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In situ approaches can accelerate the pace of scientific discoveries by allowing

scientists to perform data analysis at simulation time. Current in situ workflow

systems, however, face challenges in handling the growing complexity and

diverse computational requirements of scientific tasks. In this work, we present

Wilkins, an in situ workflow system that is designed for ease-of-use while

providing scalable and e�cient execution of workflow tasks. Wilkins provides

a flexible workflow description interface, employs a high-performance data

transport layer based on HDF5, and supports tasks with disparate data rates

by providing a flow control mechanism. Wilkins seamlessly couples scientific

tasks that already use HDF5, without requiring task code modifications. We

demonstrate the above features using both synthetic benchmarks and two

science use cases in materials science and cosmology.
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1 Introduction

In situ workflows have gained traction in the high-performance computing (HPC)

community because of the need to analyze increasing data volumes, together with the

ever-growing gap between the computation and I/O capabilities of HPC systems. In situ

workflows run within a single HPC system as a collection of multiple tasks, which are often

large and parallel programs. These tasks communicate over memory or the interconnect

of the HPC system, bypassing the parallel file system. Avoiding physical storage minimizes

the I/O time and accelerates the pace of scientific discoveries.

Despite their potential advantages, challenges for in situworkflows include the growing

complexity and heterogeneity of today’s scientific computing, which pose several problems

that are addressed in this article. First, the workflow system should enable seamless

coupling of user task codes, while providing a flexible interface to specify diverse data

and computation requirements of these tasks. In particular, the workflow interface should

support specification of today’s complex workflows including computational steering and

ensembles of tasks. Second, user tasks may employ a wide variety of data models. This

heterogeneity of the data is even more evident with the growing number of AI tasks being

incorporated in in situ workflows. The workflow system should provide a data model

abstraction through which users can specify their view of data across heterogeneous tasks.

Third, in situ workflows often include tasks with disparate data rates, requiring efficient

flow control strategies to mitigate communication bottlenecks between tasks.

Another key factor is the usability of in situ workflows. The workflow systems should

be easy to use while being able to express the different requirements of users. One

common concern among users is the amount of required modifications to their task codes.

Unfortunately, the current state of the art often requires changes to user codes, where users
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manually need to insert workflow API calls into their codes to

be able to run them within the in situ workflow system. Such

code modifications can be cumbersome, depending on the level of

such changes, and further impede adoption of workflow systems.

Ideally, the same code should be able to run standalone as a single

executable and as part of a workflow.

Driven by the needs of today’s computational science

campaigns, we introduce Wilkins, an in situ workflow system with

the following features:

• Ease of adoption, providing scalable and efficient execution of

workflow tasks without requiring any task code changes.

• A flexible workflow description interface that supports various

workflow topologies ranging from simple linear workflows to

complex ensembles.

• A high-performance data transport layer based on the rich

HDF5 data model.

• A flow control mechanism to support efficient coupling of in

situ workflow tasks with different rates.

We demonstrate the above features with both synthetic

experiments and two different science use cases. The first is from

materials science, where a workflow is developed for capturing a

rare nucleation event. This requires orchestrating an ensemble of

multiple molecular dynamics simulation instances coupled to a

parallel in situ feature detector. In the second use case, the in situ

workflow consists of a cosmological simulation code coupled to

a parallel analysis task that identifies regions of high dark-matter

density. These tasks have disparate computation rates, requiring

efficient flow control strategies.

The remainder of this paper is organized as follows. Section 2

presents background and related work. Section 3 explains the

design and implementation of Wilkins. Section 4 presents our

experimental results in both synthetic benchmarks as well as two

representative science use cases. Section 5 concludes the paper with

a summary and a look toward the future.

2 Background and related work

We first provide a brief background on in situworkflows. Then,

we present the related work by categorizing in situ workflows

according to their workflow description interfaces and data transfer

mechanisms.

2.1 In situ workflows

Scientific computing encompasses various interconnected

computational tasks. In situworkflow systems have been developed

over the years by the HPC community to automate the

dependencies and data exchanges between these tasks, eliminating

the need formanual management. In situworkflows are designed to

run within a single HPC system, launching all tasks concurrently.

Data transfer between these tasks is done through memory or

interconnect of the HPC system instead of the physical storage.

Representative of such systems include ADIOS (Boyuka et al.,

2014), Damaris (Dorier et al., 2016), Decaf (Yildiz et al., 2022),

ParaView Catalyst (Ayachit et al., 2015), SENSEI (Ayachit et al.,

2016), and VisIt Libsim (Kuhlen et al., 2011).

2.2 Workflow description interfaces

Most in situ workflow systems use a static declarative interface

in the form of a workflow configuration file to define the workflow.

For instance, Decaf (Yildiz et al., 2022) and FlowVR (Dreher

and Raffin, 2014) workflow systems use a Python script for

workflow graph description, while ADIOS (Boyuka et al., 2014),

Damaris (Dorier et al., 2016), and VisIt Libsim (Kuhlen et al.,

2011) all use an XML configuration file. Similarly, Wilkins provides

a simple YAML configuration file for users to describe their

workflows. Someworkflow systems choose to employ an imperative

interface. Henson (Morozov and Lukic, 2016), a cooperative

multitasking system for in situ processing, follows this approach by

having users directly modify the workflow driver code.

Alternatively, workflows can be defined implicitly using a

programming language such as Swift/T (Wozniak et al., 2013),

which schedules tasks according to data dependencies within the

program. While Swift/T can handle complex workflows, users need

to organize and compile their code into Swift modules.

One important aspect of workflow description interfaces is

their extensibility while maintaining simplicity. In particular, the

workflow interface should allow users to define complex scientific

workflows with diverse requirements, ideally with minimal user

effort. One example is ensemble workflows where there can be

numerous workflow tasks and communication channels among

them. Even though ensembles of simulations today are often

executed offline in a preprocessing step prior to analyzing the

results, there is a growing trend to execute them in situ in

order to dynamically adapt the search space, save storage, and

reduce time to solution. For instance, there are some in situ

systems that are specifically designed for this type of workflows.

Melissa (Schouler et al., 2023) is a framework to run large-scale

ensembles and process them in situ. LibEnsemble (Hudson et al.,

2021) is a Python library that supports in situ processing of large-

scale ensembles. DeepDriveMD (Brace et al., 2022) is a framework

for ML-driven steering of molecular dynamics simulations that

couples large-scale ensembles of AI and HPC tasks. There are

also domain-specific coupling tools in certain scientific fields that

support ensemble simulations, such as the climate community with

CESM (Kay et al., 2015) and E3SM (Golaz et al., 2022). While

we also support ensembles in Wilkins, our workflow description

interface is domain-agnostic and generic, which is not specifically

tailored to a particular category of workflows, such as ensembles.

2.3 Data transfer mechanisms

One key capability of workflows is to automate the data

transfers between individual tasks within the workflow. Data

transfer mechanisms vary among in situ workflows, but shared

memory and network communication are the most common data

transfer mechanisms.
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In in situ workflows where tasks are colocated on the same

node, shared memory can offer benefits by enabling zero-copy

communication. VisIt’s Libsim and Paraview’s Catalyst use shared-

memory communication between analysis and visualization tasks,

operating synchronously with the simulation within the same

address space. Henson is another workflow system that supports

shared-memory communication among colocated tasks on the

same node. This is achieved by dynamically loading the executables

of these tasks into the same address space.

When the workflow tasks are located on separate nodes within

the same system, data can be transferred between the tasks using

the system interconnect. This approach enables efficient parallel

communication by eliminating the need for the parallel file system.

Decaf (Yildiz et al., 2022) is a middleware for coupling parallel

tasks in situ by establishing communication channels over HPC

interconnects throughMPI. Similarly, Damaris (Dorier et al., 2016)

uses direct messaging via MPI between workflow tasks to exchange

data. Wilkins also adopts this approach to provide efficient parallel

communication between workflow tasks.

Some workflow systems opt to use a separate staging area when

moving the data between the tasks instead of direct messaging.

This approach is often called data staging; it requires extra

resources for staging the data in an intermediate location. Systems

such as DataSpaces (Docan et al., 2012), FlexPath (Dayal et al.,

2014), and Colza (Dorier et al., 2022) adopt this approach, where

they offload the data to a distributed memory space that is

shared among multiple workflow tasks. Other approaches such as

DataStates (Nicolae, 2020, 2022) retainmultiple versions of datasets

in the staging area, which enables the tasks to consume any past

version of the dataset, not just the latest one.

While these in situ solutions offer efficient data transfers by

avoiding physical storage, they share a common requirement for

modifications to task code. For instance, Decaf and DataSpaces

both use a put/get API for data transfers which needs to be

integrated into task codes. On the other hand, Wilkins does not

require any changes to task codes if they already use HDF5 or one

of the many front-ends to HDF5, such as HighFive (BlueBrain,

2022), h5py (Collette, 2013), NetCDF4 (Rew et al., 2004),

SCORPIO (Krishna, 2020), or Keras (Gulli and Pal, 2017).

3 Methodology

Wilkins is an in situworkflow system that enables heterogenous

task specification and execution for in situ data processing. Wilkins

provides a data-centric API for defining the workflow graph,

creating and launching tasks, and establishing communicators

between the tasks.

3.1 Overall architecture

Figure 1 shows an overview of Wilkins and its main

components, which are data transport, data model, workflow

execution, and workflow driver. At its data transport layer, Wilkins

uses the LowFive library (Peterka et al., 2023), which is a data

model specification, redistribution, and communication library

implemented as an HDF5 Virtual Object Layer (VOL) plugin.

FIGURE 1

Overview of the Wilkins system.

LowFive can be enabled either by setting environment variables or

manually constructing a LowFive object, via the LowFive API, in

the user task codes. Wilkins adopts the former approach to have

task codes with no modifications.

To execute the workflow tasks, Wilkins relies on Henson’s

execution model, where user task codes are compiled as shared

objects (Morozov and Lukic, 2016). At the workflow layer, Wilkins

has a Python driver code, where all the workflow functions (e.g.,

data transfers, flow control) are defined through this code. This

Python driver code is generic and provided by the Wilkins system,

and users do not need to modify this code.

At the user level, users only need to provide the workflow

configuration file and the constituent task codes. Linking the task

codes as shared objects is often the only required additional step to

use Wilkins.

3.2 Data-centric workflow description

Wilkins employs a data-centric workflow definition, where

users indicate tasks’ resource and data requirements using a

workflow configuration file. Rather than specifying explicitly which

tasks depend on others, users specify input and output data

requirements in the form of file/dataset names. By matching data

requirements, Wilkins automatically creates the communication

channels between the workflow tasks, and generates the workflow

task graph as a representation of this workflow configuration file.

Wilkins supports any directed-graph topology of tasks, including

common patterns such as pipeline, fan-in, fan-out, ensembles of

tasks, and cycles.

Users describe their workflow definition in a YAML file.

Listing 1 shows a sample YAML file representing a 3-task workflow

consisting of one producer and two consumer tasks. The producer

generates two different datasets—a structured grid of values and a

list of particles—while the first and second consumer each require

only the grid and particle datasets, respectively. Users describe these

data requirements using the inport and outport fields in the YAML

file. While the sample YAML file in Listing 1 uses full names for the

file and dataset names, it is also possible to use matching patterns
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tasks:
- func: producer
nprocs: 3
outports:

- filename: outfile.h5
dsets:

- name: /group1/grid
file: 0
memory: 1

- name: /group1/particles
file: 0
memory: 1

- func: consumer1
nprocs: 5
inports:

- filename: outfile.h5
dsets:

- name: /group1/grid
file: 0
memory: 1

- func: consumer2
nprocs: 2
inports:

- filename: outfile.h5
dsets:

- name: /group1/particles
file: 0
memory: 1

Listing 1 Sample YAML file for describing a 3-task workflow consisting of

1 producer and 2 consumers.

(e.g., *.h5/particles can be used instead of outfile.h5/particles).

Based on these requirements, Wilkins creates two communication

channels: one channel between the producer and the first consumer

for the grid dataset, and another channel between the producer and

the second consumer for the particles dataset. In these channels,

tasks will communicate using LowFive, Wilkins’ data transport

library, either through MPI or HDF5 files. Users can select the type

of this communication in the YAML file by setting file to 1 for using

files or by setting memory to 1 for using MPI. For instance, this

example uses MPI in both of the communication channels between

the coupled tasks. Figure 2 illustrates the workflow consisting of

these three tasks coupled through Wilkins.

For the resource requirements of the tasks, users indicate the

number of processes using the nprocs field. Wilkins will assign

these resources to the tasks and launches them accordingly. The

execution model of Wilkins is described in Section 3.5.

3.2.1 Defining ensembles
Ensembles of tasks have become prevalent in scientific

workflows. For instance, one common use case is to run the

same simulation with different input parameters in hopes of

capturing a rare scientific event (Yildiz et al., 2019). Other examples

of ensembles arise in AI workflows performing hyperparameter

optimization, or for uncertainty quantification (Meyer et al., 2023).

Such ensembles are often large-scale, requiring the orchestration of

multiple concurrent tasks by the workflow system.

One question is how to specify an ensemble of tasks in a

workflow configuration file. As there are often many tasks in an

ensemble, we cannot expect users to list them explicitly. Instead,

FIGURE 2

Example of three tasks coupled through Wilkins.

tasks:
- func: producer
taskCount: 4 #Only change needed to
define ensembles
nprocs: 3
outports:

- filename: outfile.h5
dsets:

- name: /group1/grid
file: 0
memory: 1

- func: consumer
taskCount: 2 #Only change needed to
define ensembles
nprocs: 5
inports:

- filename: outfile.h5
dsets:

- name: /group1/grid
file: 0
memory: 1

Listing 2 Sample YAML file for describing an ensemble of tasks with a

fan-in topology.

Wilkins provides an optional taskCount field, where users can

indicate the number of task instances in an ensemble. With this

one extra field of information in the YAML file, Wilkins allows

specification of various workflow graph topologies with ensembles

of tasks including fan-in, fan-out, M to N, or combinations of

those. Wilkins automatically creates the communication channels

between the coupled ensemble tasks, without users having to

explicitly list such dependencies thanks to its data-centric workflow

description. Listing 2 shows a sample YAML file for describing

ensembles with a fan-in topology, where four instances of a

producer task are coupled to two instances of a consumer task.

Figure 3 illustrates howWilkins performs ensemble coupling of

producer-consumer pairs in a fan-in topology with four producer

and two consumer instances. For each matching data object,

Wilkins creates a list of producer task indices and a list of consumer

task indices. Wilkins then links these producer-consumer pairs by

iterating through these indices in a round-robin fashion, as shown

in Figure 3.
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FIGURE 3

Example of ensemble coupling performed by Wilkins in a fan-in

topology with four producer and two consumer instances.

3.2.2 Defining subset of writers
Despite the advantages of parallel communication between the

processes of workflow tasks, some simulations opt to perform serial

I/O from a single process. For instance, the LAMMPS molecular

dynamics simulation code first gathers all data to a single MPI

process, and then this process writes the output serially (Plimpton

et al., 2007).

To support such scenarios with serial or partially parallel

writers, we introduce an optional io_proc field in the workflow

configuration file. Users simply can indicate the number of writers

in addition to the number of processes for the producer task. Then,

Wilkins will assign this set of processes (starting from process 0) as

I/O processes, while the remaining processes will only participate

in the task execution (e.g., simulation) without performing any I/O

operations.

This feature is implemented in the workflow driver code,

which first checks whether a producer process is an I/O process

based on the workflow configuration file. If so, the Wilkins driver

creates a LowFive object and sets its properties (e.g., memory,

file) in order for this process to participate in the data exchange.

Local communicators and intercommunicators between the tasks

provided to the LowFive object only involves I/O processes, and

other processes do not participate in these communicator creation,

which is handled by Wilkins.

3.3 Workflow driver

The Wilkins runtime, Wilkins-driver, is written in Python and

serves as the main workflow driver to execute the workflow.

Wilkins-driver orchestrates all the different functions within the

workflow (e.g., launching tasks, data transfers, ensembles, flow

control) as specified by the users in the workflow configuration file.

Users do not need to modify the Wilkins-driver code to use any of

the Wilkins capabilities.

Wilkins-driver first starts by reading the workflow configuration

file to create the workflow graph. Based on this file, it creates local

communicators for the tasks and intercommunicators between

the interconnected tasks. Then,Wilkins-driver creates the LowFive

plugin for the data transport layer. Next, it sets LowFive properties

such as whether to perform data transfers using memory or

files. After that, several Wilkins capabilities are defined, such as

ensembles or flow control if they are specified in the configuration

file. Wilkins-driver also checks whether there are any custom

actions, which can be specific to particular use cases. We detail in

Section 3.5 how users can specify custom actions through external

Python scripts. Ultimately,Wilkins-driver launches the workflow.

3.4 Data model and data transport library

Wilkins employs the data model of the LowFive (Peterka et al.,

2023) library. HDF5 (Folk et al., 2011) is one of the most common

data models, and as a VOL plugin, LowFive benefits from HDF5’s

rich metadata describing the data model while affording users the

familiarity of HDF5.

In its data transport layer, Wilkins uses the data redistribution

components of LowFive, which enables data redistribution from

M to N processes. Wilkins allows coupled tasks to communicate

both in situ using in-memory data and MPI message passing,

and through traditional HDF5 files if needed. Users can select

these different communication mechanisms via the workflow

configuration file.

Building on the base functionality of LowFive, Wilkins adds

several new capabilities related to data transport. Wilkins extends

the LowFive library by developing a callback functionality. In

Wilkins, we use these callbacks to provide additional capabilities

such as flow control. For example, we can exchange data between

coupled tasks at a reduced frequency, rather than exchanging data

at every iteration. Another scenario is custom callbacks, where

users can define custom actions upon a specific I/O operation such

as dataset open or file close. We will see examples of such callbacks

in the next subsections.

3.5 Execution model

In a Wilkins workflow, user task codes can be serial or

parallel; they can also have different languages such as C, C++,

Python, or Fortran. Wilkins executes the user codes as a single-

program-multiple-data (SPMD) application, thus having access to

the MPI_COMM_WORLD across all ranks. Wilkins partitions this

communicator and presents restricted MPI_COMM_WORLDs to

the user codes, relying on Henson’s PMPI tooling to make this

transparent. This way the user codes see only their restricted world

communicator, and the user codes are still written in a singular

standalone fashion using this world communicator, as if they were

its only users. Wilkins manages the partitioning of the global

communicator into different local communicators, one for each

task, as well as the intercommunicators connecting them. This

process is entirely transparent to the users. Users only need to

compile their codes as shared objects to execute them withWilkins.
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Although we build on Henson’s execution model, Wilkins

adds several new features not provided by Henson, such as

ensembles and flow control. Also, Wilkins provides a flexible

workflow description interface which is declarative, while Henson

has an imperative interface. We discuss the tradeoffs between these

interfaces in Section 3.5.2.

As a Wilkins workflow is an SPMD application, it is submitted

to the HPC system job scheduler (e.g., Slurm) as a single batch job.

Resource (e.g., CPU, GPU) and process placement is handled by the

job scheduler—independent from Wilkins. Job schedulers provide

users various options to optimize their process and resource

placement strategies.

3.5.1 Support for di�erent consumer types
In today’s scientific workflows, we can categorize tasks into

three types: (i) producers such as HPC simulations that generate

data periodically, (ii) consumers such as analysis or visualization

tasks that consume these data, and (iii) intermediate tasks such

as data processing that are both producers and consumers in a

pipeline. Moreover, for the tasks that consume data, we can have

two different types:

3.5.1.1 Stateful consumer

Such consumers maintain state information about the previous

executions (e.g., timesteps). For instance, particle tracing codes

need to keep information on the current trajectory of a

particle (Guo et al., 2017) while advecting the particle through the

next step.

3.5.1.2 Stateless consumer

Such consumers do not maintain any information regarding

their previous executions, as each run of a stateless task is entirely

independent. For example, a feature detector code used in the

analysis of molecular dynamics checks the number of nucleated

atoms in each simulation timestep to determine whether nucleation

is happening (Yildiz et al., 2019), with no relationship to previous

timesteps.

Wilkins’ execution model supports all these different task types,

including both stateful and stateless consumers, transparent to the

user. Wilkins first launches all these tasks as coroutines. Once the

consumer tasks are completed, Wilkins uses a LowFive callback

to query producers whether there are more data to consume.

Producers respond to this query with the list of filenames that need

to be consumed, or an empty list if no more data will be generated

(all done). With this query logic, Wilkins handles both stateful and

stateless consumer types. A stateful consumer is launched once and

runs until completion for the number of timesteps or iterations as

defined by the user. On the other hand, stateless consumers are

launched as many times as there are incoming data to consume.

3.5.2 Support for user-defined actions
There can be scenarios that require custom workflow actions

such as time- or data-dependent behaviors. For instance, users can

request to transfer data between tasks only if the data value exceeds

some predefined threshold. The Wilkins-driver code that executes

dw_counter = 0
def custom_cb(vol, rank):

#after dataset write callback
def adw_cb(s):

global dw_counter
dw_counter = dw_counter + 1
if dw_counter % 2 == 0:

#serving data at every 2
dataset write operation
vol.serve_all(True, True)

vol.set_after_dataset_write(adw_cb)
Listing 3 Sample custom action script that can be provided by the user.

the workflow is generic and does not support such custom actions

by default.

To support such custom actions, we explored two options: (i)

allowing users to modify theWilkins driver code directly (similar to

the workflow systems with imperative interfaces such asHenson) or

(ii) letting users define these custom actions in an external Python

script, which theWilkins runtime incorporates. These options have

tradeoffs with respect to usability and extensibility. While the first

option, an imperative interface, provides more extensibility by

exposing the workflow runtime to the user, it introduces additional

complexity as users would need to be familiar with the Wilkins-

driver code. We opted for a declarative interface, and decided

that adopting the second option, defining external custom actions,

would be a convenient middle ground between imperative and

declarative interfaces. In our design, users define custom actions

in a Python script using callbacks, and these callbacks allow

imperative customization within an otherwise declarative interface.

Listing 3 shows a sample Python script representing the custom

actions requested by the user. For instance, consider a scenario

where the producer task performs two dataset write operations,

but the analysis task only needs the second dataset. Without

modifying the producer task code, the user can provide this script

to Wilkins, which will then perform data transfer between tasks

after every second dataset write operation. In this script, user simply

defines this custom action (custom_cb) in a callback at after dataset

write (adw_cb), which delays the data transfer until the second

occurrence of dataset write operation.Wewill seemore examples of

the use of callbacks in flow control and in the high-energy physics

science use case.

3.6 Flow control

In an in situ workflow, coupled tasks run concurrently, and

wait for each other to send or receive data. Discrepancies among

task throughputs can cause bottlenecks, where some tasks sit idle

waiting for other tasks, resulting in wasted time and resources. To

alleviate such bottlenecks, Wilkins provides a flow control feature,

where users can specify one of three different flow control strategies

through the workflow configuration file:

• All: This is the default strategy in Wilkins when users do not

specify any flow control strategy. In this strategy, the producer
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waits until the consumer is ready to receive data. A slow

consumer can result in idle time for the producer task.

• Some: With this strategy, users provide the desired frequency

of the data exchange in order to accommodate a slow

consumer. For instance, users can specify to consume data

every N iterations, where N is equal to the desired frequency

(e.g., 10 or 100). This strategy provides a tradeoff between

blocking the producer and consuming at a lower frequency.

• Latest: In this strategy, Wilkins drops older data in the

communication channel and replaces them with the latest

timestep from the producer once the consumer is ready. This

strategy can be useful when the problem is time-critical, and

scientists prefer to analyze the latest data points instead of

older ones.

Specifying the flow control strategy requires adding only one

extra field of information to the configuration file, io_freq, where

users can set the above strategies by specifying N > 1 for the some

strategy, 1 or 0 for all, and−1 for the latest strategy.

Wilkins enforces these different strategies for flow control using

LowFive callbacks, transparent to the user. For instance, consider

a simple workflow consisting of a faster producer coupled to a

slower consumer, using the latest flow control strategy. In LowFive,

the producer serves data to the consumer when the producer

calls a file close operation. When the latest strategy is in place,

Wilkins registers a callback before the file close function, where

the producer checks whether there are any incoming requests from

consumers before sending the data. If there are requests, then data

transfer happens normally (the same as no flow control strategy).

However, if there are no requests from the consumer, then the

producer skips sending data at this timestep and proceeds with

generating data for the next timestep. This process continues until

the producer terminates. All these steps are part of LowFive and

Wilkins, and are transparent to the user.

Such a flow control mechanism allows Wilkins to support

heterogeneous workflows consisting of tasks with different data and

computation rates.

4 Experiments

Our experiments were conducted on the Bebop cluster at

Argonne National Laboratory, which has 1,024 computing nodes.

We employed nodes belonging to the Broadwell partition. The

nodes in this partition are outfitted with 36-core Intel Xeon E5-

2695v4 CPUs and 128 GB of DDR4 RAM. All nodes are connected

to each other by an Intel Omni-Path interconnection network. We

installedWilkins on the Bebop machine through the Spack package

manager (Gamblin et al., 2015), whereWilkins is available online as

open-source project.1

4.1 Synthetic experiments

We perform four different sets of experiments. For the first

experiment, we use the code developed in Peterka et al. (2023) to

1 Wilkins is available at https://github.com/orcunyildiz/wilkins/.

couple a producer and a consumer task that communicate using

LowFive, without a workflow system on top. Then, we measure

the overhead of Wilkins as a workflow system compared with that

scenario. Second, we evaluate the flow control feature of Wilkins.

Third, we demonstrate Wilkins’ capability of supporting complex

ensembles. Lastly, we compare Wilkins with ADIOS2, one of the

representative systems from the state-of-the-art.

For the synthetic benchmarks, we follow the approach used by

Peterka et al. (2023). For the first two sets of experiments, we have a

linear 2-node workflow coupling one producer and one consumer

task. In the ensemble experiments, we vary the number of producer

and consumer instances representing various workflow topologies.

We generate synthetic data containing two datasets: one is a

regular grid comprising 64-bit unsigned integer scalar values, and

the other one is a list of particles, where each particle is a 3-d vector

of 32-bit floating-point values. Per producer process, there are 106

regularly structured grid points and 106 particles. Each grid point

and particle occupies 8 and 12 bytes, respectively. Consequently,

the total data per producer process is 19MiB.We report the average

times taken over 3 trials.

4.1.1 Overhead of Wilkins compared with
LowFive

In this overhead experiment, we perform a weak scaling test

by increasing the total data size proportionally with the number of

producer processes. The producer generates the grid and particles

datasets, and the consumer reads both of them. We allocate three-

fourths of the processes to the producer, and the remaining one-

fourth to the consumer task. For this overhead experiments, we also

use larger data sizes with 107 and 108 grid points and particles per

MPI process. Table 1 shows the number of MPI processes for each

task and total data sizes.

Figure 4 shows the time to write/read grid and particles datasets

between the producer and consumer tasks in a weak scaling

regime. We can observe that LowFive and Wilkins execution

times are similar for all data sizes. The difference between using

LowFive standalone and with Wilkins at 1K processes is only 2%.

We consider this overhead negligible, considering the additional

capabilities Wilkins brings as a workflow system compared with

LowFive, which is only a data transport layer.

4.1.2 Flow control
In these experiments, we use 512 processes for both producer

and consumer tasks. We use the sleep function to emulate the

computation behavior of tasks. For the producer task, we use 2

seconds sleep. For the consumer task, we emulate three different

slow consumers as 2×, 5×, and 10× slow consumers by adding 4,

10, and 20 s sleep to the consumer tasks. The producer task runs

for a total of 10 timesteps generating grid and particles datasets.

We employ three different flow control strategies: (i) all—producer

task serving data at every timestep, (ii) some—producer task serving

data at every 2, 5, or 10 timesteps, and (iii) latest—producer task

serving data when the consumer signals that it is ready. For the

some strategy, we run withN = 2 for the 2× slow consumer,N = 5

for the 5x slow consumer, and N = 10 for the 10x slow consumer.

Table 2 shows the completion time of the workflow under these
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TABLE 1 Number of MPI processes for producer and consumer tasks and the total data size exchanged between them.

Workflow
size (procs)

Producer size
(procs)

Consumer
size (procs)

Total data size
(106/proc) (GiB)

Total data size
(107/proc) (GiB)

Total data size
(108/proc) (GiB)

4 3 1 0.06 0.6 6

16 12 4 0.22 2.2 22

64 48 16 0.99 9.9 99

256 192 64 3.54 35.4 354

1,024 768 256 14.34 143.4 1,434

FIGURE 4

Time to write/read grid and particles between one producer and

one consumer task, comparing using LowFive alone with Wilkins.

TABLE 2 Completion time for the workflow coupling a producer and a

(2×, 5×, and 10×) slow consumer under di�erent flow control strategies.

Strategy Completion
time (2×) (s)

Completion
time (5×) (s)

Completion
time (10×)

(s)

All 51 111.7 211.7

Some 31.2 35 44.9

Latest 33.5 38 45.8

different strategies for each consumer task with different rates. We

observe that using the some and latest flow control strategies results

in up to 4.7× time savings. As expected, time savings are larger for

the workflow with the slowest consumer (10× sleep). Time savings

gained with the flow control strategies are due to the fact that the

producer task does not have to wait for the slow consumer at every

timestep, and can continue without serving to the next timestep

when using the some and latest flow control strategies.

To further highlight the reduction in idle time for the producer,

we illustrate the timeline for the execution of producer and 5× slow

consumer under different flow control strategies in Figure 5. Blue

bars represent the computation, while red ones represent the idle

time for workflow tasks. We show the data transfer between tasks

with an arrow and orange bars. With all flow control strategy, we

FIGURE 5

Gantt charts for the execution of producer and 5× slow consumer

for 10 iterations under di�erent flow control strategies. (A) All. (B)

Some. (C) Latest.

can see that the producer task has to wait for the slow consumer

at every timestep for the data transfer, resulting in significant idle

time. In contrast, with the some and latest flow control strategies,
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FIGURE 6

Example of di�erent ensemble topologies: fan-out, fan-in, and NxN.

FIGURE 7

Time to write/read the grid and particles between one producer and

di�erent numbers of consumer instances in a fan-out topology.

these idle times are avoided where the producer task has to wait for

the consumer only at the end of the workflow execution.

4.1.3 Scaling of ensembles
In these ensemble experiments, we use two processes for both

producer and consumer instances. We vary the number of these

instances to represent three different ensemble topologies: fan-

out, fan-in, and NxN. Examples of these topologies are shown in

Figure 6.

First, we analyze the time required to write/read the grid

and particles between a single producer and different numbers

of consumer instances in a fan-out topology. Figure 7 shows the

results, where we use 1, 4, 16, 64, and 256 consumer instances. We

can see that total time increases almost linearly with the number

of consumer instances. For example, while the completion time is

around 0.6 s with 16 consumer instances, this time increases to 8.2

s with 256 consumer instances. This is due to the fact that the data

transfers between the producer and consumer instances happen

sequentially, with each consumer instance processing different data

points (e.g., the producer task can send different configuration

parameters to each consumer instance).

FIGURE 8

Time to write/read the grid and particles between di�erent numbers

of producer instances and a consumer in a fan-in topology.

Next, we evaluate Wilkins’ support for the fan-in topology

by varying the number of producer instances. Figure 8 shows the

results. Similarly to fan-out results, we see that total time increases

almost linearly with the number of producer instances as the

consumer has to read from each producer instance.

Lastly, we evaluate the time required to write/read the grid

and particles between different number of producer and consumer

instances in an NxN topology. Figure 9 displays the results, where

we use 1, 4, 16, 64, and 256 instances for both producer and

consumer tasks. Unlike the fan-out and fan-in topologies, we can

observe that the time difference is minimal when using different

numbers of ensemble instances. This different behavior is expected

as we have a one-to-one relationship between producer and

consumer instances in an NxN topology, allowing data transfers to

occur in parallel unlike the sequential process in fan-out and fan-in

topologies. The slight increase in the total time can be attributed to

the increased network contention at larger scales.

4.1.4 Comparison with ADIOS2
Next, we compare Wilkins with ADIOS2, a popular framework

for coupling scientific codes through different transport layers. This

experiment uses the Sustainable Staging Transport (SST) engine

of ADIOS2, which allows direct connection of data producers and

consumers via ADIOS2’s put/get API. In particular, we configure

ADIOS2’s SST engine to use the MPI transport layer.

Figure 10 shows the results comparing Wilkins with ADIOS2.

Wilkins consistently outperforms ADIOS2 at all scales. Moreover,

in terms of usability, ADIOS2 requires task code modifications to

use its put/get API when coupling scientific codes. In this synthetic

benchmark, we wrote 10 additional lines of code using ADIOS2’s

API. Although the learning curve was not steep for such code

modifications for a synthetic benchmark, similar modifications

may be difficult in legacy codes with complex software stacks.

On the other hand, Wilkins does not require any task code

modifications.
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FIGURE 9

Time to write/read the grid and particles between di�erent numbers

of producer and consumer instances in an N×N topology.

FIGURE 10

Time to write/read grid and particles between one producer and

one consumer task, comparing Wilkins with ADIOS2.

ADIOS2 also has a support for HDF5-VOL, which would

enable coupling codes without any code changes. However, their

support is limited to only file-based data transport, and it lacks

several operations required for our synthetic benchmarks, such as

hyperslabs and memory space reading/writing (ADIOS2, 2024).

Lastly, ADIOS2 also provides a runtime configuration file, not

unlike Wilkins, where users can switch between transport modes.

One major difference is that while the Wilkins configuration file

specifies a workflow graph, ADIOS2 only focuses on the I/O

transport options. As a result, ADIOS2 does not support some

of the features required for today’s scientific workflows, such as

ensembles and different flow control strategies.

tasks:
- func: freeze
taskCount: 64 #Only change needed to
define ensembles
nprocs: 32
nwriters: 1 #Only rank 0 performs I/O
outports:

- filename: dump-h5md.h5
dsets:

- name: /particles/*
file: 0
memory: 1

- func: detector
taskCount: 64 #Only change needed to
define ensembles
nprocs: 8
inports:

- filename: dump-h5md.h5
dsets:

- name: /particles/*
file: 0
memory: 1

Listing 4 Sample YAML file for describing the molecular dynamics

workflow for simulating nucleation with 64 ensemble instances.

4.2 Science use cases

We use two representative science use cases in materials

science and cosmology to further demonstrateWilkins applicability

to actual scientific workflows. In both of these experiments, no

changes were made to the workflow task codes, which further

validates the ease-of-use of Wilkins. Here, we do not compare

further with other systems such as ADIOS2, where we would have

to modify the task codes.

4.2.1 Materials science
Nucleation occurs as a material cools and crystallizes, e.g.,

when water freezes. Understanding nucleation in material systems

is important for better understanding of several natural and

technological systems (Chan et al., 2019; Greer, 2016; Gettelman

et al., 2012). Nucleation, however, is a stochastic event that requires

a large number of molecules to reveal its kinetics. Simulating

nucleation is difficult, especially in the initial phases of simulation

when only a few atoms have crystallized.

One way scientists simulate nucleation is to runmany instances

of small simulations, requiring an ensemble of tasks where

simulations with different initial configurations are coupled to

analysis tasks. In this workflow, we couple a LAMMPS molecular

dynamics simulation (Plimpton et al., 2007) in situ with a

parallel feature detector that finds crystals in a diamond-shaped

lattice (Yildiz et al., 2019). To create the ensemble, we use N

instances for both simulation and analysis tasks in an N×N

topology. To define these ensemble tasks, we only need to add the

taskCount information to the workflow configuration file. Listing 4

shows the configuration file for this molecular dynamics workflow

with 64 ensemble instances.

In LAMMPS’s I/O scheme, all simulation data are gathered to

rank 0 before they are written serially. This undermines Wilkins’

capacity for efficient parallel communications. On the other hand,
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FIGURE 11

Completion time of the molecular dynamics workflow consisting of

LAMMPS coupled to a diamond detector with di�erent number of

ensemble instances.

this demonstrates the applicability of the subset writers feature

of Wilkins, where we only need to set the number of writers

(i.e., io_proc) to 1 in the configuration file, as shown in Listing 4.

Furthermore, LAMMPS supports writing HDF5 files, therefore,

no modifications are needed to execute LAMMPS with Wilkins;

we only had to compile LAMMPS as a shared library with HDF5

support.

In these experiments, we use 32 processes for each LAMMPS

instance, and eight processes for each analysis task. We run

LAMMPS for 1,000,000 time steps with a water model composed

of 4,360 atoms, and we perform the diamond structure analysis

every 10,000 iterations. To conduct this experiment, we vary the

number of ensemble instances from 1 up to 64. Figure 11 shows

the completion time under these scenarios. The results demonstrate

thatWilkins can support execution of different number of ensemble

instances without adding any significant overhead, in particular

when there are a matching number of consumer instances in an

N×N configuration. For example, the difference in completion

time between a single instance and 64 ensemble instances is

only 1.2%.

In terms of ease-of-use, no changes weremade to the simulation

or the feature detector source code to execute inside Wilkins, and

to launch multiple instances in an ensemble, only one line was

added to the producer and consumer task descriptions in the YAML

workflow configuration file.

4.2.2 High-energy physics
The second use case is motivated by cosmology; in particular,

halo finding in simulations of dark matter. The in situ workflow

consists of Nyx (Almgren et al., 2013), a parallel cosmological

simulation code, coupled to a smaller-scale parallel analysis task

called Reeber (Friesen et al., 2016; Nigmetov and Morozov, 2019)

that identifies high regions of density, called halos, at certain

time steps.

def nyx(vol, rank):
#after file close callback
def afc_callback(s):

if rank != 0:
#other ranks, serving data
vol.serve_all(True, True)
vol.clear_files()

else:
if vol.file_close_counter
% 2 == 0:

#rank 0, serving data
vol.serve_all(True, True)
vol.clear_files()

else:
#rank 0 broadcasting files
to other ranks
vol.broadcast_files()

#before file open callback
def bfo_cb(s):

if rank != 0:
#other ranks receiving
files from rank 0
vol.broadcast_files()

#setting the callbacks in the VOL plugin
vol.set_after_file_close(afc_callback)
vol.set_before_file_open(bfo_cb)

Listing 5 User action script provided by the user for enforcing the custom

HDF5 I/O mechanism of Nyx.

AMReX (Zhang et al., 2019), a framework designed for

massively parallel adaptive mesh refinement computations, serves

as the PDE solver of Nyx simulation code, as well as providing

I/O, writing the simulation data into a single HDF5 file.

Reeber supports reading HDF5. As these user codes already

use HDF5, no modifications were needed to execute them

with Wilkins.

Ideally, a code utilizing parallel I/O would perform the

following sequence of I/O operations. It would collectively create or

open a file once from all MPI processes. This would be followed by

some number of I/O operations, in parallel from all MPI processes.

Eventually the file would be closed, again collectively from all

MPI processes. LowFive is designed for this pattern, initiating the

serving of data from a producer task to a consumer task upon the

producer closing the file and the consumer opening the file. This

assumes that the file close and file open occur exactly once, from all

MPI processes in the task, as described above.

However, not all simulation codes perform I/O in this way, and

Nyx is not the only code that violates this pattern. For various

reasons—often related to poor I/O performance when accessing

small amounts of data collectively—Nyx and other codes often

employ patterns where a single MPI process creates or opens a

file, performs small I/O operations from that single process, closes

the file, and then all MPI processes re-open the file collectively for

bulk data access in parallel. The file is opened and closed twice, the

first time by a single MPI process, and the second time by all the

processes in the task.

Such custom I/O patterns, which vary from one code to

another, break the assumptions in LowFive about when and how
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tasks:
- func: nyx
nprocs: 1024
actions: ["actions", "nyx"]
outports:

- filename: plt*.h5
dsets:

- name: /level_0/density
file: 0
memory: 1

- func: reeber
nprocs: 64
inports:

- filename: plt*.h5
io_freq: 2 #Setting the some flow
control strategy
dsets:

- name: /level_0/density
file: 0
memory: 1

Listing 6 Sample YAML file for describing the cosmology workflow.

to serve data from producer to consumer. Fortunately, there is

an elegant solution to incorporating custom I/O actions such as

above. We added to the LowFive library custom callback functions

at various execution points such as before and after file open and

close. The user can program custom actions into those functions,

e.g., counting the number of times a file is closed and delaying

serving data until the second occurrence. In Wilkins, those custom

functions are implemented by the user in a separate Python script,

so that the user task code is unaffected.

Listing 5 shows the custom functions used in this cosmology

use case, where there are two custom callback functions at after file

close (afc_cb) and before file open (bfo_cb). In the after file close

callback, process 0 broadcasts the data to other processes at the first

file close, and serves data to the consumer at the second time, while

other processes serve data upon (the one and only) file close. In the

before file open callback, all processes other than 0 receive the data

from process 0.

The user provides this script for custom actions and indicates

it in the YAML file by setting the optional actions field with the

name of this script file and the defined custom user function (i.e.,

actions :[“actions”, “nyx”]). Listing 6 shows the configuration file

for this cosmology workflow.

Depending on the timestep, number of MPI processes, number

of dark matter particles, number of halos, and density cutoff

threshold, Reeber can take longer to analyze a timestep than

Nyx takes to compute it. To prevent idling of Nyx and wasting

computational resources while waiting for Reeber, we make use of

the flow control strategies in Wilkins.

In these experiments, we use 1,024 processes for Nyx and 64

processes for Reeber. The Nyx simulation has a grid size of 2563,

and it produces 20 snapshots to be analyzed by Reeber. For this

experiment we intentionally slowed Reeber down even further by

computing the halos a number of times (i.e., 100), making the effect

of flow control readily apparent. This allowed us to run Nyx with

a smaller number of processes and for a shorter period of time,

saving computing resources. We employ two different flow control

strategies: (i) all: Nyx serving data at every timestep and (ii) some:

TABLE 3 Completion time for the cosmology workflow under di�erent

flow control strategies.

Strategy Completion time (s)

All 5,421

Some (n = 2) 2,754

Some (n = 5) 1,084

Some (n = 10) 702

Nyx serving data at every n timesteps, in this case we vary n as

n = 2, n = 5, and n = 10. Table 3 shows the completion time of the

workflow under these different strategies. Similarly to the synthetic

experiments, we observe that using the some flow control strategy

results in up to 7.7× time savings compared with the all strategy.

In terms of ease-of-use, we added one actions line and one

io_freq line to the vanilla YAML configuration file in order to

take advantage of custom callbacks and flow control, and made

no changes to Nyx or Reeber source code in order to work with

Wilkins. The only other required user file is the action script, which

is a short Python code consisting of <25 lines.

5 Conclusion

We have introduced Wilkins, an in situ workflow system

designed with ease-of-use in mind for addressing the needs

of today’s scientific campaigns. Wilkins has a flexible data-

centric workflow interface that supports the definition of

several workflow topologies ranging from simple linear

workflows to complex ensembles. Wilkins provides efficient

communication of scientific tasks through LowFive, a high-

performance data transport layer based on the rich HDF5

data model. Wilkins also allows users to define custom I/O

actions through callbacks to meet different requirements of

scientific tasks. Wilkins provides a flow control mechanism to

manage tasks with different data rates. We used both synthetic

benchmarks and two representative science use cases in materials

science and cosmology to evaluate these features. The results

demonstrated that Wilkins can support complex scientific

workflows with diverse requirements while requiring no task

code modifications.

Several avenues remain open for future work. Currently,

Wilkins uses a static workflow configuration file, and

cannot respond to dynamic changes in the requirements

of scientific tasks during execution. We are currently

working on extending Wilkins to support dynamic workflow

changes such as adding/removing tasks from a workflow and

redistribution of resources among workflow tasks. Here, we

will also investigate whether using external services such as

Mochi (Ross et al., 2020) and Dask (Rocklin, 2015) services

would help Wilkins enable workflow dynamics. We are

also collaborating closely with domain scientists to engage

Wilkins in more science use cases. In particular, we are

exploring use cases that couple HPC and AI applications,

which can further demonstrate the usability of Wilkins in

heterogeneous workflows.

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1472719
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Yildiz et al. 10.3389/fhpcp.2024.1472719

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

OY: Conceptualization, Data curation, Methodology, Software,

Writing – original draft. DM: Conceptualization, Writing – review

& editing. AN: Writing – review & editing. BN: Writing – review

& editing. TP: Conceptualization, Funding acquisition, Writing –

review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

material is based upon work supported by the U.S. Department of

Energy, Office of Science, Office of Advanced Scientific Computing

Research, under contract numbers DE-AC02-06CH11357 and DE-

AC02-05CH11231, program manager Margaret Lentz.

Acknowledgments

We gratefully acknowledge the computing resources provided

on Bebop, a high-performance computing cluster operated by

the Laboratory Computing Resource Center at Argonne National

Laboratory.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

ADIOS2 (2024). ADIOS2 HDF5 API Support Through VOL. Available at: https://
adios2.readthedocs.io/en/latest/ecosystem/h5vol.html (accessed April 15, 2024).

Almgren, A. S., Bell, J. B., Lijewski, M. J., Lukić, Z., and Van Andel, E. (2013).
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