reduce the power draw of systems

with idle times significantly. To give an example, the power

consumption of the JUSUF system at JSC was reduced by 25%

from roughly 660 MWh in 2022 to 495 MWh in 2023 by

putting a rather large implementation effort for the power down

feature, with the benefit that this now can be transferred to all

given and future systems. In addition to the feature mentioned

above, users are allowed to set the power per node depending

on their needs, by reducing the operational frequency to the
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minimum possible without impacting application performance.

Furthermore, topology-aware scheduling is currently employed

at HLRS to allocate neighboring nodes to minimize network

congestion. Note that HLRS uses a hypercube network topology,

much more sensitive to increased latency across network hops than

the tree-like interconnect topologies (e.g., dragonfly+) used by the

other German HPC sites. LRZ has employed policies to encourage

users to improve the energy efficiency of their codes, gathering

mixed experiences.

In the German and European context the strong motivation to

establish GreenHPC has led to funding a number of R&D projects

targeting at improving scheduling mechanisms, to allow for more

efficient resource sharing, dynamic allocation, job malleability, and

enhanced energy-efficiency. The general trend in these projects

goes toward developing a fully integrated system operations software

stack, in which the scheduler is coupled to the monitoring

system and a data analytics infrastructure, bringing together

and establishing correlations between job profiles, hardware

capabilities, and energy use. The goal is to increase the scheduler’s

intelligence, by feeding it continuously with system and data center

monitoring information. Analyzing extensive monitoring data will

help to understand the actual resource utilization per job to

adapt/optimize scheduling decisions on the fly and provides the

potential to even predict the behavior of future jobs for a more

energy and resource-efficient scheduling. The German Federal

Ministry of Education and Research (BMBF) EE-HPC project (The

eeHPCConsortium, 2024) develops a production-grade framework

for energy-efficient HPC operation by continuously adopting job-

specific power-cap settings through direct optimisation using

hardware performance counter metrics. This framework allows

one to set optimal power-cap settings for every job with regard

to energy-delay product, but also can be used to enforce a global

system power-cap limit.

Due to the strong motivation to establish GreenHPC,

methodologies developed in research projects are gradually being

transitioned into production. For example, the PowerSched

Framework (Simmendinger et al., 2024) has been applied in

production at HLRS since February 2024. However, it is evident

that very advanced and dynamic methodologies, such as those

leveraging node-local DVFS at high frequency, are not yet applied

in production as they are known to impact highly synchronized

applications. Instead, more conservative approaches like the one

implemented in PowerSched, which sets power limits per job (i.e.,

for all nodes of the job in lockstep), are adopted first. This allows

for an evaluation of the system-wide performance impact of the

application job mix executed on the HPC system and facilitates

a smoother transition to more complex methodologies without

significantly disturbing users.

Very large HPC infrastructures, which are themselves a major

power consumer, are considering using such intelligent integrated

solutions to react to the demands in the national electricity network,

in a similarmanner as large industrial infrastructures do. Increasing

operations during phases with electricity overproduction (e.g.,

sunny/windy days with high electricity producing via renewable

energies), would allow optimal HPC operations not only from

the pure energy consumption perspective, but also reducing

CO2 emissions and minimizing costs (Wassermann et al., 2024).

Furthermore, HPC centers are used to managing preempt-able

jobs, and could hold a queue of useful computational workloads

that can be run to help stabilize power grid systems with significant

fractions of Distributed Energy Resource (DER) generation.

However, such advanced approaches pose difficult challenges to

HPC scheduling systems and their capability to predict future

system behavior, adding another layer of complexity well beyond

what HPC operation tools are currently able to cope with.

7 Programming and algorithms

With continuous improvements in HPC hardware and

infrastructure, another important contributor to efficiency gains

is related to the scientific workloads. By leveraging the hardware

improvements effectively for better performance, shorter runtimes

and thus, in most cases, more energy efficiency can be achieved.

There are various approaches to achieving better hardware

utilization through means of software, a fundamental component

of HPC.

Modern processors with many concurrent execution threads,

like many-core CPUs or massively-parallel GPUs, are enabled

through effective programming models, making the distinct

features of the devices abstractly available to programmers. The

models are plentiful (Herten, 2023) and include, for example,

CUDA (NVIDIA, 2024b) and HIP (AMD, 2024a), used for

NVIDIA and AMD GPUs, respectively, which promote the Single

Instruction, Multiple Threads (SIMT) programming model to drive

the many threads of the GPUs individually; or SYCL (Khronos,

2024), which is more general and provides building blocks

for execution of parallel algorithms with implicit parallelisation

on many different hardware platforms. Through these models,

programmers can effectively utilize the underlying hardware

resources and gain both performance and energy efficiency

improvements. While lower-level approaches like CUDA can serve

one specific hardware design, the higher-level approaches of SYCL,

Kokkos (Trott et al., 2022), or ALPAKA (Zenker et al., 2016) allow

for more portability between hardware designs. The convergence

toward higher-level, abstract programming models eases the

burden of individual programmers by relying on pre-developed

primitives with excellent performance, prepared by a community

of hardware-conscious engineers. In some cases, the development

of implementations of these programming models are conducted

in the open as open source software, levering the benefits of open

discussions and support by the large community (Trott et al., 2022;

Alpay et al., 2022). Another prominent high-level programming

model is OpenMP (OpenMP Architecture Review Board, 2024),

which is arguably the easiest entry-point for parallel programming

and enables generation of parallel code identified by the compiler.

These high-level abstractions lower the barriers to entry for new

HPC users and offer productive ways for performance-conscious

programming. Interoperability with low-level/native programming

models can be exploited by advanced performance engineers to

further optimize performance and energy efficiency.

Further abstraction with potential for even more efficiency

gains can be achieved by relying on libraries. These packages,

sometimes only available in binary form from hardware vendors,

offer implementations of algorithms and patterns, usually with

high grade of sophistication and deep hardware focus. A famous
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example are the Basic Linear Algebra Subprograms (BLAS)

APIs, which are implemented for nearly all hardware devices by

their vendors [e.g., oneMKL (Intel) (Intel, 2024) and cuBLAS

(NVIDIA) (NVIDIA, 2024a)]. Of course, also here, community-

driven libraries in the open-source realm exist, like BLIS (Van

Zee and van de Geijn, 2015), an extensible library with many

hardware-specific micro-kernels (Nassyr et al., 2023; Nassyr and

Pleiter, 2024). Libraries exist beyond computational algorithms.

NCCL (NVIDIA, 2024c), for example, can improve GPU-

centric communication significantly over the HPC-default Message

Passing Interface (MPI), in AI applications and beyond (Wu and

Di Napoli, 2023).

Separation of performance-critical code and user-facing

interfaces offers a productive way to gain performance, ideally

relying on well-defined APIs implemented by advanced libraries.

The approach allows moving away from strict, compiled languages

like C++, toward more agile languages with shorter turn-around

times, like Python. The same approach essentially enables the

ongoing AI revolution, in which frameworks such as PyTorch

implement the user-facing API, using hardware-specific libraries

[like MlOpen (AMD, 2024b) and oneDNN (UXL Foundation,

2024)] in the back-end, augmented with Just-in-Time (JIT)

compilation facilities for customization. Julia is another high-

level programming language which is JIT-compiled, offering a

productive alternative to the classical low-level languages (Hunold

and Steiner, 2020; Teichgräber, 2022).

Many of the hardware-centric advancements are in code

generation. Some domain-specific frameworks exist to generate

low-level, hardware-optimized code through higher level

definitions. Examples are gt4py (Paredes et al., 2023) for the

climate domain or pystencils (Bauer et al., 2019) for, among others,

numerical Computational Fluid Dynamics (CFD) simulations;

both optimize operations on a grid. Even generic domain-

specific languages exist, like AnyDSL (Leißa et al., 2018), which

utilizes partial evaluation to generate hardware-specific code.

All frameworks, runtimes, and (JIT) compiled programs benefit

from continuously maturing compiler infrastructures, especially

open source software. Of distinct importance is LLVM (LLVM

Foundation, 2024), which has emerged as the key enabler of

modern compilation workflows, covering language-specific

frontends (e.g., C++, Fortran), advanced optimisations in the

intermediate languages (e.g., MLIR), versatile back-ends for many

hardware architectures (e.g., x86, RISC-V, PTX), linking (e.g.,

LTO), and runtimes (like OpenMP). The open-source-nature of

the compiler infrastructure allows contributions from research

institutions, industrial corporations, and hardware vendors.

In the heterogeneous, quickly evolving hardware landscape, co-

design is essential to align application requirements and hardware

opportunities. Close collaboration between hardware consumers

and producers allows informing hardware-fitting algorithms,

enablement through effective compiler and framework/library

support, and design decisions for the hardware. An example

of a hardware-conscious implementation is temporal blocking

of sparse matrix power kernels, which enables cache reuse and

corresponding performance gains for traditionally memory-bound

algorithms (Alappat et al., 2023, 2024).

A possible path to understanding application performance on

specific hardware is thorough analytic, white-box performance

models. Such models abstract the intricacies of the hardware,

the software, and their interactions. A prominent example

is the Roofline Model, which only assumes two hardware

bottlenecks (computational peak performance and memory

data transfer) and reduces the software to a single number

(operational intensity) (Williams et al., 2009). Many extensions

of the Roofline Model exist and can be coupled with energy

models (Hager et al., 2013; Hofmann et al., 2018). Although

such white-box models lack accuracy due to their inherent

simplifications, they are indispensable for guiding design decisions

for applications without time-consuming and complex in-

depth research. A key component of this process is bottleneck

awareness, which not only allows to select the most appropriate

hardware, but also the energy-relevant execution modalities such

as clock frequency (DVFS) and number of cores per chip

(concurrency throttling) (Hager et al., 2013; Wittmann et al.,

2016).

Selecting hardware components and a system design

appropriate for the site’s user portfolio is also crucial to maximize

energy efficiency in real-world operations. Therefore, in addition

to synthetic benchmarks (e.g., HPL or High Performance

Conjugate Gradients (HPCG)), application-based benchmarks

are typically included in the procurement and acceptance of

HPC systems (Herten et al., 2024) as well. The selection of use

cases in the procurement benchmark suite represents the current

major consumers of computing time, but also the expected

evolution of the user portfolio, e.g., a larger set of deep learning

training applications. Different components or phases of a

single application may have unique hardware requirements.

For example, the ICON climate and weather model offers

opportunities for substantial energy efficiency gains when running

on heterogeneous hardware. This is because the model’s coarse-

grained task parallelism, comprising different components such

as atmosphere, ocean, radiation, and biogeochemical modules,

allows for tailored deployment on the most suitable hardware,

reducing overall energy consumption. However, a major challenge

is to support the various programming models that are required

for this optimisation (Adamidis et al., 2024). This task is being

tackled as part of the GreenHPC project EECliPs (DKRZ, 2025),

for example.

The techniques for increasing performance and energy

efficiency on modern hardware devices are quite involved and

complex. It requires a well-educated workforce. Starting at

university, where HPC-related courses are offered, but continuing

during the professional career, where HPC basics and advanced

topics are covered in courses. The German HPC community,

especially the Gauss Center for Supercomputing (GCS) and the

German National High Performance Computing Alliance (NHR)

of Tier-2 centers, but also the local HPC networks of the federal

states, offer a plethora of courses for HPC users and developers on

various skill levels. The centers work with the HPC Certification

Forum to map these courses to a tree of well-defined skills,

enabling the attendees to compile the course program that fits their

needs best.
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8 Conclusions and future work

The number and size of HPC infrastructures are growing,

driven by the demand for compute time in the HPC and AI

communities. This trend, together with increasing environmental

concerns, electricity prices, and regulatory policies, is driving HPC

hosting sites to develop and implement strategies to maximize the

energy efficiency of their operations. The experience of German

centers hosting jointly ≈300PFLOP/s compute performance

(status 2024) shows that no single measure alone can achieve the

efficiency targets set. A holistic approach to energy efficiency is

required, including green power supply, power capping, optimized

cooling systems, heat recovery, careful selection and combination

of processing and storage technologies, comprehensive monitoring

software, advanced scheduling and resource management

techniques, and application optimisation measures.

The German sites reporting here are already implementing

solutions in all these areas and have concrete plans for future

extension. Direct liquid cooling strategies are already in place

and waste heat is reused at many sites. Hardware heterogeneity,

especially in terms of processing units, is increasing as the end

of Moore’s Law makes higher efficiency per component possible

only through specialization. Heterogeneous system architectures

are widely used, where processing heterogeneity is organized in

partitions or compute modules. Maximizing resource utilization

in such systems requires advanced scheduling and resource

management techniques, with increasing interest on node sharing

and dynamic scheduling mechanisms. Comprehensive monitoring

solutions for data center, system components and user jobs are

utilized; however, homogenisation and closer cooperation in this

area could be beneficial. Last but not least, the HPC sites are

investing significant efforts in user support to optimize application

codes for highest performance, and are also developing optimized

libraries, programming models and tools to improve energy

efficiency from the user perspective.

Looking into the future, the German HPC sites are involved

in a number of research projects and initiatives to further

improve energy efficiency in HPC. Data center upgrades include

medium- and long-term plans to increase the rate of waste heat

reuse, but these plans could be jeopardized by the increasing

power density of newer processors (especially GPUs) and their

need for lower cooling temperatures. The choice of processing

technologies for future system upgrades will largely be based

on the highest achievable performance per Watt. As a result,

future systems are likely to be more heterogeneous in terms of

hardware, and there will be a need for more dynamic resource

allocation, possibly taking into account variations in the power

grid. Such load management and advanced scheduling software

does not yet exist, or at least not in production quality. Therefore,

a number of research and development projects are underway

in Germany and Europe-wide to develop integrated system

monitoring and management solutions to address this need. Other

projects are devoted to programming models, algorithms and tools

for improved application efficiency, since these require ongoing

efforts to adapt to new hardware features. The use of arithmetic

with reduced precision has attracted particular interest, which

is supported by the growing trend toward ML applications and

specialized hardware.

Energy efficiency will remain a key issue in the design,

deployment, operation and use of future HPC systems, requiring

the attention of all stakeholders: component suppliers, system

integrators, hosting site operators, system software designers,

programming model engineers, application developers, and users.
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