
TYPE Technology and Code

PUBLISHED 01 October 2024

DOI 10.3389/fhpcp.2024.1444337

OPEN ACCESS

EDITED BY

Martin Berzins,

The University of Utah, United States

REVIEWED BY

Jay Lofstead,

Sandia National Laboratories (DOE),

United States

Jerry Chou,

National Tsing Hua University, Taiwan

*CORRESPONDENCE

Rakesh Sarma

r.sarma@fz-juelich.de

†These authors have contributed equally to

this work and share first authorship

RECEIVED 5 June 2024

ACCEPTED 10 September 2024

PUBLISHED 01 October 2024

CITATION

Sarma R, Inanc E, Aach M and Lintermann A

(2024) Parallel and scalable AI in HPC systems

for CFD applications and beyond.

Front. High Perform. Comput. 2:1444337.

doi: 10.3389/fhpcp.2024.1444337

COPYRIGHT

© 2024 Sarma, Inanc, Aach and Lintermann.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Parallel and scalable AI in HPC
systems for CFD applications
and beyond

Rakesh Sarma*†, Eray Inanc†, Marcel Aach and

Andreas Lintermann

Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Jülich, Germany

This manuscript presents the library AI4HPC with its architecture and

components. The library enables large-scale trainings of AI models on

High-Performance Computing systems. It addresses challenges in handling

non-uniform datasets through data manipulation routines, model complexity

through specialized ML architectures, scalability through extensive code

optimizations that augment performance, HyperParameter Optimization (HPO),

and performance monitoring. The scalability of the library is demonstrated by

strong scaling experiments on up to 3,664 Graphical Processing Units (GPUs)

resulting in a scaling e�ciency of 96%, using the performance on 1 node as

baseline. Furthermore, code optimizations and communication/computation

bottlenecks are discussed for training a neural network on an actuated

Turbulent Boundary Layer (TBL) simulation dataset (8.3 TB) on the HPC system

JURECA at the Jülich Supercomputing Centre. The distributed training approach

significantly influences the accuracy, which can be drastically compromised by

varying mini-batch sizes. Therefore, AI4HPC implements learning rate scaling

and adaptive summation algorithms, which are tested and evaluated in this work.

For the TBL use case, results scaled up to 64 workers are shown. A further

increase in the number ofworkers causes an additional overhead due to too small

dataset samples per worker. Finally, the library is applied for the reconstruction of

TBL flows with a convolutional autoencoder-based architecture and a di�usion

model. In case of the autoencoder, a modal decomposition shows that the

network provides accurate reconstructions of the underlying field and achieves

a mean drag prediction error of≈ 5%. With the di�usionmodel, a reconstruction

error of ≈ 4% is achieved when super-resolution is applied to 5-fold coarsened

velocity fields. The AI4HPC library is agnostic to the underlying network and can

be adapted across various scientific and technical disciplines.

KEYWORDS

distributed training, High-Performance Computing, Artificial Intelligence,

Computational Fluid Dynamics, Turbulent Boundary Layer, autoencoder

1 Introduction

Artificial Intelligence (AI) has excelled tremendously in various scientific and

technical disciplines, especially in the last decade with the advent of large-scale

data and computing resources. In disciplines such as Computational Fluid Dynamics

(CFD), conventional numerical methods are challenging to develop and computationally

intensive, specifically if they want to make use of novel hardware architectures and

fine-grained simulations are required. In this regard, AI-based models, for instance

Neural Networks (NNs), have the potential to augment and accelerate solving such

problems. NNs have been applied to CFD problems in various areas from heat transfer

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2024.1444337
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2024.1444337&domain=pdf&date_stamp=2024-10-01
mailto:r.sarma@fz-juelich.de
https://doi.org/10.3389/fhpcp.2024.1444337
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2024.1444337/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

to aeronautics (Brunton et al., 2020; Scalabrin et al., 2006; Faller

and Schreck, 1996), in turbulencemodeling (Duraisamy, 2021; Ling

et al., 2016; Maulik et al., 2019), and also in cases with complex

flow physics. One of the applications is to augment the low-fidelity

numerical models by Machine Learning (ML) models to achieve

higher accuracy with a lower computational time compared to

high-fidelity models—the work of Kochkov et al. (2021) provides

a good example of this. For instance, an augmentation can be

achieved by replacing or accelerating the iterative solvers employed

in the physical solver (Obiols-Sales et al., 2020). In this regard,

use of ML in hybrid models to provide error correction to under-

resolved physical solvers is especially interesting for engineering

problems (Um et al., 2020; Sirignano et al., 2020). The hybrid solver

achieves computational savings while improving the simulation

accuracy.

However, training AI models for such applications requires

processing of large amounts of data and potentially feeding these

data into large NN architectures. For example, a single CFD

simulation with a computational mesh consisting of 5123 elements

using only single precision representation of the flow variables can

easily result in more than 500 MB of storage per variable and

time step. Large-scale simulations in such domain sciences already

exceed terabytes of data, such as the actuated Turbulent Boundary

Layer (TBL) dataset employed in this study.1 Furthermore, the

models are also progressively increasing in size, especially with

the large uptake in adoption of Large Language Model (LLM)-

based architectures, where parameters are already in the range

of hundreds of billions. High-Performance Computing (HPC)

facilities provide the required infrastructure for training such large-

scale models, especially with accelerators suitable for AI such as

Graphical Processing Units (GPUs).

Efforts toward the development of AI frameworks targeted

for HPC systems can already be found in literature with many

of them addressing the implementation of workflows on HPC

systems. In Lee et al. (2021), the authors develop scalable AI and

HPC software tools able to execute distinct workflows concurrently,

which is used to accelerate and enhance drug design in a hybrid

simulation- and AI-based methodology. This tool exploits HPC

systems and is based on a building blocks concept (Turilli et al.,

2019). Libraries for the execution of workflows that couple large-

scale simulations with an ML component on multi-GPU systems

have also started emerging (Peterson et al., 2022) along with a

support for online training (Meyer et al., 2023). The applicability of

such libraries has already been demonstrated for various scientific

disciplines, e.g., in molecular dynamics (Brace et al., 2022) and

plasma physics (Stiller et al., 2022). These developments provide

important contributions toward scaling and porting AI frameworks

on HPC systems. However, migration of such workflows to HPC

infrastructures is still tedious and requires significant development

efforts.

In particular, the deployment of AI models on HPC systems

requires many changes to a standard baseline implementation, e.g.,

to a code that runs serially on a local machine. The main challenges

in this context are:

1 Available at: https://www.coe-raise.eu/od-tbl.

1. The serial code has to be distributed to enable exploitation of

an HPC cluster. For distributed training, there exist different

open-source frameworks that implement various levels of multi-

worker parallelism in the form of model, pipeline and/or data

parallelism (Li et al., 2020; Sergeev and Del Balso, 2018; Rasley

et al., 2020; Götz et al., 2020). The performance and scalability

of these frameworks may vary depending on the system and

the NN architecture. A common library to test these and other

community-added frameworks, which is easily-deployable, could

largely benefit the wider AI and scientific community.

2. In addition to the variety of hardware architecture, the software

configurations of HPC systems vary widely in terms of library

andmodule versions. The AI user community requires extensive

knowledge of the underlying software and system-specific

hardware configurations to submit jobs successfully. This can

significantly limit the use of HPC in the AI community.A library

that automates the generation of HPC-specific job scripts to ease

the access to and usage of such systems could be very useful for the

wider community of users.

3. For the next generation of large-scale AI models, achieving

optimized training performance on HPC systems is essential.

The efficient utilization of an HPC system can be significantly

improved by code optimization. Furthermore, training on large

datasets with a high throughput is non-trivial and requires

specific configurations to obtain good accuracy. Automating the

implementation of these optimizations using only a single library

that can interface different backends would make scalable and

efficient algorithms available to all users.

To address these issues, this manuscript introduces the AI4HPC

library,2 which facilitates the efficient use of HPC systems by

addressing all the identified challenges. The library is developed

particularly for the CFD community. The developments are,

however, generic for application in other scientific and technical

domains. The innovative aspect of this library lies in the provision

of a single solution to all the challenges 1–3, which are commonly

encountered when scaling AI workflows to HPC systems.

This work analyzes the performance of AI4HPC using a large

open-source CFD dataset to achieve dimensionality reduction and

performing super-resolution on an actuated TBL flow problem.

Large dataset sizes pose challenges with respect to associated

mini-batch sizes, which may compromise the accuracy of the

trained model. This can be mitigated with various strategies,

such as learning-rate (Goyal et al., 2017) scaling and adaptive

summation (Maleki et al., 2020), which are discussed in Section 3.2.

Furthermore, scaling to a large number of workers using a

relatively small dataset leads to lower GPU utilization and results

in a communication/computation bottleneck. These aspects are

discussed in detail and the solutions offered by AI4HPC are

presented.

IN addition, first, the accuracy of the library is demonstrated

on a dimensionality reduction network for the TBL CFD use case.

Many popular compression algorithms, such as Proper Orthogonal

Decomposition (POD) (Berkooz et al., 1993), Dynamic Mode

Decomposition (DMD) (Schmid, 2010), Galerkin-projection-based

methods (Carlberg et al., 2013), and system-identification-based

2 Available at: https://ai4hpc.readthedocs.io.

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.coe-raise.eu/od-tbl
https://ai4hpc.readthedocs.io
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

auto-regressive models (Raveh, 2004; Sarma and Dwight, 2017)

have been proposed in fluid dynamics. Among these methods,

the model decomposition techniques such as POD and DMD are

linear and are widely used in post-processing (Taira et al., 2017),

while Galerkin projection-based POD can produce nonlinear

evolution (Csala et al., 2022), but are intrusive in nature. Although

autoregressive techniques are non-intrusive, high non-linearity

impacts generalizability of the models. In this regard, deep NN-

based models are known to exhibit high nonlinearity, making

them suitable for application in fluid flows (Fu et al., 2023)

which are complex and inherently non-linear in nature. In

particular, convolutions can potentially learn both small- and

large-scale structures through the kernel operations. Convolutional

AutoEncoders (CAEs) have already been successful in extracting

information from 3-D data (Wang et al., 2016). In this study,

AI4HPC is employed to train a CAE-Neural Network (CAE-NN) to

obtain an efficient and accurate dimensionality reductionmodel for

the application to an actuated TBL flow case. The objective of the

TBL study in Albers et al. (2019) is to find the actuation parameter

configuration that maximizes two Quantities of Interest (QoIs), the

drag reduction 1Cd and the net power savings Pnet . Hence, it is

desirable that the trained CAE is able to reconstruct these physical

quantities obtained by varying the actuation parameters for the

TBL. These two QoIs are predicted and their reconstruction from

the compressed latent space is enabled by coupling the CAE-NN to

a novel, unique architecture of a regression-based network, named

CAE-Prediction Network (CAE-PN).

A second application case shown in this manuscript is on the

development of a super-resolution network (SRN) with a diffusion

model to improve approximations from low-resolution CFD fields.

A comprehensive review on application of SRN for fluid flows can

be found in Fukami et al. (2023). Various NN-based methods have

been explored in CFD for this task, including, but not limited to

cycle-consistent adversarial Network known as CycleGAN (Kim

et al., 2021), U-Net model based on Convolutional Neural Network

(CNN) (Pant and Farimani, 2021), and with more recent networks

such as diffusion-based models (Shu et al., 2023). In this study,

a novel Convolutional Defiltering Model (CDM), based on the

Diffusion Probability Model (DPM) is developed and applied to

the TBL dataset. The application of this network is envisioned

towards improving the approximations provided byWall-Modeled

Large Eddy Simulation (WMLES). In this manuscript, the super-

resolution performance of CDM is evaluated by quantifying its

ability to provide accurate reconstructions even with large filtering

widths, through the use of the AI4HPC library.

The training dataset of the actuated TBL is generated using

a high-fidelity Large Eddy Simulation (LES) approach with a

sinusoidally moving geometry to actuate the TBL. Actuation

parameters steer themovement of the geometry (Albers et al., 2019)

and the simulations are carried out with the simulation software

m-AIA code3, developed at RWTH Aachen University. The code is
an extended version of the Zonal Flow Solver (Lintermann et al.,

2020). The dataset size is ∼8.3 TB. Through the TBL use case,
the capabilities of AI4HPC are demonstrated in terms of data

manipulation routines, support for multiple distributed backends

3 CFD solver m-AIA https://git.rwth-aachen.de/aia/m-AIA/m-AIA.

and custom optimizations for efficient training on HPC systems,

and through an intensive investigation of the performance of the

CAEs and CDM on this dataset. The use case demonstrates that

AI4HPC addresses the challenges 1 and 3 identified above. In terms

of challenge 2, the library is already configured to directly run on

several existing HPC systems, which are detailed in Section 2.

The manuscript is structured as follows: Section 2 introduces

the details of the AI4HPC library and the available modules. In

Section 3, the implemented optimizations and the performance of

the library applied to the TBL usecase is investigated in detail. More

details on the TBL use case using the CAE and CDM are presented

in Section 4. Finally, Section 5 summarizes the main conclusions

of these investigations and provides recommendations for further

steps.

2 Method: distributed training with
AI4HPC components

Training an ML model on large datasets in serial is time

consuming. Hence, parallelization methods have to be employed

to yield feasible runtimes. A common parallelization strategy is

to distribute the (input) dataset to multiple separate workers, e.g.,

based on Central Processing Units (CPUs), GPUs, or Intelligence

Processing Units (IPUs), where the trainable parameters between

the workers are occasionally exchanged. This Data Distributed

Training (DDT) method massively reduces the training duration

and has the potential to scale up to an Exascale HPC system, i.e.,

systems that are capable of calculating at least 1018 IEEE 754 double

precision (64-bit) operations (multiplications and/or additions)

per second— exaFLOP. There exist many ML frameworks that

integrate the DDT approach. Four common frameworks are

integrated in AI4HPC, noting that Python is chosen as the host

language; the PyTorch-DDP library as part of a PyTorch package (Li

et al., 2020), Horovod (Sergeev and Del Balso, 2018), HeAT (Götz

et al., 2020), and DeepSpeed (Rasley et al., 2020). In AI4HPC, the

PyTorch library is chosen for consistency. To a certain degree,

these frameworks operate similarly, however, for instance, PyTorch-

DDP4 andHeAT use NVIDIA’s Collective Communications Library

(NCCL) or Gloo by Facebook for communication, whereas

Horovod and DeepSpeed rely on the Message Passing Interface

(MPI) for inter-node and NCCL for intra-node communication.

Moreover, each framework is optimized (slightly) differently

leading to varying scaling performance and training accuracy

for individual cases. This raises the interest to test different

frameworks, which is provided by AI4HPC. This DDT approach

from the different backends in AI4HPC distributes the LES dataset

equally amongst the workers.

A general workflow of CAE training using the DDT approach

is depicted in Figure 1. Each distributed dataset is initially

transferred to a compute node and the node’s host CPUs access

the system’s data storage to load the distributed dataset into

the Random-Access Memory (RAM). The GPUs then transfer

this distributed dataset from the system’s RAM to their own

RAM, which is local to the GPUs and optimized for specific

4 PyTorch-DDP. Available at: https://pytorch.org/docs/stable/distributed.

html.

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://git.rwth-aachen.de/aia/m-AIA/m-AIA
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

FIGURE 1

Exemplary DDT workflow for an ML training using an LES dataset

with three workers.

operations, i.e., vectorizations for matrix-matrix or matrix-vector

operations. For training exceptionally large datasets, this step is

usually computationally expensive. A slow data transfer from disk

storage to RAM, i.e., caused by CPU overhead, memory problems,

and low transfer bandwidth, could potentially lead to idling GPUs

and hence a waste of resources and energy.

To train an NN, each worker works on a subset of the dataset,

called the micro-batch B. In the DDT approach, the mini-batch

then becomes the sum of the micro-batches across the workers.

After each worker processes their respective micro-batches, the

computed gradients and weights of the NN of each worker are

transferred to a host worker, which is responsible for averaging

the gradients and updating the weights via an AllReduce

command. These quantities are transferred back to the rest of the

workers, which requires worker-to-worker communication, known

as node-based communication. The communication amount,

which increases with size of the NN and the dataset, is a decisive

factor in the performance of the DDT approach. For HPC systems

with limited performance and unreliable communication networks,

it is recommended to use a parameter server instead of the

AllReduce command. This method is, however, not discussed in

this work, since the configured systems in AI4HPC (as of 04/2024)

have good performance with reliable communication networks.

To reduce the communication overhead, it is also possible to

postpone the communication to the non-consecutive iterations

by skipping the AllReduce operation. It should be noted that

the determination of the number of AllReduce operations to

be skipped could affect the training accuracy and is also case-

dependent. This approach is discussed for this case in Section 3.4.

AI4HPC is available in an open-access repository (under MIT

License), which can be cloned with the following command.

git clone https://gitlab.jsc.fz-juelich.de/

CoE-RAISE/FZJ/ai4hpc/ai4hpc

The following code snippet provides the manual to compile

AI4HPC, see also Appendix.

python setup.py --help

The library has been tested on Linux-based operating systems at

multiple HPC sites. The setup script of AI4HPC is pre-configured

for five HPC systems (as of 04/2024): the Jülich Wizard for

European Leadership Science (JUWELS) (Krause, 2019), the Jülich

Research on Exascale Cluster Architectures (JURECA) (Jülich

Supercomputing Centre, 2021), the Dynamical Exascale Entry

Platform—Extreme Scale Technologies (DEEP-EST) (Suarez et al.,

2021) systems at the Jülich Supercomuting Centre (JSC), the CTE-

AMD5 system at Barcelona Supercomputing Center (BSC), and

the Large Unified Modern Infrastructure (LUMI)6 system at the

IT Center for Science (CSC). AI4HPC generates the configuration

required in the job submission script for the respective HPC

system. Moreover, configuring AI4HPC for other HPC systems

is trivial and straightforward, which is provided in AI4HPC’s

documentation page.7

AI4HPC consists of five main components:

1. Data manipulation routines tailored for CFD datasets: AI4HPC

implements a specific multi-process dataloader, which can

process datasets with irregular dimensions and includes

preprocessing, augmentation, and normalization methods. For

instance, an irregularly-shaped input is reshaped into smaller

patches to extract regularly shaped batches. This allows handling

irregular CFD grids (e.g., non-equidistant meshes). The choice

of smaller patches can be provided by the user as an optional

parsing argument. It should be noted that when using the

reshaping feature, the reconstruction of the cubes for post-

processing needs to be handled by the code. An example of this

operation is provided in the repository.8 For faster input, the

data transfer between the CPU (host) and the GPU (device)

uses page-locked (or pinned) memory; thus, cudaMemcpy

operations can be skipped.

2. ML architectures: Several ML architectures, which are tailored

for CFD applications, are available in AI4HPC. With some

minimal changes, these models can easily be adapted to

other tasks, e.g., coming from computer vision. The available

architectures are:

• CAEs for compressing CFD fields to reduce local disk space

requirements;

• CDM based on a DPM is used for super-resolution, i.e.,

to generate highly-resolved CFD fields from low-resolution

data;

5 CTE-AMD. Available at: https://www.bsc.es/innovation-and-services/

technical-information-cte-amd.

6 LUMI https://www.lumi-supercomputer.eu

7 AI4HPC. Available at: https://ai4hpc.readthedocs.io/en/latest/AI4HPC/

HPCs.html.

8 Map Cubes. Available at: https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/

ai4hpc/ai4hpc/-/blob/master/Scripts/mapCubes.py.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.bsc.es/innovation-and-services/technical-information-cte-amd
https://www.bsc.es/innovation-and-services/technical-information-cte-amd
https://www.lumi-supercomputer.eu
https://ai4hpc.readthedocs.io/en/latest/AI4HPC/HPCs.html
https://ai4hpc.readthedocs.io/en/latest/AI4HPC/HPCs.html
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Scripts/mapCubes.py
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Scripts/mapCubes.py
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

• CAE-PN, which is a fully-connected NN, is combined with

a CAE to predict a QoI, e.g., the total power-saving of an

actuated airfoil (as in Albers et al., 2019) as a function of

operational conditions;

• Flow Transformer (FlT) is used for time-marching the

CFD flow fields, replacing the expensive time-integration

schemes.

3. Optimizations to handle distributed training on HPC systems:

AI4HPC includes various optimization routines, which not

only allow for more efficient training of ML models, but

also for tuning the training with advanced options, such as

mixed precision, gradient accumulation, etc. This is discussed

in further details in Section 3.

4. HyperParameter Optimization (HPO) tool: Finding optimized

hyperparameters increases the accuracy of an ML model

significantly. AI4HPC includes a scalable HPO module with

the Ray Tune library9 that features a smooth integration of

PyTorch-based training scripts. Two levels of parallelism

are possible: (i) run each trial (model with different

hyperparameters) in parallel on multiple GPUs using the

DDP strategy, and/or (ii) run several trials in parallel on an

HPC system (via Ray Tune itself). An HPO implementation

using the AI4HPC library involving mixed precision has already

been published (Aach et al., 2023).

5. Monitoring and performance benchmarking tool: For monitoring

AI4HPC, NVIDIA’s system-wide performance analysis tool

Nsight API10 and PyTorch’s standard profiler are used.

Important performance metrics are printed to the standard

output file, such as the epoch runtimes, loss, or memory print.

GitLab’s CI routines continuously compiling and benchmarking

AI4HPC are also implemented. Furthermore, AI4HPC includes

a benchmarking tool, which enables to analyze the scaling

behavior of the library on large HPC systems.

3 Optimizations and performance

AI4HPC implements many optimization routines, which

augment the performance of the ML models. These are discussed

in detail in this section. For the purpose of this study, the

two frameworks PyTorch-DDP and Horovod are evaluated. To

demonstrate the optimization choices, trainings of the CAE-NN

on the TBL dataset is performed. Two HPC systems are chosen,

the Booster module of JUWELS and the DC-GPU partition

of JURECA. The JUWELS Booster module, at its current state

(04/2024), consists of 936 compute nodes interconnected via four

InfiniBand HDR adapters.11 Each node is equipped with two 24-

core AMD EPYC Rome 7402 CPUs12 and four NVIDIA A100

GPUs.13 The JURECA DC module, at its current state (04/2024),

consists of 192 accelerated compute nodes interconnected via two

9 Ray Tune. Available at: https://docs.ray.io/en/latest/tune/index.html.

10 Nsight API. Available at: https://developer.nvidia.com/nsight-perf-sdk.

11 Available at: https://www.mellanox.com/pdf/whitepapers/

IB_Intro_WP_190.pdf.

12 Available at: https://www.amd.com/en/products/cpu/amd-epyc-7402.

13 Available at: https://www.nvidia.com/en-us/data-center/a100/.

InfiniBand HDR adapters. Each node is equipped with two 64-core

AMD EPYC 7742 CPUs14 and four NVIDIA A100 GPUs. Here, the

scaling performance is measured in terms of speed-up s, which is

the ratio of the reference average epoch duration using a reference

number r of GPUs t̄e(r) to the average epoch duration of the current

training t̄e
∗(g), i.e.,

s(r, g) = t̄e(r)

t̄e
∗(g)

, (1)

where g is the number of employed GPUs. The efficiency at g is then

defined by

e(r, g) = s(r, g)

s∗(r, g)
· 100%, (2)

where s∗(r, g) would be the ideal speed-up at g with baseline r.

The parallel performance of AI4HPC is analyzed in

Section 3.1, both with and without input/output (IO) operations.

Optimizations available in AI4HPC are then evaluated in terms

of learning rate and adaptive summation (Section 3.2), mixed

precision (Section 3.3) and gradient accumulation (Section 3.4).

The effect of the dataset size on the error ǫ is evaluated in

Section 3.5.

3.1 Parallel performance

To test the scaling performance of AI4HPC without IO, the

training of a U-Net model is run on up to 916 compute nodes

of the JUWELS system, which is equivalent to parallel usage of

3,664 NVIDIA A100s.15 The U-Net architecture (Ronneberger

et al., 2015) is employed for super-resolution with over 52 million

trainable parameters that occupy 90% of the available GPUmemory

per device (36/40 GB). A synthetically created CFD dataset (i.e.,

disabled IO) is employed withHorovod as communication backend

in AI4HPC. The benchmark results in Figure 2 show the speed-

up with g = 3,664 and r = 4, leading to s(r, g) = 881.92 [ideal

theoretical speed-up is s∗(r, g) = 916] and a scaling efficiency of

e(r, g) > 96%. It should be noted that this scaling performance

is only possible using a significantly large dataset. With smaller

datasets, the training suffers from a communication bottleneck due

to insufficient data per device, which is further discussed below.

The parallel performance results of the CAE-NN training to

reconstruct actuated TBL flow fields using the PyTorch-DDP and

Horovod frameworks are depicted in Figure 3. Contrary to the

experiments on JUWELS, IO is also considered in these CAE-NN

trainings on JURECA. Around 90% (7.5 TB) of the dataset leading

to around 2.7 million samples stored in HDF516 format (30,614

files) is used for training. The remainder (0.8 TB) of the dataset, i.e.,

around 0.3 million samples in HDF5 format (3,402 files), is used for

testing. The test dataset is ensured to include at least a single data

sample per actuation parameter.

For the trainings with g ≤ 64 and r = 4, the number

of epochs is set to E = 100, the micro-batch size to B = 2,

14 Available at: https://www.amd.com/en/products/cpu/amd-epyc-7742.

15 NVIDIA A100. Available at: https://www.nvidia.com/en-us/data-center/

a100.

16 https://www.hdfgroup.org/HDF5.

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://docs.ray.io/en/latest/tune/index.html
https://developer.nvidia.com/nsight-perf-sdk
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.amd.com/en/products/cpu/amd-epyc-7402
https://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.nvidia.com/en-us/data-center/a100
https://www.nvidia.com/en-us/data-center/a100
https://www.hdfgroup.org/HDF5
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

FIGURE 2

Benchmarking of AI4HPC on the JUWELS HPC system on up to 916 compute nodes (3,664 NVIDIA A100s) with Horovod. The NN is a U-Net model

consisting of 52 million trainable parameters with 36 GB memory occupancy per GPU. The training is performed with a synthetically created dataset,

which is expected to significantly a�ect the scaling. The black-dashed line depicts the ideal speed-up.

A B

C D

FIGURE 3

Performance comparison of the PyTorch-DDP and Horovod

frameworks to train on actuated TBL data with hyperparameters

E = 100, B = 2, and LR = 0.001 on the DC-GPU partition of

JURECA (Jülich Supercomputing Centre, 2021). Depicted are the

average epoch time t̄e
∗
(g) (A), speed-up s(r,g) (B), e�ciency e(r,g)

(C), and the training error ǫ (D). The black dashed line represents the

ideal scenario (perfect scaling).

the fixed learning rate to LR = 0.001, and the SGD optimizer

weight decay to W = 0.003. It is to be noted that the effective

micro-batch size Beff = B × 88 is higher, since the velocity

field slices in the wall-parallel direction are also included in the

batch dimension during pre-processing. For the analyses in this

manuscript, B is only used for reporting. Furthermore, the dataset is

not shuffled after each epoch and no scheduler for LR is employed.

In the experiments, shuffling did not improve the results and added

(slight) computational overhead. Experiments showed E = 100

yielding an acceptably converged training. It is ensured that the

findings of this and further tests are not dependent on E. The

average epoch duration t̄e
∗(g) is averaged over the number of E. The

first epoch duration is discarded from the statistics. The training

error ǫ is computed during the test phase using the Mean-Squared

Error (MSE) between the reference and the reconstructed velocity

fields, which has been demonstrated to work well for canonical

cases (Jin et al., 2018). Since in the distributed setting, all workers

train on chunks of the dataset and consequently accumulate local

errors, these are averaged over all the workers. Furthermore, the

library also offers the possibility to allow deterministic runs for

reproducibility. This can be activated with nseed as an optional

parser argument to the code, which defaults to zero. This argument

then uses the method torch.manual_seed17 provided by the

PyTorch library. For the test runs in this study, the default seed of

zero is used.

As shown in Figure 3A, the training duration for both

frameworks is similar. From Figure 3B, it is evident that both

frameworks achieve satisfactory scaling performance up to g = 64.

The efficiencies are always higher than 58% (Figure 3D). From the

behavior of the error ǫ in Figure 3C it is obvious that changing g

indeed affects the quality of the reconstructions, noting that the

learning rate is fixed at LR = 0.001. Both the PyTorch-DDP and

Horovod frameworks suffer from worse ǫ values when more GPUs

are used—the ǫ value increases by a factor of three when g is

increased from four to 64.

In the DDT strategy, it is common practice to increase the

number of workers to reduce the training time. In an ideal

scenario, doubling the number of workers should halven the

training time, leading to perfect scaling. In reality, distributing

the total dataset to more workers causes an imbalance between

the computation and communication—fewer data samples per

17 Manual Seed. Available at: https://pytorch.org/docs/stable/generated/

torch.manual_seed.html.

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://pytorch.org/docs/stable/generated/torch.manual_seed.html
https://pytorch.org/docs/stable/generated/torch.manual_seed.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

A B

C D

E F

FIGURE 4

Process monitoring results on CPUs and GPUs for trainings with a

number of nodes n. CPU’s IO and basic arithmetic/logic/controlling

operations (Ops), the GPU’s computation (Comp) and

communication (Comm) operations are shown. (A) CPU (n = 1). (B)

GPU (n = 1). (C) CPU (n = 2). (D) GPU (n = 2). (E) CPU (n = 16). (F)

GPU (n = 16).

worker are available, and the communication share increases,

which (usually) negatively affects the scaling behavior. Exemplary,

process monitoring results of three CAE-NN trainings with a

single, two, and 16 nodes are depicted in Figure 4. The overall

process shares between a single and two nodes are almost the same,

but considerably different between two and 16 nodes. Comparing

the results for two and 16 nodes, it is evident that a decrease

in the share of CPU operations (denoted as Ops) is observed

due to less data being available. In contrast, the share of the

communication operations between GPUs (denoted as Comm) is

increased. From these findings, it can be inferred that: (i) there is

a limit to the maximum number of workers for a specific dataset

size, and (ii) this limit extends for trainings with even larger

dataset sizes.

Figure 5 shows the speed-up s(r, g) and efficiency e(r, g) results

of the two trainings to test the effect of the dataset size on the

scaling performance of the DDT approach in AI4HPC. For this

purpose, the same CAE-NN training is repeated using the PyTorch-

DDP framework with a 10 times larger dataset size compared

to the original one. This larger size is achieved by rereading

the same original dataset 10 times during the training, leading

to an input of 83 TB of data. Note that due to file caching

algorithms, the performance metrics of a training with an actual

83 TB might slightly differ from the results presented here. To

compensate for the computational effort, the number of epochs

is reduced to E = 10, while the other hyperparameters are

A B

FIGURE 5

E�ect of the dataset size on the scaling performance of the DDT

approach in AI4HPC. The (A) speed-up s and (B) e�ciency e of a

training with 10 times larger dataset size (x10 size) using the

PyTorch-DDP framework is compared to the same training on the

original dataset size (Org. size). All hyperparameters are the same

except for the lower number of epochs E = 10. The black dashed

line represents the ideal scenario (perfect scaling).

kept the same (B = 2, LR = 0.001, W = 0.003). It is

quite clear from Figure 5 that a better scaling performance can be

achieved with a larger dataset size. However, it is also plausible to

achieve better scaling performance for trainings with even larger

dataset sizes.

3.2 Learning rate and adaptive summation

Another important issue that needs to be addressed when using

the DDT approach is the loss in accuracy when the training is

performed with a large number of workers. As each individual

worker is set to a fixed micro-batch size, increasing the number

of workers also increases the mini-batch size. If this mini-batch

size is not adjusted accordingly, the scaling performance of the

training becomes meaningless as the training accuracy turns out to

be the decisive factor. This is addressed in AI4HPC using multiple

strategies. The common strategy is to tune other hyperparameters

keeping the accuracy of the training at an acceptable level, which

has intensively been discussed in the literature (Goyal et al., 2017;

You et al., 2017; Yamazaki et al., 2019), e.g., the learning rate can

be proportionally scaled to the mini-batch size, i.e., the number

of workers.

Another plausible strategy implemented in AI4HPC to reduce

the ǫ values for a large-scale training is based on a summation

algorithm, Adasum (Maleki et al., 2020). In this algorithm, the

accumulation of gradients g1 and g2 from two workers are extended

from the summation or averaging to:

Adasum(g1, g2) =
(

1− gT1 · g2
2||g1||2

)

g1 +
(

1− gT1 · g2
2||g2||2

)

g2 , (3)

where gT1 ·g2 is their dot product. In synchronous SGDmethods that

are used to compute the gradients in parallel, the effective gradient

is the average (g1 + g2)/2. As a consequence, applying learning

rate scaling (as discussed above), the effective gradient becomes

the summation. Equation (3) reduces to a simple averaging if

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

A B

FIGURE 6

The ǫ value over g (A) and training loss over the number of epochs

using g = 64 (B) for CAE-NN trainings with fixed LR = 0.001 (red),

scaled LR = 0.001 · g (blue), and Adasum algorithm with fixed

LR = 0.004 (green).

gradients g1 and g2 are parallel. In contrast, if the gradients g1
and g2 are orthogonal, Equation (3) reduces to a summation. Since

during the training the gradients are neither perfectly parallel nor

orthogonal, this equation simply sums these gradients after scaling

with appropriate scalars. Thus, the sequential execution to compute

both gradients g1 and g2 is approximated in a single execution.

As presented in Maleki et al. (2020), the convergence properties

of this algorithm do not require scaling of the learning rate and

this algorithm does not add additional hyperparameters to be

tuned. It can be recursively applied to combine the gradients in

different workers.

The ǫ values of three CAE-NN trainings over g using

Horovod are depicted in Figure 6A. All trainings have the same

hyperparameters (B = 2, E = 100, W = 0.003), except for a

varying LR. This quantity is either fixed at LR = 0.001, is scaled, or

the adaptive summation algorithmAdasum is used with fixed LR =
0.004. It should be noted that this algorithm requires multiplying

the base learning rate LRb = 0.001 with the number of local GPUs

per node18 i.e., LR(g) = LRb · g. For JURECA, this results in a

minimum of LR = 0.004 and a maximum of LR = 0.064 for

g = 4 and g = 64. From Figure 6A, it becomes clear that the ǫ

value is drastically lower when LR is scaled. When g = 4, the ǫ

value is reduced by around 23%, whereas ǫ is reduced by around

64% when LR is scaled. Importantly, ǫ is highest when g = 32 and

LR is scaled. It is evident that tuning hyperparameters, in this case

LR, is of utmost importance when increasing g.

The MSE training loss of the three CAE-NN trainings with g =
64 over the number of epochs is depicted in Figure 6B. The training

with fixed LR is not fully converged after E = 100, whereas the

scaled LR training converges for E ≥ 7. Note that the training with

a fixed LR could achieve similar training loss for a large number of

E. The error in this case is still decreasing slowly until E = 100, but

further epochs are not trained in this work.

The comparison of ǫ values and the training loss of the CAE-

NN training using Adasum to both fixed and scaled LR is also

depicted in Figures 6A, B. The Adasum algorithm leads to an ǫ

value similar to using a scaled LR, except for g = 64. It is also

18 Available at: https://horovod.readthedocs.io/en/stable/

adasum_user_guide_include.html.

possible to first optimize the LR value for this training, as suggested

in Maleki et al. (2020). This requires, however, computationally

costly HPO methods, which are out of scope of the present

investigations. Notably, the training with Adasum shows a similar

convergence rate as in the training with a fixed LR, see Figure 6B.

A quantitative comparison of the training properties using either a

fixed LR = 0.001, scaled LR, or Adasum with a fixed LR = 0.004 is

summarized in Table 1. It is evident that the training with Adasum

does not show any computational overhead. Horovod uses slightly

less (around 10%) memory than PyTorch-DDP, hence, the lower

memory results of Adasum are not a merit of this algorithm.

3.3 Mixed precision

In the default implementation, frameworks such as PyTorch-

DDP and Horovod use the single-precision floating-point format

(commonly referred to as FP32), which occupies 32 bits per

variable in memory for the dataset and the network parameters. As

training on a large dataset is a memory-intensive process, it makes

sense to use a half-precision floating-point format (commonly

referred to as FP16) to reduce memory requirements. AI4HPC

provides the option to test the mixed precision format for training

ML models. For testing purposes, the same CAE-NN training

using g = 64 is performed using various formats with the same

hyperparameters as above (B = 2, E = 100, LR = 0.001, W =
0.003). Corresponding quantitative results are given in Table 2.

In the first test, only the format for the dataset in the memory

is reduced to FP16 precision. This test is repeated twice, using

PyTorch-DDP (FP16-D) and Horovod (FP16-H). In the second

test, the format for the trainable parameters of the network and the

dataset in the memory is chosen automatically using the Automatic

Mixed Precision (AMP) package of PyTorch-DDP. This test is

also repeated twice, using PyTorch-DDP (AMP-D) and Horovod

(AMP-H). In the final test, the AMP package is combined with

the compression algorithm of Horovod, which forces all of the

gradients to be represented in FP16 precision during AllReduce

operations (Comp-H).

In all tests, the memory requirements of the GPUs are reduced

drastically, i.e., around 21% for FP16-D, AMP-D, AMP-H, and

Comp-H, and around 26% for FP16-H. However, the ǫ error is

an order of magnitude higher in the FP16-D and FP16-H tests

compared to the FP32 test, where the ǫ is around 50% higher

for FP16-H compared to FP16. The drastic worsening of ǫ is

mainly due to the reduced precision format of the dataset, i.e., the

smallest scales of the velocity components are lost using the FP16

format. Hence, employing AMP in AMP-D and AMP-H results in

similar ǫ values, the values are, however, 37% higher than the one in

FP32. Applying the compression algorithm of Horovod with AMP

marginally affects the ǫ values.

Using FP16-D decreases the average epoch times by 17%,

whereas using FP16-H decreases the average epoch times by only

7%. More importantly, AMP-D and AMP-H show 31 and 38%

decreased average epoch times. Finally, Comp-H yields on average

a longer epoch time than AMP-H, which has no compression

algorithm enabled. From these findings it is clear that, as both

the compression algorithm and AMP modifies the precision of

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://horovod.readthedocs.io/en/stable/adasum_user_guide_include.html
https://horovod.readthedocs.io/en/stable/adasum_user_guide_include.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

TABLE 1 Summary of CAE-NN trainings with E = 100, B = 2,W = 0.003, and a fixed LR value, scaled LR, and using the Adasum algorithm with fixed LR.

LR g t̄e
∗(g)(s) Memory ǫ (m2/s2)

Fixed 0.001 64 98.4 37.0 GB 0.00460

Scaled 0.064 64 92.2 36.8 GB 0.00155

Adasum 0.004 64 94.8 32.5 GB 0.00207

TABLE 2 Summary of the parameters and results of a CAE-NN trainings with E = 100, B = 2,W = 0.003, and a fixed LR value using various precision

formats.

LR g t̄e
∗(g)(s) Memory ǫ (m2/s2) Worsening

FP32 0.001 64 98.4 37.0 GB 0.00460 –

FP16-D 0.001 64 81.2 29.2 GB 0.04287 832%

FP16-H 0.001 64 91.2 27.5 GB 0.06816 1,382%

AMP-D 0.001 64 67.7 29.1 GB 0.00631 37%

AMP-H 0.001 64 60.9 29.2 GB 0.00646 40%

Comp-H 0.001 64 75.2 29.2 GB 0.00651 41%

the network parameters, the compression algorithm unnecessarily

burdens the training by modifying the precision of the network

parameters, causing longer average epoch times. It is worth

mentioning that AMP would result in a major reduction of the

memory footprint or of the training runtime for a larger network.

However, AMP is not favorable for the CAE-NN due to high

ǫ values.

The training loss of four CAE-NN trainings using g = 64

plotted over the number of epochs employing different precision

formats is depicted in Figure 7. The hyperparameters are the same

as above (B = 2, E = 100, LR = 0.001, W = 0.003).

Interestingly, the training loss drops a second time in both the

FP16-D and FP16-H cases after a few epochs. The FP16-D

case is not converged, even after E = 100, whereas the FP16-H

case is (almost) converged. The AMP-D case converges much

faster than the other cases, noting that AMP-H and Comp-H

show almost identical results than the one for AMP-D. They are

therefore omitted for brevity. Interestingly, the cases with AMP

converges even before 50 epochs and has the lowest final loss.

However, the final loss of the training for each case does not

represent the training errors achieved with the testing dataset, e.g,

the AMP-D case has a higher training error but a smaller final loss

than FP32.

3.4 Gradient accumulation

Training a model using large datasets usually causes memory

issues for large mini-batch sizes. A tiny micro-batch size is

often preferable when using many GPUs in parallel. With an

increasing number of GPUs, the mini-batch size inevitably scales

as well, becoming infeasibly high for high GPU counts. One

approach to achieve a large batch size regardless of the memory

requirements is to accumulate the calculated gradients without

issuing backpropagation, i.e., using gradient accumulation. This

way, the next micro-batch is stacked into the previous one for the

FIGURE 7

Training loss over the number of epochs for a CAE-NN trainings

using g = 64 with di�erent precision formats.

next epoch. For example, a training with B = 2 eventually is the

same as a training with B = 4 but with a gradient accumulation

step AS of 2, i.e., issuing backpropagation when Mod(E,AS =
2) = 0. Hence, gradient accumulation is a promising alternative

to achieve larger batch sizes even with lower memory in GPUs. A

small caveat of this approach is that the communication between

the nodes becomes redundant if AS > 2, since the parameters

and weights are anyhow not updated locally. Here the effect of the

use of gradient accumulation feature in AI4HPC on the training

parameters is analyzed.

For the following analysis, the CAE-NN training using g = 64

is performed, and a range of gradient accumulation steps AS = 1

up to AS = 16 are executed. The parameters of the training

and the quantitative results are given in Table 3. In all tests, the

PyTorch-DDP framework is used and the hyperparameters are

kept the same as above (B = 2, E = 100, LR = 0.001,

W = 0.003), noting that certainly the same conclusions could

be drawn if a different framework is used. In these tests, the

effective mini-batch size is multiplied by up to 16 by considering

AS = 16 without witnessing memory issues. Moreover, due to

fewer backpropagation operations, considering a large AS slightly

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

TABLE 3 Summary of parameter and results of the CAE trainings with E = 100, B = 2,W = 0.003, and a fixed LR value using gradient accumulation steps

AS ∈ {1, 2, 4, 8, 16}.

#AS LR g t̄e
∗(g)(s) Memory ǫ (m2/s2)

1 0.001 64 98.4 37.0 GB 0.00460

2 0.001 64 98.9 37.0 GB 0.00496

4 0.001 64 99.7 37.0 GB 0.00462

8 0.001 64 92.5 37.0 GB 0.00465

16 0.001 64 90.0 37.0 GB 0.00473

TABLE 4 Summary of the parameter and results of CAE-NN trainings with E = 100, B = 2,W = 0.003, and a fixed LR value using various micro-batch

sizes per AllReduce step.

#BpA LR g t̄e
∗(g)(s) Memory ǫ (m2/s2)

1 0.001 64 97.8 32.7 GB 0.00482

4 0.001 64 90.7 32.5 GB 0.00479

16 0.001 64 89.5 32.5 GB 0.00468

decreases the average epoch time by around 10%. The ǫ values for

tests with a different AS value are slightly different due to different

effective mini-batch sizes.

A common and sensible approach to alter the communication

drawback of this approach is to skip AllReduce operations

between the epochs, called batch per AllReduce BpA in AI4HPC.

To test the impact of such a strategy, the same CAE-NN training

using g = 64 is performed using BpA = 4 and BpA = 16.

The findings are compared to those of a standard training using

BpA = 1 in Table 4, where the Horovod framework is now used

instead and the hyperparameters are B = 2, E = 100, LR = 0.001,

W = 0.003. It is evident from this test that a high BpA yields similar

ǫ values as with a low BpA. As most of the bottlenecks come from

IO, thus, reducing communication between nodes barely reduces

the average epoch times. It seems plausible that similar ǫ values are

obtained as a consequence of the model parameters between the

nodes not drifting apart significantly. But this might be dependent

on the network and the dataset as well. Avoiding an update of the

model parameters between nodes causes the training parameters in

each node to continuously deviate per epoch, which is not desirable.

However, with even larger g and importantly, worse inter-node

communication in the HPC system, BpA > 16 could be still useful

in some cases.

3.5 Dataset size

The influence of the dataset size on ǫ is investigated by

conducting four CAE-NN trainings with different dataset sizes

using 32 GPUs with Horovod, with E = 1000, B = 1, W = 0.003,

and LR = 0.032. The chosen dataset sizes are based on a fraction,

given by F = 5, 10, 50, or 100% of the original (full) dataset, thus

ranging from 0.415 TB (F = 5%) to 8.3 TB (F = 100%). The ǫ

values obtained for these trainings values together with the dataset

sizes are listed in Table 5.

It is evident that the increase in dataset size drastically reduces

ǫ. The CAE-NN training with F = 5% achieves an error of

TABLE 5 Resulting ǫ values for four CAE-NN trainings with E = 1000,

B = 1,W = 0.003, and a scaled LRwith di�erent dataset sizes using the

Horovod framework.

Dataset size 8.3 TB 4.15 TB 0.83 TB 0.415 TB

F 100% 50% 10% 5%

ǫ [m2/s2] 0.0013 0.0016 0.0031 0.0035

ǫ degradation – %23 %138 %170

ǫ = 0.0035, which is 170% worse than the ǫ with F = 100%.

Meanwhile, doubling the dataset size to 0.83 TB (hence, F = 10%)

reduces ǫ by 12 percent, which is, however, still 138% worse than

the ǫ value of F = 100%. Moreover, using F = 50% further

reduces ǫ by 49%, which is yet again 23% worse than the ǫ with

F = 100%. Conclusively, the size of the dataset drastically affects

the ǫ values, but a linear correlation between the dataset size and ǫ

is not found.

It has been shown that the DDT method in AI4HPC

drastically reduces the runtimes of training neural networks,

which is also expected for other NN architectures. The library

achieves satisfactory parallel efficiency, limited to the size of the

dataset and the IO. The various optimizations presented provide

implementation hints to AI users. For instance, among the two

alternative solutions to circumvent the large mini-batches issue,

Adasum algorithm and LR scaling, the latter should be preferred

being the simpler-to-use solution. It is evident that for a CAE-

NN training, especially in the context of CFD datasets, the input

dataset requires a high-precision representation, e.g., in FP32, due

to the importance of small-scale structures. Applying the AMP

package should in such a case not be the option. However, other

domains, such as computer vision, could benefit from AMP. It

is also observed that large AS and BpA values can be selected

for these trainings if a large B value is desired. High AS and

BpA values only slightly reduce the training runtimes. Finally,

the size of the dataset should be large enough to achieve low

ǫ values.

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

4 Application case: reconstruction of
TBL flow with AI4HPC

In this section, the reconstruction performance of the AI4HPC

framework is investigated in detail for the actuated TBL flow case.

The use case is defined briefly in Section 4.1, followed by an

overview on the CAE-NN and CAE-PN network architectures and

the accuracy of these networks for the TBL flow reconstruction

shown in Section 4.2. The CDM network architecture and its

performance for obtaining super-resolution is shown in Section 4.3.

4.1 Use-case specification—actuated TBL
flow

The actuated TBL flow problem and the computational

setup of the fluid solver (Albers et al., 2019, 2020; Albers and

Schröder, 2021) are briefly explained. In this approach, an Active

Drag Reduction (ADR) method introduces spanwise traveling

transversal surface waves and is rigorously analyzed by high-fidelity

LESs of compressible fluids. Figure 8A shows the computational

setup. Here, periodic boundary conditions are employed in the

spanwise direction. The friction REYNOLDS number based on the

boundary layer thickness δ99 is Reτ = δ99uτ /ν = 360, where

uτ = √
τw/ρ is the friction velocity, ν is the dynamic viscosity,

τw is the wall-shear stress, and ρ represents the density. The MACH

number is Ma = 0.1 and is based on the freestream velocity and

the local speed of sound. A Cartesian mesh is used to discretize

the physical domain with a mesh resolution of 1x+ = 12 in the

streamwise direction, 1y+|wall = 1 in the wall-normal direction

at the wall, and 1z+ = 4 in the spanwise direction. The plus

sign denotes an inner scaling of the non-actuated reference case

1+ = 1 · uτ /ν, i.e., the scaling is based on ν and uτ , where

1{x, y, z} is the cell size in the respective space dimension.

At the lower x − z boundary, a moving no-slip wall boundary

condition is applied, which allows the prescription of a space- and

time-dependent sinusoidal wave motion, given by

y+|wall(z+, t+) = A+ cos

(

2π

λ+
z+ − 2π

T+ t+
)

. (4)

Equation 4 features the time t+ = tuτ /ν and the actuation

parameters in inner scaling, namely the wavelength λ+ = λuτ /ν,

period T+ = Tu2τ /ν, and the amplitude A+ = Auτ /ν, where λ, T,

and A are the wavelength, period, and amplitude in outer scaling.

Five spanwise widths are used to prescribe different

wavelengths while keeping the same spanwise periodicity of

the setup. In total, 79 parameter combinations with five non-

actuated reference simulations are performed. The primitive flow

velocity variables (u, v,w) are stored for the sub-volumes of the

three-dimensional flow field shown by the highlighted red box

in Figure 8B. Corresponding to the spanwise widths, the number

of cells in the highlighted red box in the z-direction is 250, 300,

400, 450, or 750, while there are 192 and 98 cells in the x- and

y-direction. For the different actuation parameter configurations,

among various output quantities, 1Cd and Pnet are recorded. The

expressions and details of the derivation of these quantities can

be found in Albers et al. (2020), where the objective is to find the

actuation parameter configuration that maximizes 1Cd and Pnet .

Therefore, apart from the ability to attain a high compression of the

data with high accuracy, the proposed NNs must also provide an

accurate estimation of these quantities to allow the determination

of optimized actuation parameters. This is achieved with two CAE

networks, which are described in Section 4.2. Thereafter, an SRN is

developed for increasing the resolution of the TBL fields, which is

elaborated in Section 4.3.

4.2 CAE application to the TBL flow case

The first application case of AI4HPC with CAE is shown in

this section. A discussion on the network architecture is provided,

followed by an analysis of the performance of the networks for

reconstructing the TBL flow field.

4.2.1 Network architectures
The architecture of the CAE-NN is shown in Figure 9A.

It consists of four encoding and four decoding layers. Two

of these layers, each in the encoder and the decoder, perform

convolution along with compression (through striding), while the

other two only perform convolution. This yields a compression

ratio of 1:16. Comparatively, with a higher compression ratio

of 1:64, the test error is found to be 3.3 times higher. Hence,

the analysis here is restricted to a latent space compression of

1:16. The network is based on two-dimensional convolutional

A B

FIGURE 8

Full computational setup of the simulation of the actuated TBL and subvolume, where LES results are extracted (Albers et al., 2020). The quantity bw

denotes the box-width of the computational domain. (A) Computational setup. (B) Three-dimensional subvolume.

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

A B

FIGURE 9

(A) CAE-NN architecture, where convifil,ofil,nk denotes the convolution operation mapping ifil to ofil feature maps, and nk is the dimension of the

filters, with batch-normalization (bn), interpolation (interp) function of PyTorch used for up-sampling and leakyReLU as the activation

function. The dimension of the input and output tensors are mentioned after each of the operations. The quantities z̃, U, and Ũ are the latent space

input velocity field and output velocity field tensors. (B) CAE-PN architecture, where the output Ũ from the CAE-NN is fed as input. The four

convolutional layers (conv) are flattened, which are then passed through six fully-connected (fc) layers, and the final layer outputs the 1Cd and Pnet

values, the QoIs. Note that the three actuation parameters and the additional parameter box-width are concatenated (conc) to the tensor after the

fourth fc-layer (box shown in green).

layers with a LeakyReLU activation function to introduce non-

linearity. The convolution operation is applied along the wall-

parallel direction. A batch-normalization is applied at

the end of each activation layer. Down-sampling is performed

with a stride argument in the convolution operation, which

is the number of pixels/units that the convolutional filter

moves at an iteration. For up-sampling in the decoder, the

interpolation function in PyTorch is used subsequent

to the convolutional layer. The network inputs are two-

dimensional (u,w) velocity fields from the actuated TBL. The

loss function is given by the MSE loss between the original

and reconstructed fields. For training, about 2.7 million samples

are used.

The second network is the CAE-PN, whose objective is

to predict relevant physical quantities from the latent space

of the CAE-NN. In practice, for any given random slice of

the velocity field reconstructed by the CAE-NN in the wall-

normal direction and at any time-instance, the CAE-PN aims

to predict the corresponding QoIs, 1Cd and Pnet . Furthermore,

the corresponding three actuation parameters λ+, A+, and

T+, see Equation 4, are used as input to the network. An

additional parameter related to the computational setup for

each velocity field, i.e., the spanwise size of the box (box-width

bw) of the actuated region in the computational domain (see

Figure 8B) is also concatenated to the network, which helps

the NN to distinguish if an input field has been reshaped

or not due to varying dataset dimension. The dependence

of the network on the three actuation parameters facilitates

the generalization of this network such that QoIs outside the

trained actuation parameter range can be predicted accurately.

The CAE-PN network is shown in Figure 9B, where Ũ is

the velocity flow field of the actuated TBL reconstructed by

the CAE-NN. Four convolutional layers are employed and

the output tensor from the fourth convolutional layer is

flattened. Subsequently, fully connected (fc) layers are employed.

The three actuation parameters and the additional parameter,

box-width are scaled based on their maximum value and

concatenated to one of the hidden fc layers, see the green

box in Figure 9B. Finally, the network yields the two QoIs.

The loss function of the CAE-PN is given by two terms:

the MSE between the original and reconstructed velocity fields

from the CAE-NN, and the MSE between the predicted and

target QoIs, which have been pre-computed during the run of

the LES.

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

4.2.2 Performance of the NNs
An example of the reconstruction by the CAE-NN is shown

in Figure 10 for the scaled streamwise (u∗) and wall-normal

(v∗) velocity components in the wall-parallel plane closest to the

wall at a certain time instance. The scaling of a scalar φ is

defined by

φ∗ = nsc ·
φ − φmin

φmax − φmin
−msc, (5)

where nsc = 2, msc = 1 is employed for the velocity

fields, while nsc = 1, msc = 0 is used for the QoIs.

Qualitatively, the reconstructions are able to predict the general

characteristics of the u, v and w fields. For all the components,

the dominant flow features are well-reconstructed. However,

when fine-scale details are compared, the reconstructions show

qualitatively blurry images relative to the reference LES results,

questioning the reconstruction performance of the CAE-NN

toward the dissipative and plausibly energy-containing eddies.

The two-dimensional Noise-Assisted Multivariate Empirical Mode

Decomposition (NA-MEMD) (Mäteling and Schröder, 2022)

method provides a quantitative measure of the CAE-NN’s ability

to reconstruct specific features based on their scale size. This

data-driven decomposition method simultaneously decomposes

the original and the reconstructed velocity data solely based on

data-inherent features. The resulting Intrinsic Mode Functions

(IMFs) are modal representations categorized with respect to

flow features that share a certain range of scales. In total, five

IMFs are obtained and an increasing mode number indicates

larger scales (wavelengths) contained in the respective mode.

For example, the first and the fifth IMFs from the simulated

and the reconstructed velocity component u at an arbitrary time

are depicted in Figure 11. It is visible that the large-scale flow

features contained in IMF5 of the reconstructions are in satisfactory

agreement with the original data. However, the agreement is

lost for the small-scale structures visible from the first IMF1.

This is even more clearly visible in Figure 12, where the scale-

based energetic content of the reconstructions is compared to

the characteristics of the original velocity fields using the pre-

multiplied Power Spectral Density (PSD) of the individual IMFs.

Pre-multiplication refers to the normalization of the PSD based

on the streamwise (1/λx) and spanwise (1/λz) wavelengths. The

distributions are averaged in space and over the instantaneous

snapshots and are presented as a function of λ+x and λ+z . It can
be seen that the computed PSD values conditioned on IMF1

using the reconstructions are under-predicted, while for IMF5,

the estimations are close to the original values. In order to be

able to utilize this model for the TBL flow case, its ability to

reconstruct the QoIs has to be determined, which is now analyzed

with the CAE-PN.

To assess the performance of the CAE-PN for both interpolated

and extrapolated states, the dataset is divided into two sets.

For evaluating the interpolation performance, the training set

is comprised of four box-widths bw ∈ {1,000, 1,200, 1,600,

3, 000}, while the test set has box-width bw = 1,800. To assess

the extrapolation performance, the training set is comprised of

box-widths bw ∈ {1,000, 1,200, 1,600, 1,800}, and the test set has

A B

C

FIGURE 10

Cross-sections of the scaled velocity components from the LES (Input) and reconstruction by CAE-NN (Output). (A) Scaled streamwise (u∗) velocity.
(B) Scaled wall-normal (v∗) velocity. (C) Scaled spanwise (w∗) velocity.

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

A B

FIGURE 11

Exemplary intrinsic mode functions (IMFs) of the streamwise velocity component u from the LES (input) and the reconstruction by CAE-NN (output).

(A) IMF1 for streamwise (u∗) velocity. (B) IMF5 for streamwise (u∗) velocity.

FIGURE 12

Comparison of pre-multiplied PSD of individual IMFs in the original and reconstructed velocity fields of the TBL.

box-width bw = 3, 000. The models are trained for E = 3,200

epochs and E = 5,140 epochs in interpolation and extrapolation

cases, with a learning rate of LR = 0.001 and an SGD optimizer

with a weight decay ofW = 0.003.

The comparison of the statistics of the predicted and target

values of the QoIs is shown in Table 6. A total of 6,784 and 2,240

different velocity fields in interpolation and extrapolation cases

are fed to the CAE-PN as input to generate these statistics. The

average values of 1Cd in both the cases are accurately predicted

with a deviation of only ≈ 5.71 and ≈ 3.57% for mean 1Cd in

interpolated and extrapolated cases, with a higher deviation for

the predicted minimum value. In the case of Pnet , the mean has a

deviation of≈ 7.14% in interpolated cases while this is much higher

in the extrapolated case with ≈ 27.3%. The worse extrapolation

performance with Pnet can, however, be expected since there

is higher variability in Pnet (Albers et al., 2020). Furthermore,

in Albers et al. (2020), no linear relationship between 1Cd and

Pnet is observed, which is in agreement with the workflow that

is employed here to train the QoI separately. Finally, the overall

accuracy of the predictions is assessed with the Pearson correlation

coefficient, which is given by

r = cov(a, b)

σaσb
, (6)

where cov(a, b) is the covariance between two datasets a and

b, while σa and σb are the respective standard deviations. A

value of r ∼ 1.0 signifies a high correlation, while r ∼ 0.0

implies uncorrelated quantities. It is observed that in the case

of 1Cd, r ≈ 0.92 and r ≈ 0.91 are achieved for interpolated

and extrapolated states, while for Pnet , the values are r ≈ 0.89

and r ≈ 0.69. To summarize, the CAE-PN is able to provide

satisfactory reconstructions of 1Cd in both cases, while for Pnet
the network provides reasonable performance for interpolation.

Given the high variability of the target Pnet , the obtained

value of r for the extrapolation case can also be considered to

be satisfactory.

4.3 CDM application to the TBL flow case

The second application case of AI4HPC is shown with a CDM

network. The network architecture is initially depicted, followed by

a performance analysis on a super-resolution task. The potential

application of this network for augmenting the results of a WMLES

solution is also discussed.

4.3.1 Network architecture
The CDM model is based on the Denoising DPM (Sohl-

Dickstein et al., 2015; Ho et al., 2020) for reconstruction of near-

wall quantities in wall-bounded turbulent flows, which can then

be exploited for improving the approximation of the WMLES

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

TABLE 6 Performance of the CAE-PN based on statistical properties of the estimated QoIs, namely maximum (max), minimum (min), average (mean), and

standard deviation (std) values.

Interpolation Extrapolation

Max Min Mean Std Max Min Mean Std

1Cd(tar) 0.48 0.15 0.35 0.11 0.51 0.09 0.28 0.14

1Cd(pred) 0.55 0.18 0.37 0.08 0.52 0.14 0.29 0.08

deviation 14.5 20.0 5.71 27.3 1.96 55.6 3.57 42.9

Pnet (tar) 0.36 0.08 0.14 0.09 0.16 0.06 0.11 0.04

Pnet (pred) 0.32 0.01 0.15 0.07 0.23 0.09 0.14 0.03

deviation 11.1 87.5 7.14 22.2 43.8 50.0 27.3 25.0

The rows denote the target (tar) and predicted (pred) QoIs along with the relative error (deviation) in percentages. All quantities are scaled for the NN as per Equation 5.

FIGURE 13

Workflow of the CDM employed for super-resolution of TBL flow

field.

solution. The DPMs are unsupervised generative models which

learn to denoise purely noisy data. The noise sampled from a

distribution, e.g., Gaussian noise with a normal distribution is

converted into the data sample, which is used as an input to

the CDM model. The model then learns to defilter the filtered

quantities. This could, for instance, be applied to locally filtered

fields of an LES, to determine the distribution of the subgrid scale

quantities close to the wall.

The workflow of the CDM is shown in Figure 13. In the CDM,

the forward diffusion process filters an input Z with a Gaussian

filter. The filter size N is iteratively increased, resulting in a linear

increase of the standard deviation σ =
√

(N2 − 1)/12. The size

is increased from N = 1 corresponding to no filtering, up to

a maximum of N = Tn. In each incremental step, a small

amount of Perlin noise ǫp (Perlin, 1985) with 10 octaves and 1%

amplitude compared to the filtered input is added to prevent the

network from overfitting to a certain specified filter width. In this

case, Perlin noise is preferred over Gaussian noise, as it produces

computationally efficient turbulence-like structures (Perlin, 1985).

This filtered and noised input Z̃N + ǫp is then fed into a “3D U-

Net" which consists of three-dimensional convolutional operations.

The U-Net architecture is similar to the work of Çiçek et al.

(2016), where it is employed for volumetric medical data. The

three-dimensional convolutional operations allow the network

to evaluate the gradients in all the three directions, generally

important to understand turbulent flow dynamics. The input to

the network is the three-dimensional instantaneous velocity field

Z = ui, i ∈ {x, y, z}. Once trained, the network learns to defilter

Z̃N to reconstruct the input such that Ẑ
!= Z, where the wall-shear

stress τ can be computed from Ẑ.

For obtaining the training loss, a physics-constrained loss

function L is defined by incorporating physical constraints,

given by:

L = β1Lpixel + β2Lgrad + β3Lcont (7)

where, β1 = 0.88994, β2 = 0.06, and β3 = 0.05 are the

weights associated to the loss term contributions (Bode et al., 2021).

Here, the pixel loss Lpixel and gradient loss Lgrad are defined by

MSE between the original and reconstructed field. The term, Lcont
defines the continuity loss to enforce (close to) divergence-free

condition. During the first 100 epochs, the terms Lgrad and Lcont
are scaled to avoid dominating Lpixel by:

Lscaledκ = Lκ/10⌈log(Lκ/Lpixel)⌉ , κ ∈ {grad, cont}. (8)

4.3.2 Performance and outlook of CDM
The CDM is applied to the non-actuated TBL dataset and

trained for a maximum filter width of Tn = 5 for 20,000 epochs.

The batch-size is set to one and the learning rate to 0.0001. The

training is performed on the JURECA system with 32 GPUs for

four days. The trainings for this network are expensive due to

the iterative nature of the CDM and the large U-Net architecture.

Reconstruction results close to the wall are shown in Figure 14.

The instantaneous streamwise velocity contour plot ui, i = x and

line plots extracted at a randomly selected time step are shown.

It can be seen from the contour and line plots that Z and Ẑ

are in excellent agreement, with a reconstruction error of less

then four percent. At locations with high gradients, the values

are slightly underestimated. Overall, even with high filter widths

(upto 5x), the CDM is able to reconstruct the velocity fields with

high accuracy. Furthermore, the power spectrum of instantaneous

velocity gradients is depicted in Figure 15, revealing the energy

distribution across different scales in the flow and helping to

identify dominant turbulent structures. To calculate this, a Fourier

Transform is applied to the instantaneous velocity gradient in each

direction, converting these gradients to the frequency domain and

squaring the amplitude of the Fourier transform then yields the

power spectrum. In Figure 15, the x-axis shows the distribution

of turbulent structures, with increasing wave number κ denoting

smaller eddies. The fully resolved flow fields are shown with the

black line, whereas the filtering operation yields the red line, shifted

to the left as filtering destroys small structures. After applying the

CDMmodel, the blue line is achieved, which reconstructs the small

structures, fitting the black line almost perfectly. In an extension

to this work, the trained CDM will be coupled to an LES solver

(achieved with a coupling framework) and the CDM-obtained

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

FIGURE 14

Performance of the CDM. Contours (Top row) and spanwise extractions (Bottom row) of the instantaneous streamwise velocity ui with i = x for the

original data Z, the filtered input Z̃, and the output Ẑ. Red dashed lines indicate the spanwise extraction location.

FIGURE 15

Power spectrum of instantaneous velocity gradients predicted by

CDM and compared to the original and filtered inputs.

results will be benchmarked against a standard wall models for

near-wall flow reconstruction.

5 Discussion and conclusion

This manuscript detailed a comprehensive description of the

AI4HPC library. The implementation, deployment, and integration

of AI4HPC on leading HPC systems has been demonstrated along

with its support for diverse communication libraries. Importantly,

AI4HPC generates job scripts for multiple pre-configured HPC

sites, which is expected to not only assist CFD users, but also

popularize the exploitation of HPC infrastructure in the larger

AI community. The custom data manipulation routines enables

AI4HPC to be readily used for non-uniformmesh structures, which

is commonly seen in CFD use cases. A benchmark on the JUWELS

system highlights the scalability and performance enhancements of

the library. The remarkable speed-up with a scaling efficiency of

96% achieved on up to 3,664 GPUs emphasizes the ability of the

library to leverage the computational resources efficiently.

Furthermore, AI4HPC’s performance is demonstrated for a

large LES dataset. The training of this dataset employed up to

64 workers (in this case GPUs). Distributing the dataset to many

workers converged to each worker having too few data samples

leading to increased communication overheads. Hence, only a

satisfactory parallel efficiency could be achieved. It was found that

there was a limit to the maximum number of workers for a specific

dataset size, and this limit was extended for trainings with even

larger dataset sizes.

In addition, various performance optimization approaches

available in AI4HPC for issues commonly encountered in AI

training were presented. Two approaches to circumvent the issue

of large mini-batches for a large number of workers using the

DDT method were suggested. An effective solution was to apply

an adaptive summation (Adasum) algorithm. Simply scaling the

learning rate with the number of workers was a strong alternative.

Several optimization schemes were tested to either reduce the

training runtimes or to improve the accuracy. Applying a mixed

precision format reduced the memory requirements but greatly

increased the training error, and using gradient accumulation (with

and without skipping AllReduce commands) only marginally

improved the training runtimes, probably due to the small size of

the network. Finally, correlating the dataset size to the training

error showed no linear functional dependence between the dataset

size and the training error, but a larger dataset size should be

preferable to improve the generalizability of the trained NN.

Frontiers inHighPerformanceComputing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

Finally, the library was tested on two application cases. The

first case investigated reconstruction of QoIs in the TBL flow case,

combining two network architectures, a CAE-NN and CAE-PN.

The CAE-NN accuracy was assessed with a mode decomposition

method. The interpolation and extrapolation performance of the

CAE-PN was found to be decent with ≈ 5% deviation in

the predicted mean of 1Cd. In the interpolation case, the Pnet
predictions were satisfactory with ≈ 7.14% deviation, while a

lower but satisfactory performance of the CAE-PN was observed

for Pnet predictions in the extrapolation case due to the high

variability in the target Pnet . The workflow of the CAE-PN allowed

the reconstruction of 1Cd and Pnet from low-dimensional velocity

fields, which is a useful extension to the CAE-NN in terms of

the ability to provide physically-relevant latent representations.

The second application case was for development of an SRN with

a novel NN termed CDM. This model was applied to the non-

actuated TBL dataset. With an iterative increase in filter width

and noise, and a loss function constrained with physical terms,

the CDM learns to defilter the filtered and noised velocity fields.

The network showed excellent reconstruction ability and <4%

reconstruction error was obtained. This model is currently coupled

to an LES solver to explore its application for providing data-driven

corrections toWMLES estimations. Further investigations on these

presented application cases will be performed by evaluating the

performance of the presented models in terms of satisfaction of

the conservation laws. In particular, to enable these investigations,

a coupling framework to allow the synchronous execution of CFD

and ML solvers is under active development.

AI4HPC provides a pivotal contribution to the fields of AI,

CFD, and HPC. It holds the potential to drive cutting-edge research

and applications in CFD and beyond. Although the library has been

analyzed with respect to a CFD use case, other applications, e.g.,

from the computer vision and large language modeling community

can easily adopt the framework and exploit HPC usage in their

workflows. In this regard, the library consists of a transformer

model architecture, which has already been integrated with the

HPC systems. It should be noted that the backend frameworks

and software configurations available at HPC sites are continuously

updated and hence regular software releases are needed. Also

the supported frameworks and HPC sites are non-exhaustive.

However, AI4HPC already provides a wide array of options for new

and advanced users. The idea of the developers of this open-source

framework is to have a large community of users, which would

automatically lead to an extension and support of the library across

a wider spectrum. All the details and further updates on the library

are available and can be accessed from the documentation19 and

repository. page20

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

19 Available at: https://ai4hpc.readthedocs.io/en/latest/.

20 Available at: https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/

ai4hpc.

and accession number(s) can be found in the

article/supplementary material.

Author contributions

RS: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Writing –

original draft, Writing – review & editing. EI: Conceptualization,

Data curation, Formal analysis, Investigation, Methodology,

Software, Validation, Writing – original draft, Writing – review

& editing. MA: Data curation, Formal analysis, Investigation,

Software, Writing – review & editing. AL: Formal analysis, Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing.

Funding

The author(s) declare financial support was received

for the research, authorship, and/or publication of this

article. The research leading to these results has been

conducted in the CoE RAISE project, which receives funding

from the European Union’s Horizon 2020—Research and

Innovation Framework Programme H2020-INFRAEDI-2019-

1 under grant agreement no. 951733. The authors gratefully

acknowledge the computing time granted by the JARA

Vergabegremium and provided on the JARA Partition part

of the supercomputer JURECA (Jülich Supercomputing Centre,

2021) at Forschungszentrum Jülich, and by Gauss Centre for

Supercomputing e.V. (www.gauss-centre.eu) and provided on the

GCS Supercomputer Hazel Hen at Höchstleistungsrechenzentrum

Stuttgart (www.hlrs.de).

Acknowledgments

The authors acknowledge the contribution of M.

Albers, E. Lagemann, and W. Schröder from RWTH

Aachen University for providing the LES dataset and

contributing to the analysis and technical discussion of

this work.

Conflict of interest

RS, EI, MA, and AL are employed by Forschungszentrum Jülich

GmbH.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inHighPerformanceComputing 17 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://ai4hpc.readthedocs.io/en/latest/
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc
https://www.gauss-centre.eu
https://www.hlrs.de
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

References

Aach, M., Sarma, R., Inanc, E., Riedel, M., and Lintermann, A. (2023). “Short paper:
accelerating hyperparameter optimization algorithms with mixed precision," in SC-W
’23 (New York, NY: Association for Computing Machinery), 1776–1779.

Albers, M., Meysonnat, P. S., Fernex, D., Semaan, R., Noack, B. R., and
Schröder, W. (2020). Drag reduction and energy saving by spanwise traveling
transversal surface waves for flat plate flow. Flow Turbul. Combust., 105, 125–157.
doi: 10.1007/s10494-020-00110-8

Albers, M., Meysonnat, P. S., Fernex, D., Semaan, R., Noack, B. R., Schröder, W.,
et al. (2023). CoE RAISE - Data for Actuated Turbulent Boundary Layer Flows. Espoo:
EUDAT CDI.

Albers, M., Meysonnat, P. S., and Schröder, W. (2019). Actively reduced
airfoil drag by transversal surface waves. Flow Turbul. Combust. 102, 865–886.
doi: 10.1007/s10494-018-9998-z

Albers, M., and Schröder, W. (2021). Lower drag and higher lift for
turbulent airfoil flow by moving surfaces. Int. J. Heat. Fluid Flow 88:108770.
doi: 10.1016/j.ijheatfluidflow.2020.108770

Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The proper orthogonal
decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575.
doi: 10.1146/annurev.fl.25.010193.002543

Bode, M., Gauding, M., Lian, Z., Denker, D., Davidovic, M., Kleinheinz,
K., et al. (2021). Using physics-informed enhanced super-resolution GANs
for subfilter modeling in turbulent reactive flows. Proc. CI 38, 2617–2625.
doi: 10.1016/j.proci.2020.06.022

Brace, A., Yakushin, I., Ma, H., Trifan, A., Munson, T., Foster, I., et al.
(2022). “Coupling streaming AI and HPC ensembles to achieve 100–1000× faster
biomolecular simulations," in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (Los Alamitos, CA: IEEE Computer Society), 806–816.

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine
learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508.
doi: 10.1146/annurev-fluid-010719-060214

Carlberg, K., Farhat, C., Cortial, J., and Amsallem, D. (2013). The GNAT
method for nonlinear model reduction: effective implementation and application to
computational fluid dynamics and turbulent flows. J. Comput. Phys. 242:623–647.
doi: 10.1016/j.jcp.2013.02.028

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016).
“3D U-Net: learning dense volumetric segmentation from sparse annotation," in
MICCAI (Athens), 424–432.

Csala, H., Dawson, S. T. M., and Arzani, A. (2022). Comparing different nonlinear
dimensionality reduction techniques for data-driven unsteady fluid flow modeling.
Phys. Fluids 34:117119. doi: 10.1063/5.0127284

Duraisamy, K. (2021). Perspectives on machine learning-augmented Reynolds-
averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids 6:050504.
doi: 10.1103/PhysRevFluids.6.050504

Faller, W. E., and Schreck, S. J. (1996). Neural networks: applications
and opportunities in aeronautics. Prog. Aerosp. Sci. 32, 433–456.
doi: 10.1016/0376-0421(95)00011-9

Fu, R., Xiao, D., Navon, I., Fang, F., Yang, L., Wang, C., et al. (2023). A non-
linear non-intrusive reduced order model of fluid flow by auto-encoder and self-
attention deep learning methods. Int. J. Numer. Methods Eng. 124, 3087–3111.
doi: 10.1002/nme.7240

Fukami, K., Fukagata, K., and Taira, K. (2023). Super-resolution analysis via
machine learning: a survey for fluid flows. Theor. Comput. Fluid Dyn. 37, 421–444.
doi: 10.1007/s00162-023-00663-0

Götz, M., Debus, C., Coquelin, D., Krajsek, K., Comito, C., Knechtges, P., et
al. (2020). “HeAT-a distributed and GPU-accelerated tensor framework for data
analytics," in 2020 IEEE Int. Conf. on Big Data (Atlanta: IEEE), 276–287.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A., et al.
(2017). Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv [prepint].
doi: 10.48550/arXiv.1706.02677

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.Adv.
Neur. I. Proc. Sys. 33, 6840–6851. doi: 10.48550/arXiv.2006.11239

Jin, X., Cheng, P., Chen, W.-L., and Li, H. (2018). Prediction model of
velocity field around circular cylinder over various Reynolds numbers by fusion
convolutional neural networks based on pressure on the cylinder. Phys. Fluids
30:047105. doi: 10.1063/1.5024595

Jülich Supercomputing Centre (2021). JURECA: data centric and booster modules
implementing the modular supercomputing architecture at Jülich Supercomputing
Centre. J. Large Scale Res. Facil. 7:A182. doi: 10.17815/jlsrf-7-182

Kim, H., Kim, J., Won, S., and Lee, C. (2021). Unsupervised deep learning
for super-resolution reconstruction of turbulence. J. Fluid Mech. 910:A29.
doi: 10.1017/jfm.2020.1028

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. (2021).
Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. U.
S. A. 118:e2101784118. doi: 10.1073/pnas.2101784118

Krause, D. (2019). JUWELS: modular tier-0/1 supercomputer at the Jülich
Supercomputing Centre. J. Large Scale Res. Facil. 5:A135. doi: 10.17815/jlsrf-5-171

Lee, H., Merzky, A., Tan, L., Titov, M., Turilli, M., Alfe, D., et al. (2021). “Scalable
HPC & AI infrastructure for COVID-19 therapeutics," in Proceedings of the Platform
for Advanced Scientific Computing Conference, PASC ’21 (New York, NY: Association
for Computing Machinery).

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., et al. (2020).
Pytorch distributed: experiences on accelerating data parallel training. arXiv [preprint].
doi: 10.14778/3415478.3415530

Ling, J., Kurzawski, A., and Templeton, J. (2016). Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807,
155–166. doi: 10.1017/jfm.2016.615

Lintermann, A., Meinke, M., and Schröder, W. (2020). Zonal Flow
Solver (ZFS): a highly efficient multi-physics simulation framework.
Int. J. Comput. Fluid Dyn. 34, 458–485. doi: 10.1080/10618562.2020.17
42328

Maleki, S., Musuvathi, M., Mytkowicz, T., Saarikivi, O., Xu, T., Eksarevskiy, V.,
et al. (2020). Scaling distributed training with adaptive summation. arXiv [preprint].
doi: 10.48550/arXiv.2006.02924

Mäteling, E., and Schröder, W. (2022). Analysis of spatiotemporal inner-
outer large-scale interactions in turbulent channel flow by multivariate empirical
mode decomposition. Phys. Rev. Fluids 7:034603. doi: 10.1103/PhysRevFluids.7.0
34603

Maulik, R., San, O., Rasheed, A., and Vedula, P. (2019). Subgrid modelling for
two-dimensional turbulence using neural networks. J. Fluid Mech. 858, 122–144.
doi: 10.1017/jfm.2018.770

Meyer, L., Schouler, M., Caulk, R. A., Ribés, A., and Raffin, B. (2023). “Training deep
surrogate models with large scale online learning," in 40th International Conference on
Machine Learning (Honolulu: ICML), 202.

Obiols-Sales, O., Vishnu, A., Malaya, N., and Chandramowliswharan, A. (2020).
“CFDNet: a deep learning-based accelerator for fluid simulations," in Proceedings of
the 34th ACM International Conference on Supercomputing, ICS ’20 (New York, NY:
Association for Computing Machinery).

Pant, P., and Farimani, A. B. (2021). Deep learning for efficient reconstruction of
high-resolution turbulent DNS data. arXiv [preprint]. doi: 10.48550/arXiv.2010.11348

Perlin, K. (1985). An image synthesizer. ACM Siggraph Comp. Graph. 19, 287–296.
doi: 10.1145/325165.325247

Peterson, J. L., Bay, B., Koning, J., Robinson, P., Semler, J., White, J., et al. (2022).
Enabling machine learning-ready HPC ensembles with Merlin. Fut. Gener. Comp. Syst.
131, 255–268. doi: 10.1016/j.future.2022.01.024

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. (2020). “Deepspeed: system
optimizations enable training deep learning models with over 100 billion parameters,"
in Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (New York, NY), 3505–3506.

Raveh, D. E. (2004). Identification of computational-fluid-dynamics based
unsteady aerodynamic models for aeroelastic analysis. J. Aircraft 41, 620–632.
doi: 10.2514/1.3149

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: convolutional networks for
biomedical image segmentation. arXiv [preprint]. doi: 10.1007/978-3-319-24574-4_28

Sarma, R., and Dwight, R. P. (2017). Uncertainty reduction in aeroelastic
systems with time-domain reduced-order models. AIAA J. 55, 2437–2449.
doi: 10.2514/1.J055527

Sarma, R., Inanc, E., Aach, M., and Lintermann, A. (2024). AI4HPC Performance
and Applications. Zenodo.

Scalabrin, G., Condosta, M., and Marchi, P. (2006). Modeling flow boiling heat
transfer of pure fluids through artificial neural networks. Int. J. Therm. Sci. 45, 643–663.
doi: 10.1016/j.ijthermalsci.2005.09.009

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental
data. J. Fluid Mech. 656, 5–28. doi: 10.1017/S0022112010001217

Sergeev, A., and Del Balso, M. (2018). Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv [preprint]. doi: 10.48550/arXiv.1802.05799

Shu, D., Li, Z., and Barati Farimani, A. (2023). A physics-informed diffusion
model for high-fidelity flow field reconstruction. J. Comput. Phys. 478:111972.
doi: 10.1016/j.jcp.2023.111972

Sirignano, J., MacArt, J. F., and Freund, J. B. (2020). DPM: a deep learning PDE
augmentation method with application to large-eddy simulation. J. Comput. Phys.
423:109811. doi: 10.1016/j.jcp.2020.109811

Frontiers inHighPerformanceComputing 18 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://doi.org/10.1007/s10494-020-00110-8
https://doi.org/10.1007/s10494-018-9998-z
https://doi.org/10.1016/j.ijheatfluidflow.2020.108770
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1016/j.proci.2020.06.022
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1063/5.0127284
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1016/0376-0421(95)00011-9
https://doi.org/10.1002/nme.7240
https://doi.org/10.1007/s00162-023-00663-0
https://doi.org/10.48550/arXiv.1706.02677
https://doi.org/10.48550/arXiv.2006.11239
https://doi.org/10.1063/1.5024595
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.1017/jfm.2020.1028
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.48550/arXiv.2006.02924
https://doi.org/10.1103/PhysRevFluids.7.034603
https://doi.org/10.1017/jfm.2018.770
https://doi.org/10.48550/arXiv.2010.11348
https://doi.org/10.1145/325165.325247
https://doi.org/10.1016/j.future.2022.01.024
https://doi.org/10.2514/1.3149
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.2514/1.J055527
https://doi.org/10.1016/j.ijthermalsci.2005.09.009
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.48550/arXiv.1802.05799
https://doi.org/10.1016/j.jcp.2023.111972
https://doi.org/10.1016/j.jcp.2020.109811
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). “Deep
unsupervised learning using nonequilibrium thermodynamics," in Int. Conf. on ML
(Lille: PMLR), 2256–2265.

Stiller, P., Makdani, V., Pöschel, F., Pausch, R., Debus, A., Bussmann, M., et al.
(2022). Continual learning autoencoder training for a particle-in-cell simulation via
streaming. arXiv [preprint]. doi: 10.48550/arXiv.2211.04770

Suarez, E., Kreuzer, A., Eicker, N., and Lippert, T. (2021). The DEEP-EST Project.
Schriften des Forschungszentrums Jülich IAS Series (Jülich: Forschungszentrum Jülich
GmbH Zentralbibliothek, Verlag), 9–25.

Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon,
B. J., et al. (2017). Modal analysis of fluid flows: an overview. AIAA J. 55, 4013–4041.
doi: 10.2514/1.J056060

Turilli, M., Balasubramanian, V., Merzky, A., Paraskevakos,
I., and Jha, S. (2019). Middleware building blocks for workflow

systems. Comp. Sci. Eng. 21, 62–75. doi: 10.1109/MCSE.2019.29
20048

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N. (2020). “Solver-in-the-loop:
learning from differentiable physics to interact with iterative pde-solvers," in NIPS ’20
(Red Hook, NY: Curran Associates Inc.).

Wang, Y., Xie, Z., Xu, K., Dou, Y., and Lei, Y. (2016). An efficient
and effective convolutional auto-encoder extreme learning machine network for
3d feature learning. Neurocomputing 174, 988–998. doi: 10.1016/j.neucom.2015.
10.035

Yamazaki, M., Kasagi, A., Tabuchi, A., Honda, T., Miwa, M., Fukumoto, N., et al.
(2019). Yet another accelerated SGD: ResNet-50 training on ImageNet in 74.7 seconds.
arXiv [preprint]. doi: 10.48550/arXiv.1903.12650

You, Y., Gitman, I., and Ginsburg, B. (2017). Scaling SGD batch size to 32K for
ImageNet training. arXiv [preprint]. doi: 10.48550/arXiv.1708.03888

Frontiers inHighPerformanceComputing 19 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://doi.org/10.48550/arXiv.2211.04770
https://doi.org/10.2514/1.J056060
https://doi.org/10.1109/MCSE.2019.2920048
https://doi.org/10.1016/j.neucom.2015.10.035
https://doi.org/10.48550/arXiv.1903.12650
https://doi.org/10.48550/arXiv.1708.03888
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Sarma et al. 10.3389/fhpcp.2024.1444337

Appendix

This section provides instructions to reproduce the application

cases. After cloning the git repository as described in Section 2, the

networks for each of these application cases can be loaded with

the preferred distributed backend. For the applications shown here,

PyTorch-DDP (fw 1) is used. For the CAE-NN network (model

1), AI4HPC can be built with the command:

python setup.py --model 1 --fw 1

Similarly, for the CAE-PN and CDM cases, choosing model

3 and model 2 loads the corresponding networks. The

installation generates the main Python script ai4hpc.py,

startscript.sh for submitting the job and src folder

with all the dependencies. A job can be submitted to an HPC

system with:

sbatch startscript.sh

The network states and all data related to the applications

can be accessed from the open-access dataset (Sarma et al.,

2024). The TBL dataset itself, which is used for all the trainings

in this manuscript, is also open source and available from

Albers et al. (2023).

Frontiers inHighPerformanceComputing 20 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1444337
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Parallel and scalable AI in HPC systems for CFD applications and beyond
	1 Introduction
	2 Method: distributed training with AI4HPC components
	3 Optimizations and performance
	3.1 Parallel performance
	3.2 Learning rate and adaptive summation
	3.3 Mixed precision
	3.4 Gradient accumulation
	3.5 Dataset size

	4 Application case: reconstruction of TBL flow with AI4HPC
	4.1 Use-case specification—actuated TBL flow
	4.2 CAE application to the TBL flow case
	4.2.1 Network architectures
	4.2.2 Performance of the NNs

	4.3 CDM application to the TBL flow case
	4.3.1 Network architecture
	4.3.2 Performance and outlook of CDM

	5 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix

