
TYPE Original Research

PUBLISHED 17 February 2025

DOI 10.3389/fhpcp.2025.1499519

OPEN ACCESS

EDITED BY

Artur Podobas,

Royal Institute of Technology, Sweden

REVIEWED BY

Franco Rino Davoli,

University of Genoa, Italy

Fangming Liu,

Huazhong University of Science and

Technology, China

*CORRESPONDENCE

Sean Choi

sean.choi@scu.edu

RECEIVED 21 September 2024

ACCEPTED 20 January 2025

PUBLISHED 17 February 2025

CITATION

Galvankar S and Choi S (2025) AlphaBoot:

accelerated container cold start using

SmartNICs.

Front. High Perform. Comput. 3:1499519.

doi: 10.3389/fhpcp.2025.1499519

COPYRIGHT

© 2025 Galvankar and Choi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

AlphaBoot: accelerated container
cold start using SmartNICs

Shaunak Galvankar and Sean Choi*

Cloud Lab, Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA,

United States

Scalability and flexibility of modern cloud application can be mainly attributed

to virtual machines (VMs) and containers, where virtual machines are isolated

operating systems that run on a hypervisor while containers are lightweight

isolated processes that share the Host OS kernel. To achieve the scalability

and flexibility required for modern cloud applications, each bare-metal server

in the data center often houses multiple virtual machines, each of which runs

multiple containers and multiple containerized applications that often share the

same set of libraries and code, often referred to as images. However, while

container frameworks are optimized for sharing images within a single VM,

sharing images across multiple VMs, even if the VMs are within the same bare-

metal server, is nearly non-existent due to the nature of VM isolation, leading to

repetitive downloads, causing redundant added network tra�c and latency. This

work aims to resolve this problem by utilizing SmartNICs, which are specialized

network hardware that provide hardware acceleration and o	oad capabilities for

networking tasks, to optimize image retrieval and sharing between containers

across multiple VMs on the same server. The method proposed in this work

shows promise in cutting down container cold start time by up to 92%, reducing

network tra�c by 99.9%. Furthermore, the result is even more promising as the

performance benefit is directly proportional to the number of VMs in a server

that concurrently seek the same image, which guarantees increased e�ciency

as bare metal machine specifications improve.

KEYWORDS

SmartNICs, cloud computing, containers, data center networks, virtual machines

1 Introduction

Container framework is a suite of software that enables user custom workloads to be

packaged as small, self-contained, fine-grained custom programs/executables, commonly

referred to as container image, and be deployed efficiently in a dynamic fashion into a

running container. Attributed by the recent rise of cloud computing, container frameworks

have gained significant traction by enabling programmers to focus solely on their core

applications rather dealing with the intricacies of underlying infrastructure, such as

software packaging, dynamic auto-scaling, dependency management and much more. To

elaborate, one of the major benefits of containers is that they impose little to no limitations

on the type and size of the underlying infrastructure needed to run them. Consequently,

they can be easily moved from one machine-physical or virtual-to another with minimal

or no service interruption. Such aspect is very attractive to cloud providers, since it allows

them to dynamically provision, deploy and monitor the infrastructure that is used to

run the containers and its associated resources, such as compute, storage, memory, and

network, to improve hardware utilization and cost efficiency of their fleet. Therefore,

most major cloud providers today, such as Amazon Web Services, Google Cloud and

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1499519
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1499519&domain=pdf&date_stamp=2025-02-17
mailto:sean.choi@scu.edu
https://doi.org/10.3389/fhpcp.2025.1499519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1499519/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

Microsoft Azure, offer container services to their customers, such

as Amazon Elastic Container Service (AWSWhitepapers,

2024; GoogleCloud, 2023) and Azure Container

instances (MicrosoftAzure, 2023).

While pros outweigh the cons, there are few inherent

drawbacks of container frameworks. One of the major issues with

container frameworks is the cold start problem, which refers to

the substantial time and resources required to retrieve and deploy

container images when a container is scheduled to run on a specific

machine for the first time. The main reason for the cold start

problem is that when a container is deployed on a new machine, it

must download the code and libraries required to run the container

which are collectively called a container image from a remote

online source known as a container registry. However, the process

of pulling container images from online registries introduces

latency and impacts the overall responsiveness of the containerized

service when it is first deployed or dynamically scaled, making

it difficult for services with very tight latency requirements to be

containerized. In addition, cold start time also depends on multiple

factors like choice of programming language, size of the container

image deployed, and memory settings. For example, the cold start

time for a recursive Fibonacci sequence generation function in

JavaScript deployed on Azure cloud functions is around 9.822 s

whereas the same function deployed in Java results in a cold start

time of around 24.872 s (Manner et al., 2018). Finally, the instance

lifetime (the longest time a function instance stays alive) where a

tenant’s application can maintain state and would suffer from a

cold start varies from cloud provider to provider. For example, the

median instance lifetime on AWS container service is between 6.2

and 8.3 h, which seems somewhat reasonable to incur the tens of

seconds in cold start. However, idle instances undergo recycling

to help providers save on compute resources, and it is known

that the idle instance recycling time for AWS Lambda is ∼26 min

(Wang et al., 2018). This becomes a much bigger problem when the

entire fleet spends a significant portion of compute cycles merely

launching new containers.

Furthermore, this issue becomes more prominent in services

that are built using container frameworks, such as function-as-a-

service framework. Function-as-a-Service is a model of software

deployment that is widely used today to deploy and dynamically

run fine-grained code or functions. To give some context of

the popularity, AWS Lambda, a popular function-as-a-service

framework, is known to host over a million customers. Function-

as-a-service is known to extensively use container frameworks to

enable packaging, deployment and dynamic execution of functions.

However, services like function-as-a-service are now inherently

prone to cold start issues as well and the cold start issue becomes

highly critical when these services built using container frameworks

suddenly require low-latency responses from their functions.

Computational issues like above are often solved by domain-

specific hardware. For instance, graphics processing units (GPUs),

with their parallel nature, are used to enable large-scale machine

learning training. Another similar example is utilizing network

processing units to offload tasks from valuable CPUs. Recently,

cloud providers have been deploying programmable network

processing units (NPUs) in network interface cards (NICs) called

SmartNICs to offload tasks that were originally run by the

host (Firestone et al., 2018), in order to save host resources to

be used for other complex tasks. Unlike traditional NICs that

primarily handle basic network communication and networking-

related features, SmartNICs are equipped with programmable

NPUs that can run custom programs, enabling them to perform

traditional networking tasks such as packet processing, encryption,

and load balancing, as well as advanced functions and protocols like

virtualization, software-defined networking (SDN), and network

function virtualization (NFV).

An even more interesting angle of research in programmable

networks is to run customized applications that are not

networking-related and thus are traditionally not run on

networking devices. For example, a more recent set of research

works utilizes programmable network devices to implement

and accelerate various computational tasks, such as key-value

stores (Jin et al., 2017), consensus protocols (Dang et al., 2015)

and function-as-a-service framework (Choi et al., 2020). One of

the techniques shared by these works is the use of SmartNICs to

provide low-latency computation for various tasks. These works

show huge potential in leveraging the capabilities of programmable

network devices to solve the cold start problem inherent to

container frameworks.

Given the above context, this paper present AlphaBoot, a new

method and a software framework for utilizing SmartNICs as a

container cache to alleviate the cold start problem. The main

thesis of this work is to reduce the time it takes to retrieve a

container by combining the idea of a cache, container registry and

programmable network units. The main reason why this method

solves the cold start problem for cloud providers is due to the

SmartNIC’s unique placement in the infrastructure. Container

frameworks that are hosted on cloud providers often run within

virtual machines to enable faster and easier deployment, backup

and migration of the machine. These virtual machines are often

configured to share a single bare-metal machine, which houses one

or more NICs, to improve the fleet utilization, thus this means

that SmartNICs are shared by multiple virtual machines (VM) and

hence by multiple container frameworks. Such characteristic offers

a unique opportunity to offload the image retrieval tasks from the

host servers on to the SmartNICs and have the SmartNICs cache

widely used and previously retrieved container images, enabling

the SmartNICs to expedite the delivery of container images to the

container frameworks within a VM that requests such images.

With such optimizations, AlphaBoot not only reduces the

impact of cold start issue, but also helps to enhance data center

efficiency in three key ways: First, reducing idle times of CPUs

by speeding up image retrieval time and significantly speeding up

container boot up, ultimately increasing data center utilization.

Second, reducing wasted network bandwidth by reducing amount

of network traffic used to retrieve same images over and over again.

Storing container images on the SmartNIC enables local access to

the images within the data center, eliminating the need to transfer

them over the network repeatedly freeing up capacity for other

critical data center operations. This also saves costs for users as

network transport to-and-from outside of the data center is costly.

Finally, AlphaBoot unlocks enhanced performance, capabilities

and scalability. AlphaBoot allows for efficient scaling of container

workloads within the data center by reducing cold start times and

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

reducing overhead of running containers. Since container images

are readily available on the SmartNIC, the framework enables

rapid deployment of new containers without waiting for image

transfers. This facilitates seamless horizontal scaling, allowing data

center operators to efficiently manage workload fluctuations and

improve overall scalability. Furthermore, this not only improves the

container frameworks themselves but also allows software built on

top of these frameworks to be more scalable and opens up more

opportunities to run low-latency applications. Given the high-level

introduction, the structure of this paper is as follows: We begin

the paper by providing the background (Section 2) of current

state of container frameworks and SmartNICs within cloud data

centers, followed by the motivation and challenges of realizing

AlphaBoot (Section 3). Then, we discuss the overview (Section

4) of AlphaBoot followed by evaluation (Section 6) of AlphaBoot

performance in multiple aspects. Finally we discuss some related

work that motivated AlphaBoot (Section 7) and establish scope for

potential future extension of this work (Section 8).

2 Background

We now discuss in depth on the pertinent information in

container frameworks and SmartNICs, the two topics that are

crucial tenets of AlphaBoot.

2.1 Containers

Container is a lightweight, standalone software process that

encapsulates an application along with all its dependencies

and configurations (Merkel, 2014), and is mainly developed to

be easily created, shared, deployed, and scaled while ensuring

isolation between them. Containers are deployed using a software

framework, which leverage the features of the Linux kernel, such as

cgroups and namespaces to run containers securely and efficiently.

Conventionally, a container is started from (one or more layers

of) container image, which is a set of software package that

contains all of the code and dependency to run the process of

interest. These container images are usually stored and distributed

using a (either online or offline, public or private) registry, or a

centralized repository of container images, such as Docker Hub1.

Thus, when a container starts, the container framework downloads

(or pull) layers of container images from a registry and executes the

downloaded images to start a container, and the downloaded image

layers are locally cached for future execution of the container.

A container image is built from one or more layers, where

each layer consists of a subset of the code and library needed to

run the container. This layering system allows multiple subsets of

container images to be shared, which reduces redundancy between

multiple images that depend on the same set of libraries. All

the operations pertaining to the management of containers are

controlled by a container framework. Some popular examples of

1 Docker Hub. Available at: https://hub.docker.com/ (accessed December,

2023).

container frameworks are Docker2, KataContainers3, Podman4,

gVisor5, and Singularity6, with Docker being the most popular

and widely used container framework. Since containers are mostly

lightweight, it is feasible for container frameworks to manage

and execute hundreds of containers in a single bare-metal or

virtual machine at once, enabling containers to be widely used in

data center settings. Modern data centers use container runtimes

nested inside virtual machines to run containerized applications to

share the physical resource in a secure and isolated way, enabling

better support for multi-tenancy and utilization of the underlying

hardware infrastructure. Figure 1 represents a high-level overview

of a modern containerized data center architecture.

A well-known problem of containerized environment is the

added latency introduced for starting a container from a newly

obtained image, as these images must be downloaded from a

remote repository. This issue with added latency is also known as a

“cold start problem" and is incurred when a container needs to be

started from a image not present in the local cache due to initial

start of a service, reboot of the underlying machine, deployment

on a new machine to meet scaling on demand requirements or

inactivity. Such issue is exaserbated in the modern data center

where containers are hosted within VMs. Due to the isolation

introduced by VMs if a container requires the same image used for

a different container on a different VM on the same physical server,

the physical server would have to download the same container

from an online registry multiple times, resulting in multiple cold

starts with redundant use of storage and network traffic. Thus,

AlphaBoot’s main goal is to address such problem of cold start and

redundancy by integrating SmartNICs into the container image

retrieval workflow to significantly reduce container startup times

and save network bandwidth usage. Section 4 describes this process

in detail.

2.2 SmartNICs

Network Interface Card (NIC) is a class of hardware devices

which help connect a computer to a network. A SmartNIC is a

programmable version of a NIC that comes with the capabilities

of running custom programs on a NIC, which allows users to

offloading network processing tasks, security and storage functions

that are originally run on host CPUs, freeing the main processor’s

cycles which can be utilized by other processes. SmartNICs come in

various types majorly classified by the type of the packet processor

as either FPGA-based, ASIC-based or SoC-based (Bhalgat, 2014).

2 Docker. Available at: https://docs.docker.com/guides/docker-overview/

(accessed December, 2023).

3 KataContainers. Available at: https://github.com/kata-containers/kata-

containers/tree/main/docs/design/architecture (accessed December, 2023).

4 Podman. Available at: https://docs.podman.io/en/latest/ (accessed

December, 2023).

5 gVisor. Available at: https://github.com/google/gvisor (accessed

December, 2023).

6 Singularity. Available at: https://sylabs.io/singularity/ (accessed

December, 2023).

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://hub.docker.com/
https://docs.docker.com/guides/docker-overview/
https://github.com/kata-containers/kata-containers/tree/main/docs/design/architecture
https://github.com/kata-containers/kata-containers/tree/main/docs/design/architecture
https://docs.podman.io/en/latest/
https://github.com/google/gvisor
https://sylabs.io/singularity/
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 1

High-level overview of containerized data center architecture.

The three types of SmartNICs mainly differ on price-to-

performance ratio, ease and capability of programming and

number of feature sets. For example, ASIC-based SmartNICs

require a dedicated and custom designed/built chip, which makes

the NIC less flexible, harder to program, but provide fastest

performance and best-in-class price-to-performance ratio. FPGA-

based SmartNICs are more configurable, but are more costly and

slower. SoC-based SmartNICs are built for ease of programming,

thus allows various types of applications to be run with little to no

motification, but such flexibility comes at a performance hit and

higher cost. Thus, the choice of which type of SmartNIC to use

mainly depends on the application of interest.

AlphaBoot’s initial goal is to show the feasibility of utilizing

SmartNICs to improve container cold start times. Therefore,

the main feature of interest in a SmartNIC is the feasibility of

integrating with existing container run times that are widely used.

SoC-based SmartNICs run ARM-based cores that are capable

of running vanilla Linux operating systems with little to no

customization. This enables AlphaBoot to easily integrate existing

container run times by treating the SmartNIC as a shared

container image cache. Section 8 discusses future works on

integrating AlphaBoot into other types of SmartNICs. AlphaBoot

is implemented using an SoC-based SmartNIC called NVIDIA

Bluefield (NVIDIA, 2024), which contains an ARM-based CPU

with up to 16 cores, 32GB of onboard RAM and up to 400Gbps

ports. The main reason for this choice is due to the large user

base and rich support for various accelerators. When shared with

multiple virtual machines (VMs), SmartNICs securely operate as

shared hardware resources, enabling multiple VMs running on the

same bare metal server to interact efficiently with the network

infrastructure. Similar to how network cards are shared across

multiple VMs, SmartNICs are efficiently isolated using techniques

such as network isolation. In addition to VM level isolation, usage

of secure protocols like SSL, SCP and NFS, which are widely known

for their security and robustness in ensuring data integrity and

confidentiality, makes the use of SmartNICs in such environments

both feasible and secure.

2.3 Container image storage management

Container image de-duplication and eviction are critical

processes in the management of containerized environments,

especially in scenarios where resources are limited and are

maily used to optimize storage utilization. Users choose similar

operating systems and similar applications to run which introduces

redundancy in container images for which container image de-

duplication is an effective solution. This is particularly useful in

environments where multiple containers are based on the same

base image or contain overlapping layers. By storing only unique

layers and sharing common data among containers, de-duplication

significantly decreases the amount of disk space required. In

addition to saving storage space de-duplication can also improve

the container I/O performance. Few recent innovations in de-

duplication of container images are: (1) DupHunter (Zhao

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

et al., 2024): introduces a novel architecture for Docker registry

deduplication, aiming to enhance both storage efficiency and

performance. It introduced a 6.9× improvement in terms of storage

space required over the current state of the art. (2) Medes (Saxena

et al., 2022): a novel serverless framework that addresses the

compromise between resource use and performance typically faced

in serverless platforms. It introduces a “dedup state" by exploiting

memory redundancy in warm sandboxes which leads to significant

improvement in end-to-end latencies better than the ones faced

during cold start.

On the other hand, container image eviction is the process of

removing unused or least recently used images from a system to free

up resources for new containers. This is crucial in environments

with finite storage capacity where maintaining an optimal set

of images is necessary to prevent resource exhaustion. Eviction

policies can be configured based on various criteria, such as the age

of the image, frequency of use, or specific tags that prioritize certain

images over others. A few innovations in the area of container

image eviction are as follows: (1) Yang et al. (2023) integrates an

ML module with a traditional heuristic caching system. It uses the

heuristic algorithm as a filter to reduce the number of predictions

required for evictions and the samples needed for training the ML

model. This approach aims to minimize computational overhead

while maintaining effective eviction decisions. (2) Gummadi

(2023) combines a lightweight heuristic baseline eviction rule

with a neural reward model trained through preference learning.

This approach continuously trains a small neural network with

automated feedback to predict the eviction priority of cached items.

(3)Mangal et al. (2020) (Deep Eviction Admission and Prefetching)

cache framework uses deep learning to optimize pre-fetching,

admission, and eviction processes. It models pre-fetching as a

sequence prediction task and uses online reinforcement learning

to balance eviction strategies based on frequency and recency. As

AlphaBoot implements a cache of container image on a SmartNIC

for quick retrieval by any virtual machine running on a bare

metal server, the limited resources on the SmartNIC would need

the user to periodically evict the cached images. The choice of

an eviction algorithm would depend on the environment and the

infrastructure available as different SmartNICs would have varying

onboard storage. The frequency of cache eviction and the choice

of candidates to be kept in the cache would vary from case to

case. AlphaBoot allows flexible configuration of the cache eviction

algorithm of their choice as the performance gain of the framework

is independent of this choice. The user could implement any of the

available rule based or ML based eviction techniques mentioned.

The chosen eviction algorithm essentially runs on top of AlphaBoot

and would use the SmartNIC storage as its target. We discuss

the planned work on container eviction strategy of AlphaBoot in

Section 8.

3 Motivation and challenges

3.1 Motivations

In modern day cloud data centers where containers are utilized

extensively, a significant amount of time and compute/network

resources are consumedwhen pulling container images from online

registries repeatedly, especially when average container image size

spans around 500–700 MB. In Google Kubernetes Engine (GKE),

a standard image pull can take ∼24 s to complete for a 500 MB

image Google Cloud7. However, using image streaming technology,

this time can be reduced to about 1.5 s. Google Cloud’s image

streaming, as described in the documentation, streams parts of

the container image that are required for the application to start,

allowing the container to begin executionwhile the rest of the image

is still being pulled. This approach reduces initial latency but relies

heavily on the assumption that the containerized application can

be partitioned effectively to benefit from this streaming technique.

Additionally, image streaming is most effective in environments

where network bandwidth is abundant and where there are fewer

repeated requests for the same image across different VMs on

the same physical host. This inefficiency arises when multiple

containers across different VMs on the same physical machine

require the same image to run, and each time a new container is

launched, the same image is pulled from the registry again, just

to be saved to the same physical machine. This redundant process

leads to a waste of bandwidth and results in unnecessary delays

in container deployment. One of AlphaBoot’s motivations is to

eliminate such inefficiencies making it a better fit especially for high

density VM Deployments such as in a data center.

Next motivation of AlphaBoot stems from the recent wave of

domain-specific processors (DSP) that are making their way into

the cloud data centers. Due to the cost and performance limitation

of CPUs on running a large number of parallel tasks, DSPs, such

as GPUs, have made their way into the data center to run simple

and repetitive tasks, such as large matrix computation and machine

learning model computation. Similar to this trend, SmartNICs are

making their way into the data centers to offload networking tasks

that are traditionally run by CPUs, such as firewall, load balancing

and encryption. However, given the unique position of SmartNICs

in the data center where all networking packets for a host go

through a NIC (Figure 1), many believe that SmartNICs possess

huge potential to perform non-networking tasks, such as key-value

store, machine learning model training and even generic compute

tasks like running containers. Thus, AlphaBoot motivation shows

that SmartNICs are capable of a new kind of offloading non-

networking tasks.

Finally, last motivation of AlphaBoot is to improve cloud data

center utilization and cost efficiency, which follows from the first

two motivations. Every CPU cycle is very precious in data centers

as it directly relates to revenue from the users, thus one major

reason for deploying DSPs in cloud data center is to improve CPU

utilization by offloading domain specific tasks to DSPs. Similarly,

AlphaBoot aims to free server resources by offloading container

image caching to the SmartNIC, thereby letting the servers focus on

their complex primary processing functions and increasing overall

data center efficiency.

7 Google Cloud. Gke image pull using streaming. Available at: https://

cloud.google.com/kubernetes-engine/docs/how-to/image-streaming

(accessed June, 2024).

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://cloud.google.com/kubernetes-engine/docs/how-to/image-streaming
https://cloud.google.com/kubernetes-engine/docs/how-to/image-streaming
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 2

AlphaBoot workflow overview.

3.2 Key challenges

Given the listed motivations, here are some key challenges that

AlphaBoot addresses:

1. Resource allocation: an effective caching framework should

strike a balance between reserving adequate resources,

particularly memory, for routine NIC tasks like checksum

calculations, data packet encryption, and TCP/IP transfers,

while ensuring there is ample space left for caching as many

container images as possible. This balance is crucial to ensure

both efficient NIC operations and improved container image

retrieval speeds.

2. Scalability and performance: SmartNICs are often deployed

in data-intensive and high-throughput environments.

Therefore, the caching framework must be highly scalable

and capable of handling increased network demands without

compromising performance. It should seamlessly adapt to

changing network conditions and accommodate growing

numbers of containerized applications.

3. Monitoring and telemetry: to effectively manage and optimize

the caching process, the framework should offer comprehensive

monitoring and telemetry capabilities. Real-time insights into

cache hit rates, memory usage, and system performance will

aid in fine-tuning the configuration and ensuring the system

operates optimally.

4 AlphaBoot overview

In this section, we discuss a high-level overview of the

components that make up AlphaBoot. As mentioned in Section

2, modern cloud data centers employ numerous servers, each

running hundreds of VMs hosting containerized workloads that

are stored in container images. A container image consists of

multiple stacked layers, typically built upon a base layer containing

core functionality and essential dependencies. Consequently,

when initializing a new container, it must retrieve the requisite

base image from an online registry such as DockerHub. While

containerization promotes lightweight and efficient deployment

by reusing base images across multiple containers on the

same VM, this is not the case across different VMs due

to strong isolation. Thus, the need to fetch the same image

separately by different VMs introduces increased cold start

latency and redundancy within the data center. AlphaBoot’s main

contribution is to allow multiple VMs to share base image

layers by caching the images in the SmartNIC. There are two

fundamental steps that AlphaBoot follows for efficient container

image caching on SmartNICs. First, fetching container images

from online registries and storing them on SmartNICs (Section

4.1), and then retrieving the cached container images from

SmartNICs into VMs (Section 4.2). These steps are outlined in

Figure 2.

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

4.1 AlphaBoot image caching

Consider a container framework that resides in a VM that needs

to pull one or more images from an online registry. Once the

request for the images is provided, AlphaBoot first intercepts the

request and checks if the image is present within the cache present

in the AlphaBoot’s cache. If the image is in the cache, the image

is retrieved from the cache and sent to the container framework,

which, in turn, boots up a container. If it is not present on the

cache, AlphaBoot directly pulls the requested image from an online

registry, sends it to the container framework and also stores the

image in AlphaBoot cache.

4.2 Retrieving cached images

When a container framework in a VM requests a container

image that is already cached by AlphaBoot, AlphaBoot efficiently

transfers the image to the VMover the network. Once done, the VM

proceeds to boots the container from the received image. Similarly,

when a subsequent container framework residing in a different

VM requests for the same container images, it can be efficiently

satisfied from this local cache, avoiding the necessity of repeated

and potentially time consuming calls to the online registry as shown

in Figure 2.

4.3 Image eviction policy

AlphaBoot caches container images on the SmartNICs in

the form of tarball images. However, the number of container

images which can be cached is limited by the disk space on the

SmartNIC. This calls for the eviction of stale container images

which are less likely to result in a cache miss if evicted to free

up space and be able to accommodate more images. We explored

two eviction policies which can be used to evict such container

images from the SmartNiC. First is the rule based Least Recently

used (LRU) cache designed to optimize the cache’s hit ratio by

prioritizing the retention of recently accessed items. In an LRU

cache, each container image is assigned a timestamp indicating the

last time it was accessed. When the cache reaches its capacity and a

new image needs to be accommodated, the LRU policy identifies

and evicts the image with the oldest access timestamp, thereby

making space for the new image. This approach operates under

the assumption that images that have not been accessed for the

longest period are less likely to be needed in the immediate future.

The second policy leverages a machine learning-based approach to

enhance the eviction strategy inspired by Mangal et al. (2020),

Gummadi (2023), and Yang et al. (2023). Unlike the rule-based

LRU cache, this approach uses predictive analytics to make more

informed eviction decisions. The choice of the cache eviction

policy ultimately depends on the nature of the workload and

infrastructure constraints. AlphaBoot is flexible and allows users

to pick a container image cache eviction policy as suitable to their

environment.

4.4 Image dedupe/compression

Growing adoption of containers results in an increasing need

for efficient storage systems for container images. Images stored

in registries face performance challenges because of the inherent

redundant nature of container images. Das et al. (2021) proposes

a solution using file-level deduplication, which stores only unique

files rather than entire layers, thus significantly reducing storage

requirements. Primary storage employs file-level deduplication,

where each file is hashed and only unique files are stored.

Metadata files track the association between images and their files,

facilitating image reconstruction during pull requests. To mitigate

the increased latency caused by reconstructing images, secondary

storage is used to store popular and recently accessed images

in their compressed formats. This approach reduces pull time

latency by allowing frequently accessed images to be served directly

from secondary storage without reconstruction. The results show

that combining file-level deduplication with popularity-based and

time-based staging storage effectively balances storage optimization

and performance, making the registry efficient in terms of both

storage and access time. The storage requirement for 64 container

images tried went down from 22GB to 14 GB which translates

to a deduplication ratio of 1.58.For a sequence of 25 pulls using

10 images with time and popularity the pull latency showed an

improvement of 69%.

Current deduplication methods are ineffective for container

images stored as gzip-compressed tar files due to low deduplication

ratios and increased overhead during image pull. Huang

(2018) models deduplication using a Markov Decision Process

(MDP) to optimize storage savings while minimizing performance

degradation. Simulation demonstrated that file-level deduplication

could significantly reduce storage requirements without severely

impacting pull performance, processing ∼4.4 layers per second on

average using 60 threads. Analyzing the effect of deduplication on

performance shows that compression time is the major bottleneck

during the pull.

5 Experimental setup

5.1 Experimental testbed setup

Our evaluation test bed consists of a Linux server containing 8-

core AMD EPYC 7232P 3.10GHz, 8GB 3200MT/S RAM, 480GB

SSD SATA 6Gbps, where the servers are equipped with Nvidia

Bluefield 2 P-Series DPU 25GbE Dual-Port SFP56, acting as the

cache for our container Images. The Nvidia Bluefield 2 SmartNIC

has 8-core Cortex A72 ARM running at 2.75GHz, 1MB L2 cache

per 2 cores, 6MB L3 cache, 16 GB of DDR4 RAM and SSD drive.

Both the server and the SmartNIC are configured with the 1 Gbps

uplink to the internet and are configured with the Ubuntu 20.04.4

operating system.

6 Results

We now compare the performance of AlphaBoot when

processing image retrieval requests from the container frameworks

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

across varying number of VMs. Under such setting, we evaluate the

impact of AlphaBoot on network utilization, as well as cold start

time measured from requesting an image to successfully starting a

container from retrieved images.

• N: Container Image Name

• A: Alphaboot Cache

• R: Container Registry

• C: Resulting Container Image

1: procedure PullContainerImage(N,A,R)

2: if N ∈ A then

3: C = LoadFromAlphaboot(N,A)

4: else

5: C = LoadFromRegistry(N,R) ⊲ Slow image load

from the remote registry

6: if C 6= −1 then ⊲ Image found in online

registry

7: SaveToAlphaboot(N,A)

8: return C ⊲ C is the retrieved container

Algorithm 1. Alphaboot container image retrieval algorithm.

6.1 AlphaBoot Implementation

AlphaBoot implementation involves modifying existing

container framework within each VM to retrieve the container

images from the local cache. For this purpose, we used Docker

(Merkel, 2014), one of the most popular container frameworks

deployed in production, as the baseline container framework. The

modification made to Docker consists of these three steps and as

demonstrated by Algorithm 1 and also illustrated in Figure 3:

1. Transferring the image retrieval request to AlphaBoot This

step requires the Docker installation within each VM to send

the image retrieval request directly to AlphaBoot. To enable this,

AlphaBoot simply acts as one of the image repositories that Docker

framework can utilize, which minimizes the code change required.

2. Retrieving the image and storing into the cache Once the

image retrieval request is received, AlphaBoot simply pulls the

image from a repository of choice and stores the image into the

cache, if the image is not stored. If the image is already in the cache,

this step is ignored. For example, the following command is relayed

and run by AlphaBoot.

docker pull <image_name>

Then, the image is saved into AlphaBoot cache as follows.

docker save <image_name> > alphaboot_img

Now the image is ready to be transferred to each VM of choice.

3. Transferring the image from AlphaBoot to the VMs Finally,

the image from the cache is transferred to the VMs. There are

multiple methods to do this, but the two methods chosen for

simplicity are Secure Copy(SCP) and usage of dedicated network

drive. Given that AlphaBoot is on a SmartNIC which runs a Linux,

SCP is used to transfer the image file from one host to another, i.e.

VMs. However, evaluations show that transfer over SCP results in

high cold start time due to handshakes required. Thus, the second

method that was chosen is to have the VMs mount a network drive

(NFS) located on AlphaBoot. Once the new images is saved into

the network drive, the VMs can simply load the image file from the

mounted drive, which removes the need for a handshake.

Once the image is transferred to the VMs, the Docker

framework in each VM can simply load the image by running the

following command:

docker load < alphaboot_img

6.2 Testing methodology

We evaluate AlphaBoot’s performance on four frequently used

popular base image layers; namely Ubuntu, Python, Alpine and

Nginx (each with more than a billion downloads on DockerHub).

Alpine is the lightest minimal Docker image based on Alpine Linux,

Python is an open source object oriented programming language,

Ubuntu is a popular open source Linux distribution and Nginx is a

popular web server. The choice of images was made on the basis of

the popularity and the sizes in Megabytes of the images as they vary

from Alpine being the smallest (<5MB) in size to Python being the

biggest (>300 MB in most functionally rich images) to Ubuntu and

Nginx being in between. Figure 4 illustrates the latency comparison

of an image pull request between a pull from a web registry and

direct load from AlphaBoot cache for the images mentioned above.

The popularity was considered due to the frequency of the images

being used as base images for other images. In addition, the size of

the image has a direct corelation to the time it takes to retrieve an

image from its source. The aim is to establish a wide spectrum of

container images that AlphaBoot can efficiently cache and save up

on boot up time proving the effectiveness of its mechanism.

Given each type of image, there are two variables introduced

to the evaluation: number of VMs requesting the base image

and type of transfer protocol. First, varying number of VMs

allows AlphaBoot to show its scalability and also its increased

efficiency as the number of VMs requesting the same base image

increases. Second, AlphaBoot implementation requires the transfer

of images from the cache to the requested VM, thus two different

implementations are evaluated for this work: secure copy protocol

(SCP) and a dedicated network drive.

6.3 Running openFaas serverless on
Alphabooot

Third, we run an application on top of Alphaboot to evaluate

the performance gain and to illustrate its functionality and

benefits in the context of a serverless computing framework. We

implemented openFaas, a Function as a Service (FaaS) platform

that is open-source, on a Minikube Cluster. This cluster represents

a scaled-down variant of a Kubernetes Cluster, predominantly

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 3

VM requesting uncached image.

employed for the local development and testing of applications

destined for Kubernetes clusters. Utilizing the faas-cli, a command-

line tool designed to facilitate the creation and deployment of

serverless functions, we developed a custom function in Python.

Following this, we uploaded the function’s image to DockerHub

and subsequently deployed the function onto a remote server.

Within this configuration, the remote server retrieves the custom-

created function image from DockerHub and initiates a container

using that image, which is then deployed as a function. When

executing Openfaas over Alphaboot, on the initial retrieval

of an image from an online registry, Alphaboot caches the

container image on a SmartNIC. The next occurrence of any VM

requesting the same function image running on the same physical

infrastructure can load the image from the cache instead of sending

a network request to fetch the image from an online registry.

Alphaboot is versatile and not limited to particular applications;

it supports the execution of various applications that utilize

Docker as a container engine. The decision to utilize a serverless

function platform for our testing was driven by the susceptibility

of serverless functions to the cold start issue, making them an

ideal scenario for evaluating a platform such as Alphaboot. A cloud

service provider that operates several virtual machines (VMs) on

shared physical infrastructure, offering serverless function services

to clients, often deploys identical functions across multiple VMs.

Alphaboot leverages the computational and storage strengths of

SmartNICs to minimize cold start durations and conserve network

bandwidth. It does so by uniquely utilizing the redundancy of

container images that naturally occurs in cloud data centers, where

multiple VMs are hosted on a single server.

6.4 Evaluation results

6.4.1 Latency comparison
We first compare the latencies involved in pulling the chosen

container images from an online registry (Tfetch) called DockerHub

and then we discuss the AlphaBoot’s image retrieval times (Tload) in

contrast to the images pulled directly by the VMs. The calculations

for the time taken to retrieve an image and boot up a container

for all the performance evaluation in our research considers the

time taken to transfer the cached image from AlphaBoot to the host

server and then further to the VM requesting it. Figure 5 shows the

comparison of image retrieval times for different images. The time

required for booting up from a cached image are as low as 93% of

the original pull time for the Alpine image, 63% for Ubuntu, 57%

for Python and 53% for Nginx.

The time saved can be calculated using the equation

Overall Latency Improvement = N × (Tfetch − Tload)

where,

Tfetch =Time taken to fetch an image from the online registry.

Tload =Time taken to load an image from the SmartNIC cache.

N =Number of times the same image is requested.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 4

ECDF for Alphaboot cache load vs. online registry pull plotted for 1.000 VM image pull requests each.

The time taken by AlphaBoot to pull an image from an online

registry and convert the container image into an AlphaBoot image

file inside the cache is incurred only once per container image. In

contrast, the VMs requesting the cached image to build containers

is a repetitive process, which is compared against the repetitive pull

requests made by the VMs to an online registry. Thus, as more

virtual machines (VMs) request the same cached image, the initial

image retrieval time becomes less significant compared to the time

saved each time a VM requests the container image. The time spent

pulling and saving the image into the cache adds up initially, but its

impact diminishes as the number of VMs utilizing the cached image

increases. Ultimately, the time saved from serving cached images

outweighs the initial overhead, illustrated in Figure 6.

We also compared two ways of transferring the cached image

from the AlphaBoot to the VM, SCP and NFS. As shown in

Table 1, we can see that AlphaBoot suffers greatly when SCP is

used to transfer the images from the cache, even up to 433.87%.

However, when used the NFS method of transfer, the performance

gain is quite significant, which is up to 92.75% improvement when

comparing with retrieving directly from DockerHub. This shows

that with more optimizations, AlphaBoot can have a significant

improvement over retrieving directly over the internet. Also, we see

that the improvement is large for a small image size, whose retrieval

times are often limited by initial connection establishment time.

Thus, as AlphaBoot is used for more container layers, which are

often smaller in size, we expect a much greater performance gain in

production.

6.4.2 Network bandwidth usage
As an outcome of caching container images on SmartNICs,

we achieve a noteworthy reduction in the network bandwidth

needed to retrieve these images from an online container registry.

Instead of constantly downloading the same images from an online

container registry on the internet, we can now access them directly

from the locally cached copies on the SmartNICs. This bandwidth-

saving effect becomes particularly prominent when there’s an

increasing number of virtual machines (VMs) that require the

same container image. The significance of this bandwidth-saving

measure is further emphasized when we consider the scale of

operations. This not only enhances network efficiency but also

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 5

Comparison of image retrieval time.

FIGURE 6

Average cold start time.

TABLE 1 Image retrieval time comparison between online registry and

AlphaBoot using SCP and NFS.

Image
name

Baseline
(s)

AlphaBoot
(s)

%
Improvement

SCP

Ubuntu 3.185 13.819 –433.87%

Python 5.133 14.316 –278.9%

Alpine 1.724 4.368 –253.36%

Nginx 4.789 5.640 –117.76%

NFS

Ubuntu 3.185 1.194 62.52%

Python 5.133 2.236 56.44%

Alpine 1.724 0.127 92.64%

Nginx 4.789 2.263 52.75%

has cost-saving implications for the cloud provider. The results

in Figure 7 are computed using a specific set of container images.

The images and the image sizes that are used for the calculations

are: Python (128 MB), Ubuntu (77.8 MB), Nginx (143 MB), and

Alpine (7.33 MB). Under this setup, as expected, we can see that

the network bandwidth utilization goes down by up to 99.9% as

the number of VMs utilizing the same base image grows. Another

point to note is that VMs are often restarted from scratch on the

same host machine, so rather than assuming the 100k VMs to run

at the same time on a single host, it is more realistic to assume the

100k VMs are booted over a period of time on the same host. The

network bandwidth saved can be calculated using the equation

Bandwidth Saved = N × B

where,

N = number of times the same image is requested.

B = size of the image in bytes.

6.4.3 SmartNIC memory and disk usage
We analyze the peak memory usage by Alphaboot and the Disk

space used by cached container images stored as gzip tarball files

to understand the overhead created by running Alphaboot on a

SmartNIC and to understand if it is feasible to run alongside regular

SmartNIC operations and if it hinders the SmartNIC’s ability to

do its regular tasks. We run the command: /usr/bin/time -v sudo

docker pull python and observed that on an average the Maximum

resident set size was (referring to the peak amount of physical

memory that the process used during its execution) around 4.98MB

for all the four container images under test mentioned in the above

sections which happens to be way less as compared to the 15Gb total

memory present on the SmartNIC. As far as the disk space occupied

by the cached container images is concerned they occupy:Alpine-

7.7MB;Nginx-188MB;Python-996MB;Ubuntu-69MB, which is also

negligible when compared to the 42GB total disk space available.

6.4.4 Serverless function cold start time
We analyze the latency differences between deploying a

function whose container image is pre-cached on a SmartNIC and

the deployment time required for a function whose image must be

retrieved from an online registry. The calculation of the time taken

to deploy a function on a serverless platform consists of the time it

takes after a deploy command is issued, following which Alphaboot

checks its cache for the necessary image to initiate a container. If

found, it retrieves the image, boots up a container, and ensures the

function is deployed on a container orchestration platform, making

it ready for invocation. The time required to deploy a serverless

function that is cached by Alphaboot is 0.08s, in contrast to when

the container image was to be fetched from an online registry,

which comes out to be 4.7s, showing a gain in the cold start time

of upto 98.2% when a simple function that returns a string when

invoked is deployed.

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

FIGURE 7

Saved network bandwidth.

7 Related work

7.1 SmartNICs in the cloud

The growing adoption of SmartNICs in modern data centers

has presented researchers with opportunities to explore novel

ways of offloading not only traditional networking tasks, such as

checksum computation and encryption, but also other resource-

intensive data center operations that were previously handled by

bare metal servers. By offloading such operations to SmartNICs,

data centers can reduce the burden on server CPUs and achieve

more efficient storage management, which translates into cost

savings for cloud providers. One notable development is Hyperloop

(Kim et al., 2018), which leverages SmartNICs with Remote

Direct Memory Access (RDMA) capabilities to accelerate storage

replication operations. This means that we can further optimize

AlphaBoot by employing RDMA usage to transfer data from

the SmartNIC to the host machine and the VMs. Another

significant advancement is λ-NIC (Choi et al., 2020), which enables

serverless compute on programmable SmartNICs. This framework

allows data center operators to dynamically offload compute tasks

from server CPUs to SmartNICs, facilitating improved resource

utilization and scalability. With λ-NIC, cloud providers can better

meet the demands of their customers while optimizing their

server infrastructure. Coupled along with AlphaBoot, we believe

that λ-NIC can further improve the cold start performance of

serverless functions in the cloud. Similar extension to this work

is Speedo (Daw et al., 2021) a system that offloads FaaS dispatch

and orchestration services to SmartNICs from user space. Finally,

major cloud providers like Microsoft have also explored the use

of FPGA-based SmartNICs to offload tasks, such as Hypervisor

switching (Firestone et al., 2018). This offloading improves the

overall performance of virtual environments, resulting in enhanced

service quality for cloud customers. A future work for AlphaBoot is

to investigate other SmartNIC architecture for added performance.

7.2 Methods for improving cold start

In the realm of tackling the cold start problem, it is observed

that container images with shared layers tend to have a huge

positive impact on the cold boot time (Beni et al., 2021). In

the context of serverless functions cold start times FaaSLight

(Liu et al., 2023) achieves the reduction of cold-start latency

through application-level optimization, specifically targeting the

preparation phase latency, application code loading latency, and

total response latency of serverless functions. By optimizing the

code loading process and reducing unnecessary code, FaaSLight

significantly improves the performance of FaaS applications,

leading to a decrease in cold-start latency and overall response time.

Many research works aiming to tackle the issue of cold start in

containers use scheduling algorithms or machine learning to try to

reduce the frequency of cold start occurrences as much as possible.

For example, there are a set of works trying to reduce the cold start

time by using a scheduling algorithms, such as Least Recently Used

warm Container Selection (LCS) by keeping the containers alive

for a longer period of time (Sethi et al., 2023). Pan et al. (2022)

also deploys a similar approach of keeping the containers warm

(running) to serve serverless request on IoT devices. AlphaBoot’s

approach toward tackling the cold start problem differs in one

major way that is it doesn’t use the warm start approach but instead

actually reduces the latency in the case of occurrence of a cold

start. Chen et al. (2024) attempts to reduce the cold start latency

by deploying software stack optimizations. Wen et al. (2024) is an

advanced resource scaling system designed to optimize container

allocation and placement in serverless platforms. ComboFunc

employs a heuristic greedy algorithm to efficiently address the NP-

hard problem of combining and placing heterogeneous containers,

ensuring effective resource utilization and scalability within the

Kubernetes environment. There are also machine learning based

approaches to reduce cold start frequencies (Agarwal et al., 2021) by

looking into servermetrics such as CPUutilization. The approaches

do show performance improvements and are a valid set of works

that can complement AlphaBoot.

8 Future directions

We now discuss the future direction of AlphaBoot to further

improve the performance, network and cost benefits.

8.1 Accelerating file transfer with RDMA

AlphaBoot currently utilizes NFS to transfer cached images

from the SmartNIC to the VM on a bare metal server. However,

NFS introduces added latency overhead due to its software

abstraction and multiple network layers. To enhance the transfer

process and further improve speed, a future direction is to utilize

a lower-level interface, such as the Remote Direct Memory Access

(RDMA) over Peripherral Component Interconnect express(PCIe),

which can transfer small images from the SmartNIC to the

bare metal server and/or even to the VMs without any software

abstraction or CPU usage. RDMA allows for direct memory

access between the memory of different computers without

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

involving the operating system, thereby significantly reducing

latency and CPU overhead. Thus, we expect that, by utilizing

RDMA, container images will be directly loaded into the server’s

memory, thus expediting the container building process and

improving overall system performance. To further enhance this

process, future exploration could involve optimizing image files

themselves for RDMA transfer. Such advancements would make

the container deployment process more efficient and suitable for

high-throughput, low-latency environments.

However, this technique was not considered for this paper, since

it requires additional considerations in code to ensure security in

the host, since RDMA bypasses any software and can introduce

the bare-metal servers to malicious images quite easily. Thus, the

level of security should be evaluated for the specific use case and the

user should determine if the potential performance gains justify the

security concerns. Additionally, implementing security measures

such as hardware isolation, access controls, and encryption could

help mitigate some of the risks associated with sharing a physical

interface. Thus, any decision to switch to a RDMA-based approach

for file transfer should involve a thorough risk analysis and take into

account the specific requirements and security needs of the system.

8.2 Image compression

The AlphaBoot system utilizes gzip compression to perform a

lossless compression of container images, but this method is quite

generic and is a file-level compression. Therefore, gzip compression

does not take the container architecture into consideration, such as

compressing and combining layers separately. As a recap, container

images are constructed using layers that are stacked on top of each

other and each layer only stores information about the differences

between them; then, it is possible to compress the images by looking

at the diffs that are redundant acrossmultiple layers. Our inspection

shows that current Docker’s image compression mechanism is

insufficient in eliminating such redundancies. Surprisingly, only 3%

of the files in these registries are unique, indicating a high level of

duplication at the file level (Zhao et al., 2019). This duplication

likely extends to the layers themselves, presenting an opportunity

to develop mechanisms that can effectively de-duplicate common

differences among layers within the same image. Thus, for a

follow up work, we are exploring methods to compress a group of

containers by evaluating the contents in their layers.

There are some existing works on container image

compression. First, DockerSlim is a tool designed to optimize

Docker container images by reducing their size significantly

without modifying their functionality. Quest (2024) optimizes

container images through a combination of dynamic and static

analyses. Initially, it runs the container in a special monitoring state

to observe its typical operations, identifying which components

are actively used during runtime. Concurrently, it performs a

static analysis to inspect the container’s file system, removing

unused files and dependencies that are not necessary for its

functionality. This comprehensive analysis allows slim toolkit

to create a significantly smaller container image by including

only the essential components. The minimization process can

reduce the image size by up to 30x, streamlining deployment

without sacrificing the container’s operational capabilities.

Notably, well-known container image registries like Docker Hub

offer pre-existing slim versions of these commonly used base

container images. Thus, first line of future work is to integrate

AlphaBoot with the Slim Toolkit to compress the size of container

images cached on SmartNICs. To achieve image compression on

AlphaBoot, we will need to utilize the Slim Toolkit specifically

for widely used generic base layers, as these tend to be bulky and

contain many files unnecessary for every application. However,

this slimming process may obfuscate layer information during

compression, which may not be ideal for AlphaBoot.

Lastly, for further space optimization, we should consider

consolidating multiple RUN commands in DockerFiles to prevent

the creation of excessive layers and utilize tools like docker-squash

to merge layers and reclaim disk space. Also, we plan to ensure that

caches are cleaned up during the build process, which is another

effective strategy to keep image sizes minimal in AlphaBoot.

8.3 Image eviction

In the proposed AlphaBoot system, addressing the challenge

of limited storage on SmartNICs is most important for effective

scaling in data center environments. Currently, AlphaBoot

enhances the retrieval and sharing of container images across

virtual machines by caching them locally on SmartNICs, thus

mitigating cold start issues. However, with thousands of gigabytes

worth of container images needing management, the finite storage

capacity of SmartNICs necessitates a robust image eviction strategy

to maintain efficiency.

To scale AlphaBoot for data center-level distributed workloads,

image eviction becomes critical. This involves removing less

frequently used or outdated images from the cache to free up

space for new ones. The eviction policy could be based on various

heuristics, such as least recently used (LRU) or least frequently used

(LFU) criteria, which prioritize the removal of images that are least

likely to be needed soon. Advanced strategies might incorporate

machine learning to predict which images could be evicted with

minimal impact on performance, thereby optimizing the use of

limited SmartNIC storage.

Further research could explore dynamic adjustment of the

caching strategy based on real-time analysis of container usage

patterns and network conditions. By integrating these adaptive

strategies, AlphaBoot could proactively manage storage and

enhance overall data center efficiency, ensuring that the most

critical images are always readily available while less pertinent

ones are efficiently cycled out. This adaptive approach would not

only maintain but also enhance the performance benefits of the

AlphaBoot system in larger-scale operations.

8.4 Utilizing other types of SmartNICs

In data centers with varying workload requirements, different

types of SmartNICs—such as FPGA-based, ASIC-based, or SoC-

based—are employed to optimize performance and flexibility

(Kfoury et al., 2024). FPGA-based SmartNICs are highly

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

programmable, enabling real-time updates and modifications

to data processing tasks without necessitating hardware

modifications. This feature could be helpful for AlphaBoot

for testing and deploying new algorithms for image caching and

retrieval. The adaptability of FPGAs allows for the development

and refinement of container image handling techniques that can

evolve alongside advancements in AlphaBoot’s algorithms or

emerging container technologies.

Conversely, ASIC-based SmartNICs are tailored for optimized

performance in predefined tasks, owing to their fixed-function

architecture. While they offer less flexibility than FPGAs, they

excel in speed and energy efficiency for tasks with well-defined

and stable processing requirements. In the context of AlphaBoot,

ASICs could be specifically tuned to manage serverless functions or

image handling routines that are consistent and undergo minimal

changes, yet require rapid processing in high-traffic data center

environments. Thus, they are ideal for enhancing performance

during peak operational periods in production settings.

SoC-based SmartNICs provide a compromise, incorporating

both processing power and programmability, thereby balancing the

trade-offs between FPGA and ASIC technologies. This makes them

a versatile option suitable for a variety of data center applications,

ranging from development and testing phases to stable, high-

volume production environments.

9 Discussion

9.1 SmartNIC adoption

The Deployment of SmartNICs in the data centers of major

public cloud providers has resulted in the opportunity for adoption

of offloading techniques in cloud environments. Recent initiatives

by leading cloud providers highlight the growing trend toward

integrating SmartNICs into data center infrastructure. For example,

Microsoft has employed SmartNICs in Azure Data Centers to

offload network functions Microsoft8 and Alibaba has also joined

this trend, deploying data processing units (DPUs) to enhance their

cloud services’ offload capabilities, providing additional efficiency,

both in compute and energy usage, and security layers (Mann,

2022). These examples illustrate that SmartNICs are already part

of the core infrastructure for public cloud operators, effectively

making this technology accessible at scale and indicate their

viability and readiness for practical use in large-scale data centers.

Our approach, as detailed in this paper, is targeted specifically at

data centers, public cloud providers and operators who can leverage

such advanced infrastructure to optimize service performance,

as opposed to individual or smaller scale users with standard

hardware configurations. The availability of SmartNICs in modern

day cloud data centers makes our proposed method relevant for

optimizing container image retrieval tackling the container cold

start problem and sharing base container images with multiple

virtual environments running on common bare metal servers.

8 Microsoft. Azure accelerated networking: Smartnics in the public cloud.

Available at: https://www.microsoft.com (accessed June, 2024).

9.2 Security concerns around SmartNIC
o	oad

In addressing security concerns, our framework ensures strong

data isolation by caching only the most commonly used layers,

which are primarily pulled from trusted sources like official images

in online registries such as DockerHub. By exclusively caching and

sharing these verified layers, we mitigate the risks associated with

unverified or potentially malicious content. If the layer is modified

by the processes inside the VMs, they are stored in the VMs directly

and will not be pulled from a remote repository again. In addition,

in case the user-modified image is added to the remote repository,

the hash signature of the image will be different than any other

images available, eliminating the need for added security.

AlphaBoot also provides stronger isolation than storing and

caching images on the host server. In fact, this is one of the

main advantages of AlphaBoot that is different than placing cache

on the host machine. First of all, given that SmartNICs operate

within a separate security domain with separate credentials for

authentication, even if the host server is compromised, SmartNICs

will not be compromised. Furthermore, network for exchanging

control traffic to the SmartNIC typically is configured to be

separated and isolated from production network that VMs utilize.

Thus, even if the production network is compromised somehow,

control traffic to the SmartNIC will likely be not compromised,

reducing another security concern. Some notable works like Choi

et al. (2024) and Patel and Choi (2023) utilizes this property to build

a secure system for federated machine learning and blockchain.

10 Conclusion

Container Image retrieval speeds can be improved to a great

degree especially if the same image is required by a VM multiple

times by caching the image on a SmartNIC in a data Center.

Especially when there are repeated pulls for the same images it

makes a lot of sense to cache them locally. In this paper, we present

AlphaBoot a framework to cache container images on SmartNICs

and a way to retrieve images to greatly reduce cold start times

and network bandwidth usage. We believe that utilizing AlphaBoot

will allow cloud providers to save huge cost and energy in serving

containerized workloads that power many important workloads

today.

Author’s note

We release an Open Source Framework that is built based on

the popular Docker framework that demonstrates the reduction

in the Container cold start time at https://github.com/The-Cloud-

Lab/Alphaboot.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found in the article/supplementary

material.

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://www.microsoft.com
https://github.com/The-Cloud-Lab/Alphaboot
https://github.com/The-Cloud-Lab/Alphaboot
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

Author contributions

SG: Data curation, Investigation, Software, Validation, Writing

– original draft, Writing – review & editing. SC: Conceptualization,

Data curation, Formal analysis, Funding acquisition, Investigation,

Methodology, Project administration, Resources, Software,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This project

has been funded by NSF CRII 2245352.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Agarwal, S., Rodriguez, M. A., and Buyya, R. (2021). “A reinforcement learning
approach to reduce serverless function cold start frequency," in 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
(Melbourne, VIC: IEEE), 797–803. doi: 10.1109/CCGrid51090.2021.00097

AWSWhitepapers (2024). Overview of deployment options on AWS updates.
Available at: https://docs.aws.amazon.com/pdfs/whitepapers/latest/overview-
deployment-options/overview-deployment-options.pdf#amazon-elastic-container-
service

Beni, E. H., Truyen, E., Lagaisse, B., Joosen, W., and Dieltjens, J. (2021). “Reducing
cold starts during elastic scaling of containers in Kubernetes," in Proceedings of the 36th
Annual ACM Symposium on Applied Computing, SAC ’21 (New York, NY: Association
for Computing Machinery), 60–68. doi: 10.1145/3412841.3441887

Bhalgat, A. (2014).Choosing the best smartnic. Available at: https://developer.nvidia.
com/blog/choosing-the-best-dpu-based-smartnic/

Chen, Q., Qian, J., Che, Y., Lin, Z., Wang, J., Zhou, J., et al. (2024). “Yuanrong:
a production general-purpose serverless system for distributed applications in
the cloud," in Proceedings of the ACM SIGCOMM 2024 Conference, ACM
SIGCOMM ’24 (New York, NY: Association for Computing Machinery), 843–859.
doi: 10.1145/3651890.3672216

Choi, S., Patel, D., Zad Tootaghaj, D., Cao, L., Ahmed, F., Sharma, P.,
et al. (2024). FEDNIC: enhancing privacy-preserving federated learning via
homomorphic encryption offload on smartnic. Front. Comput. Sci. 6:1465352
doi: 10.3389/fcomp.2024.1465352

Choi, S., Shahbaz,M., Prabhakar, B., and Rosenblum,M. (2020). “λ-NIC: Interactive
serverless compute on programmable smartnics," in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS) (Singapore: IEEE), 67–77.
doi: 10.1109/ICDCS47774.2020.00029

Dang, H. T., Sciascia, D., Canini, M., Pedone, F., and Soulé, R. (2015). “Netpaxos:
consensus at network speed," in Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15 (New York, NY: Association for
Computing Machinery), 1–7. doi: 10.1145/2774993.2774999

Das, S., Saraf, M., Jagadeesh, V., Amardeep, M., and Phalachandra, H. (2021).
“Deduplication of Docker image registry," in 2021 IEEE Madras Section Conference
(MASCON) (Chennai: IEEE), 1–8. doi: 10.1109/MASCON51689.2021.9563465

Daw, N., Bellur, U., and Kulkarni, P. (2021). “Speedo: fast dispatch and
orchestration of serverless workflows," in Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’21 (New York, NY: Association for Computing Machinery),
585–599. doi: 10.1145/3472883.3486982

Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M., et
al. (2018). “Azure accelerated networking:$SmartNICs$ in the public cloud," in 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
51–66. Available at: https://www.usenix.org/conference/nsdi18/presentation/firestone

GoogleCloud (2023).Google Cloud Run. Available at: https://cloud.google.com/run/
docs (accessed June, 2024).

Gummadi, R. (2023). Preference learning with automated feedback for cache eviction.

Huang, B. (2018). Deduplication in container image storage system: Model and
cost-optimization analysis.

Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., et al. (2017). “Netcache:
balancing key-value stores with fast in-network caching," in Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17 (New York, NY: Association for
Computing Machinery), 121–136. doi: 10.1145/3132747.3132764

Kfoury, E. F., Choueiri, S., Mazloum, A., AlSabeh, A., Gomez, J., and Crichigno,
J. (2024). A comprehensive survey on smartnics: architectures, development
models, applications, and research directions. IEEE Access 12, 107297–107336.
doi: 10.1109/ACCESS.2024.3437203

Kim, D., Memaripour, A., Badam, A., Zhu, Y., Liu, H. H., Padhye, J., et al.
(2018). “Hyperloop: group-based nic-offloading to accelerate replicated transactions
in multi-tenant storage systems," in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (New York, NY: ACM), 297–312.
doi: 10.1145/3230543.3230572

Liu, X., Wen, J., Chen, Z., Li, D., Chen, J., Liu, Y., et al. (2023). Faaslight:
general application-level cold-start latency optimization for function-as-a-service in
serverless computing. ACM Trans. Softw. Eng. Methodol. 32, 1–29. doi: 10.1145/358
5007

Mangal, A., Jain, J., Guliani, K. K., and Bhalerao, O. (2020). Deap cache: deep
eviction admission and prefetching for cache. arXiv [Preprint]. arXiv:2009.09206.
doi: 10.48550/arXiv:2009.09206

Mann, T. (2022). Gke image pull using streaming. Available at: https://www.
theregister.com/2022/06/14/alibaba_dpu_cloud/ (accessed February, 2024).

Manner, J., Endreß, M., Heckel, T., and Wirtz, G. (2018). “Cold start influencing
factors in function as a service," 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion) (Zurich: IEEE), 181–188.
doi: 10.1109/UCC-Companion.2018.00054

Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux J. 2014:2.

MicrosoftAzure (2023). Azure container instances. Available at: https://learn.
microsoft.com/en-us/azure/container-instances/ (accessed June, 2024).

NVIDIA (2024). NVDIA Bluefield Networking Platform. Available at: https://www.
nvidia.com/en-us/networking/products/data-processing-unit/ (accessed June, 2024).

Pan, L., Wang, L., Chen, S., and Liu, F. (2022). “Retention-aware container
caching for serverless edge computing," in IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications (London: IEEE), 1069–1078.
doi: 10.1109/INFOCOM48880.2022.9796705

Patel, D., and Choi, S. (2023). “Smartnic-powered multi-threaded proof of work," in
2023 Fifth International Conference on Blockchain Computing and Applications (BCCA)
(Kuwait: IEEE), 200–207. doi: 10.1109/BCCA58897.2023.10338942

Quest, K. (2024). Slim toolkit. Available at: https://github.com/slimtoolkit/slim
(accessed June 3, 2024).

Saxena, D., Ji, T., Singhvi, A., Khalid, J., and Akella, A. (2022). “Memory
deduplication for serverless computing with medes," in Proceedings of the
Seventeenth European Conference on Computer Systems, EuroSys ’22 (New York,
NY: Association for Computing Machinery), 714–729. doi: 10.1145/3492321.352
4272

Sethi, B., Addya, S. K., and Ghosh, S. K. (2023). “LCS: alleviating total cold
start latency in serverless applications with LRU warm container approach," in
Proceedings of the 24th International Conference on Distributed Computing and
Networking, ICDCN ’23 (New York, NY: Association for Computing Machinery),
197–206. doi: 10.1145/3571306.3571404

Wang, L., Li, M., Zhang, Y., Ristenpart, T., and Swift, M. (2018). “Peeking behind
the curtains of serverless platforms," in 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (Boston, MA: USENIX Association), 133–146.

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://doi.org/10.1109/CCGrid51090.2021.00097
https://docs.aws.amazon.com/pdfs/whitepapers/latest/overview-deployment-options/overview-deployment-options.pdf#amazon-elastic-container-service
https://docs.aws.amazon.com/pdfs/whitepapers/latest/overview-deployment-options/overview-deployment-options.pdf#amazon-elastic-container-service
https://docs.aws.amazon.com/pdfs/whitepapers/latest/overview-deployment-options/overview-deployment-options.pdf#amazon-elastic-container-service
https://doi.org/10.1145/3412841.3441887
https://developer.nvidia.com/blog/choosing-the-best-dpu-based-smartnic/
https://developer.nvidia.com/blog/choosing-the-best-dpu-based-smartnic/
https://doi.org/10.1145/3651890.3672216
https://doi.org/10.3389/fcomp.2024.1465352
https://doi.org/10.1109/ICDCS47774.2020.00029
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1109/MASCON51689.2021.9563465
https://doi.org/10.1145/3472883.3486982
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://cloud.google.com/run/docs
https://cloud.google.com/run/docs
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1109/ACCESS.2024.3437203
https://doi.org/10.1145/3230543.3230572
https://doi.org/10.1145/3585007
https://doi.org/10.48550/arXiv:2009.09206
https://www.theregister.com/2022/06/14/alibaba_dpu_cloud/
https://www.theregister.com/2022/06/14/alibaba_dpu_cloud/
https://doi.org/10.1109/UCC-Companion.2018.00054
https://learn.microsoft.com/en-us/azure/container-instances/
https://learn.microsoft.com/en-us/azure/container-instances/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://doi.org/10.1109/INFOCOM48880.2022.9796705
https://doi.org/10.1109/BCCA58897.2023.10338942
https://github.com/slimtoolkit/slim
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3571306.3571404
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Galvankar and Choi 10.3389/fhpcp.2025.1499519

Wen, Z., Chen, Q., Deng, Q., Niu, Y., Song, Z., Liu, F., et al. (2024). Combofunc:
joint resource combination and container placement for serverless function scaling
with heterogeneous container. IEEE Trans. Parallel Distrib. Syst. 35, 1989–2005.
doi: 10.1109/TPDS.2024.3454071

Yang, D., Berger, D. S., Li, K., and Lloyd, W. (2023). A learned cache
eviction framework with minimal overhead. arXiv [Preprint]. arXiv:2301.11886.
doi: 10.48550/arXiv:2301.11886

Zhao, N., Lin, M., Albahar, H., Paul, A. K., Huang, Z., Abraham, S., et al. (2024). An
end-to-end high-performance deduplication scheme for Docker registries and Docker
container storage systems. ACM Trans. Storage 20:18. doi: 10.1145/3643819

Zhao, N., Tarasov, V., Anwar, A., Rupprecht, L., Skourtis, D., Warke, A., et
al. (2019). “Slimmer: weight loss secrets for Docker registries," in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD) (Milan: IEEE), 517–519.
doi: 10.1109/CLOUD.2019.00096

Frontiers inHighPerformanceComputing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1499519
https://doi.org/10.1109/TPDS.2024.3454071
https://doi.org/10.48550/arXiv:2301.11886
https://doi.org/10.1145/3643819
https://doi.org/10.1109/CLOUD.2019.00096
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	AlphaBoot: accelerated container cold start using SmartNICs
	1 Introduction
	2 Background
	2.1 Containers
	2.2 SmartNICs
	2.3 Container image storage management

	3 Motivation and challenges
	3.1 Motivations
	3.2 Key challenges

	4 AlphaBoot overview
	4.1 AlphaBoot image caching
	4.2 Retrieving cached images
	4.3 Image eviction policy
	4.4 Image dedupe/compression

	5 Experimental setup
	5.1 Experimental testbed setup

	6 Results
	6.1 AlphaBoot Implementation
	6.2 Testing methodology
	6.3 Running openFaas serverless on Alphabooot
	6.4 Evaluation results
	6.4.1 Latency comparison
	6.4.2 Network bandwidth usage
	6.4.3 SmartNIC memory and disk usage
	6.4.4 Serverless function cold start time

	7 Related work
	7.1 SmartNICs in the cloud
	7.2 Methods for improving cold start

	8 Future directions
	8.1 Accelerating file transfer with RDMA
	8.2 Image compression
	8.3 Image eviction
	8.4 Utilizing other types of SmartNICs

	9 Discussion
	9.1 SmartNIC adoption
	9.2 Security concerns around SmartNIC offload

	10 Conclusion
	Author's note
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

