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Runtime support for CPU-GPU
high-performance computing on
distributed memory platforms

Polykarpos Thomadakis* and Nikos Chrisochoides

Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States

Introduction: Hardware heterogeneity is here to stay for high-performance

computing. Large-scale systems are currently equipped with multiple GPU

accelerators per compute node and are expected to incorporate more

specialized hardware. This shift in the computing ecosystem o�ers many

opportunities for performance improvement; however, it also increases the

complexity of programming for such architectures.

Methods: This work introduces a runtime framework that enables e�ortless

programming for heterogeneous systems while e�ciently utilizing hardware

resources. The framework is integrated within a distributed and scalable runtime

system to facilitate performance portability across heterogeneous nodes. Along

with the design, this paper describes the implementation and optimizations

performed, achieving up to 300% improvement on a single device and linear

scalability on a node equipped with four GPUs.

Results: The framework in a distributed memory environment o�ers portable

abstractions that enable e�cient inter-node communication among devices

with varying capabilities. It delivers superior performance compared to

MPI+CUDA by up to 20% for large messages while keeping the overheads

for small messages within 10%. Furthermore, the results of our performance

evaluation in a distributed Jacobi proxy application demonstrate that our

software imposes minimal overhead and achieves a performance improvement

of up to 40%.

Discussion: This is accomplished by the optimizations at the library level and

by creating opportunities to leverage application-specific optimizations like

over-decomposition.

KEYWORDS

parallel computing, distributed computing, GPGPU programming, runtime systems,

heterogeneous systems, high-performance computing

1 Introduction

The recent slowdown in Moore’s Law is leading to large-scale disruptions in the

computing ecosystem. Users and vendors are transitioning from utilizing computing

nodes of relatively homogeneous CPU architectures to systems led by multiple

GPU devices per node. This trend is expected to continue in the foreseeable future,

incorporating many more types of heterogeneous devices, including FPGAs, System-

on-Chips (SoCs), and specialized hardware for artificial intelligence (Ang et al., 2021).

The new computing ecosystem sets the basis to significantly improve performance,

energy efficiency, reliability, and security; thus, high-performance computing

(HPC) systems are adapted and optimized for traditional and modern workloads.
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Exploiting extreme heterogeneity requires new techniques and

abstractions that handle the increasing complexity in productivity,

portability, and performance. The new methods should allow

users to express their applications’ workflow uniformly, hiding

the peculiarities of the underlying architecture while handling

concerns arising from performance portability. One such concern

is managing data on various devices. In most cases, data need to be

transferred among devices to execute kernels optimized explicitly

for an accelerator; thus, a framework needs to allocate the respective

memory, find the devices involved in such a transaction, initiate

the transfer, and monitor its progress. The coherence of the same

data in different devices is also an issue. One needs to guarantee

that the application will always use the most recent version of

data, no matter which device. Moreover, since these operations

are substantial overheads, they should happen asynchronously and

overlap with valuable work, further increasing complexity.

Another concern is the orchestration of task (computation)

execution. Tasks should only start asynchronous executions after

the respective data have been moved to the target device and only

when they do not conflict with other tasks, requiring lightweight

synchronization. Task scheduling and load balancing should also

be a significant concern to keep the available devices saturated

and fully utilize them. The schedulers should be aware of each

device’s load and the data locality of each task to designate where

each computation should occur efficiently. Finally, a framework

that handles all these concerns should provide a friendly, high-

level interface for applications but also expose low-level access

that allows experts to optimize their applications for their specific

needs. Moreover, having the option of lower-level access is crucial

for distributed memory frameworks to use them on multiple

nodes efficiently.

Utilizing and orchestrating data movement and task execution

on multiple heterogeneous nodes increases the number of issues

that need to be tackled. Thus, a complete runtime framework

should also facilitate the seamless use of distributed heterogeneous

nodes using the same approach of abstractions for data and

workload independent of the underlying hardware and have tight

integration with the performance portability layer used in a single

node. Current trends in HPC follow the programming model

of MPI+CUDA, which leads to complicated code, suboptimal

performance, or both. Users that follow this approach need to

explicitly transfer data between the host and the device before

sending/receiving to/from a remote node. Moreover, they will

need to use asynchronous operations for both memory transfer

operations (host-GPU and network) and overlap them to avoid

wasting cycles. This leads to the concern of correctness and

synchronization involving the two types of data transfers and

asynchronous kernel invocations. And even if one manages to

handle all those correctly, they would have an application that

only operates efficiently (or at all) for the specific hardware

it was developed. Thus, a distributed framework that natively

incorporates and abstracts heterogeneous nodes is the only way

to create applications that scale independently of the hardware in

which they were implemented.

In Thomadakis et al. (2022), we presented the most recent

evolution of Parallel Runtime Environment for Multicomputer

Applications (PREMA), a scalable runtime system for distributed

homogeneous platforms. It uses high-level abstractions to simplify

distributed programming for dynamic and irregular applications

(Garner et al., 2024). In this work, we extend PREMA to

support seamless, efficient, and performance-portable development

of distributed applications on heterogeneous nodes. First, we

introduce a heterogeneous tasking framework to optimize the

parallel execution of heterogeneous tasks on a single node.

The tasking framework provides a programming model that

automatically leverages heterogeneous devices. In contrast to other

systems, our framework does not require the application to

choose a device where a task should run; instead, the application

only picks a device type, and the framework is responsible for

scheduling the task to the optimal computing device. Next, we

integrate PREMA with the heterogeneous tasking framework and

enable it to manage and utilize heterogeneous nodes uniformly.

Along with the design and implementation of the final product,

we present optimizations that contribute to achieving high

performance. The evaluation results with microbenchmarks and a

proxy application show that our system incurs low overhead with

scalable performance.

1.1 Parallel runtime environment for
multicore applications

PREMA (Chrisochoides, 1995, 1998) is a software system

designed to provide runtime support for large-scale, dynamic,

irregular and data-intensive applications like parallel n-body

computations (Balasubramaniam et al., 2004) and parallel adaptive

unstructured mesh generation (Nave et al., 2004; Chrisochoides,

2005, 2016; Chernikov and Chrisochoides, 2008; Foteinos and

Chrisochoides, 2014; Drakopoulos et al., 2019; Tsolakis et al., 2022)

as opposed to earlier runtime systems (Fox et al., 1993) designed for

more regular compute-intensive HPC codes (Bozkus et al., 1993;

Chrisochoides et al., 1994; Parashar et al., 1994; Baden et al., 1999).

It utilizes a 2-level parallelism approach that employs Message

Passing Interface (MPI) for inter-node communication and

Pthreads or Argobots (Seo et al., 2016) for intra-node coordination.

The system uses the construct of mobile objects, which are globally

addressable, location-independent containers (Chrisochoides et al.,

2000; Fedorov and Chrisochoides, 2004) that hold application data

(Chrisochoides and Hawblitzel, 1998). Mobile objects enable the

mobile object-driven (MOD) programming model (Barker et al.,

2004), which facilitates interactions between local or remote mobile

objects through remote method invocations (called handlers) (von

Eicken et al., 1992; Chrisochoides et al., 1997; Barker et al.,

2002). Handlers can be invoked on mobile objects uniformly,

regardless of whether their data are local or remote, effectively

providing the user with a virtual global namespace throughout

the distributed system by automatically generating a local task (if

on the same node) or issuing a message (if on a remote node)

depending on the location of the handler target. This approach

abstracts the complexity of work scheduling, load balancing,

communication overhead, and out-of-core computing, allowing

applications to utilize available computing power without explicit

concurrency handling (Chrisochoides, 1996; Kot et al., 2011;
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Thomadakis et al., 2018, 2022; Garner et al., 2019; Thomadakis and

Chrisochoides, 2023). Meanwhile, by requiring explicitly issuing

handler invocation requests to operate on potentially remote data,

PREMA makes it easier for the users to understand and reason

about the underlying costs in order to design their algorithms

efficiently. Figure 1 shows an example of the MODmodel.

PREMA extracts shared-memory parallelism by running

non-conflicting handlers concurrently while implicitly migrating

mobile objects among computing nodes to provide distributed-

memory load balancing. Thus, the hardware memory spaces

and processing elements are virtualized, allowing inter-handler

parallelism (multiple handlers running in parallel) and sharing

mobile object workload for threads in the same node. Additionally,

it offers amodule for easy experimentation and development of new

2-level load balancing/scheduling policies that handle both shared

and distributed memory data and work distribution.

1.2 Contributions

This paper presents an effort to address the challenges of

efficiently utilizing distributed heterogeneous computing nodes in

a portable and performant way. It introduces a heterogeneous

tasking framework as an extensible layer of portability. In addition,

it presents the integration of the framework within a distributed

memory system to produce a design that natively handles

distributed nodes equipped with heterogeneous devices. The major

contributions of this paper are as follows.

• A new design and implementation of a heterogeneous tasking

framework for the development of performance portable

applications that can scale from single-core to multi-core,

multi-device (CPUs, GPUs) platforms efficiently, without any

code refactoring.

• A novel integration of a distributed runtime with the

heterogeneous tasking framework to provide an end-to-end

solution that scales over distributed heterogeneous computing

nodes while exposing a high-level and abstract programming

model.

• A series of memory, scheduling, and threading performance

optimizations that achieve significant improvements, up to

300% on a single GPU and linear scalability on a multi-GPU

platform, that are directly applicable to similar systems and

applications.

• Demonstration of up to 40% speedup on an end-to-

end distributed, heterogeneous proxy application (e.g.,

Jacobi solver) by utilizing the new runtime framework in

combination with widely studied optimizations like over-

decomposition (Chrisochoides, 1996).

2 Related work

Several systems have been adapted to efficiently utilize GPUs

in their workflow, while new ones have emerged trying to create

new standards for their use. X10 (Charles et al., 2005) and its

successors Habanero Java and C (Cavé et al., 2011; Majeti and

Sarkar, 2015) are parallel programming languages based on Java

and C++ that expose a PGAS memory model. Instead of an explicit

SPMD model, programmers are given a single entry point from

which they can explicitly allocate data and tasks on local and remote

nodes. The compiler then takes care of spawningmultiple processes

and distributing data efficiently. They introduce the abstraction of

places that are independent and disjoint pieces of virtual addresses

that can map to different pieces of hardware. In-place parallelism

is achieved through issuing tasks, while remote computations

on other places require explicitly targeting a place. Support for

GPUs is provided as another implementation of places, but data

allocations and transfers have to be handled explicitly; no implicit

construct is provided. Chapel (Chamberlain et al., 2007) is in

many aspects similar to X10. It provides its own flavor for abstract

virtual addresses called locales and, as X10, starts from a single

entry point from where tasks and data are distributed. GPUs are

handled uniformly, i.e., data transfers are automatically generated

and monitored; however, the user has to assign work to each GPU

explicitly. Like X10, data mappings are done statically from the

compiler and cannot change, which raises the same issues of load

balancing and bad fit for irregular applications. Charm++ (Kale and

Krishnan, 1993) is a runtime similar to PREMA, sharing some of

its abstractions for mobile objects which are called chares in that

context. It is based on C++ but requires a dedicated compiler that

can generate the object marshaling methods, as well as generate the

code necessary to invoke methods remotely. Its support for GPUs,

however, is limited, mainly providing interfaces to allow time-

slicing between GPU operations of different chares. Submitting

tasks to GPUs needs to be explicitly handled by the user, who

should allocatememory, issue data transfers, and handle scheduling

in case of multiple GPUs. HPX (Kaiser et al., 2014) also lets the

users explicitly handle issues like requesting memory transfers,

managing device platforms, task allocations, and work queues to

optimize performance. In contrast, PREMA provides a uniform

abstraction for heterogeneous tasks and data and implicitly handles

scheduling, load balancing, and latency overlapping independently

of the target device backend. StarPU (Augonnet et al., 2011),

OmpSs (Duran et al., 2011), and ParSec (Bosilca et al., 2012) offer

different high-level approaches for efficiently utilizing distributed

heterogeneous systems. However, their programming model is

better suited for applications whose workflow follows a regular

pattern that can be inferred mostly statically. On the other hand,

PREMA adopts a dynamic, message-driven programming model

that is more suitable for irregular applications. Legion (Bauer et al.,

2012) is a high-level task-based heterogeneous runtime system for

distributed memory architectures that separates the application

workflow from mapping computations and data to hardware. It

utilizes the primitive concepts of logical regions as the piece of

data to present data organization and expose task-data interactions.

Even though it is a powerful system, it requires a lot of effort and

code rewriting to port existing applications on top of it and its

design better conforms to structured data.

On the shared memory space, multiple efforts have emerged

and are included for completeness even though they do not

handle distributed memory systems like PREMA. SYCL and

DPC++/oneAPI (Ashbaugh et al., 2020), as well as the newest

version of OpenMP, are recent attempts to provide performance

portable interfaces in modern C++ that can target heterogeneous

devices. However, users still need to handle load balancing,
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FIGURE 1

PREMA’s mobile object driven (MOD) model. Applications are expressed as method invocations between local or remote mobile objects. A virtual

global namespace provides a uniform high-level interface to issue local or remote work. The runtime system is responsible for running a task locally

or sending an active message depending on the location of the target mobile object. Figure adapted from Thomadakis and Chrisochoides (2023).

scheduling, and work queues for multi-device systems and need

to combine them with another runtime solution that targets

distributed nodes. RAJA (Beckingsale et al., 2019) provides

an interface of C++ templates that capture platform-specific

constructs and allow users to write kernels with a single source that

can run on different devices. RAJA can then map those kernels to

the specific platform implementation requirements and handle data

transfers. Even though it abstracts the application code to a high

degree, users need to explicitly issue tasks to distinct accelerators

to utilize multiple devices and explicitly handle task dependencies.

Kokkos (Carter Edwards et al., 2014) provides similar capabilities as

RAJA, including abstractions for data objects, layouts, and portable

kernels using a single source code. In addition, Kokkos provides

the ability for task-based parallelism allowing for the creation of

task dependencies through the construction of DAGs. Moreover, it

has more default implementations for decisions that depend on the

application, e.g., automatic data layout formatting, kernel block size

inference, etc. Like RAJA, Kokkos does not explicitly handle multi-

GPU scheduling; the application must submit tasks to different

GPUs to saturate multi-GPU platforms. TaskfFlow (Huang et al.,

2022) is another shared memory heterogeneous runtime that uses

an expressive task graph programmingmodel to assist developers in

the implementation of parallel and heterogeneous decomposition

strategies on a heterogeneous computing platform. It provides a

plethora of task-graph flow-handling interfaces but it expects the

users to explicitly provide the task graph, allocate device memory,

handle data copies, and even assign tasks to different execution

streams to promote device parallelism, using vendor-specific APIs.

In our work, all of these concerns are handled automatically by the

runtime framework in an abstract and vendor-independent way.

3 Design and implementation

Following the principle of separation of concerns, a new

abstract compatibility layer is introduced, allowing PREMA to

access different heterogeneous devices uniformly. This layer is

implemented as a stand-alone heterogeneous tasking framework

that handles all concerns arising from the co-existence of multiple

types of devices. PREMA integrates this framework as the preferred

FIGURE 2

A high-level representation of the heterogeneity-aware PREMA. The

hardware devices/interfaces stand on the lower level and are

utilized by integrating PREMA with MPI, PThreads, and Argobots

(CPU-only; see Thomadakis et al., 2022 and Thomadakis and

Chrisochoides, 2023), and the heterogeneous tasking framework (in

the current work). On top of that stands the application, which

leverages these capabilities through a simple but powerful interface.

way to interact with heterogeneous devices. Thus, it can be easily

extended to utilize more device types without needing to modify

its implementation, apart from this low-level compatibility layer.

Moreover, PREMA exposes some of these capabilities wrapped in

a high-level interface, allowing users to utilize such devices in a

controlled and safe way. Figure 2 shows a high-level representation

of the software stack and how the different layers interact.

In the following sections, first, we present the heterogeneous

framework layer and its capabilities in detail; then, we focus on its

integration with PREMA to provide a distributed, heterogeneity-

aware runtime.

3.1 Heterogeneous tasking framework

The programming model of the heterogeneous tasking

framework builds upon two simple abstractions: the heterogeneous

objects (hetero_objects) and heterogeneous tasks (hetero_tasks).

A hetero_object uniformly represents a user-defined data object

residing on one or more computing devices of a heterogeneous
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compute node (e.g., CPUs, GPUs). Applications treat such objects

as opaque containers for data without being aware of their physical

location. A hetero_task encapsulates a non-preemptive computing

kernel that runs to completion and implements a medium-grained

parallel computation. Like hetero_objects, hetero_tasks are defined

and handled by the application uniformly, independent of the

device they will execute on.

Figure 3 shows an example of a DGEMM implementation using

the tasking framework. The presented example shows a DGEMM

execution request for the GPU; however, by only changing the

device target in line 53, one can target a different device without

touching the rest of the code. In lines 28–30, the application

requests from the runtime to reserve memory for the data involved

in the computation along with the types and counts needed using

the hetero_object abstraction (described in detail later). At this

point, the actual buffers might be allocated in the CPU, GPU, or

not allocated at all. Applications can request read and/or write

access to the host (CPU) side using the asynchronous method

request(bool,bool)(lines 33–34), which once complete, guarantees

that the underlying buffers are available and consistent. Once

access to the underlying buffers is no longer needed, a call to

method release() returns control of the corresponding data back

to the runtime. Note that the runtime guarantees that no other

device/thread can mutate these data until they are released from

the application side. Another, more efficient, way to manipulate

hetero_objects is through hetero_tasks(lines 45–56) as described in

Section 3.1.2.

The kernel() macro on the top of the listing will expand

to CUDA, OpenCL, and/or other defined backends to fit the

vendor-provided implementation. In this specific example,

device_global qualifier is used to satisfy OpenCL’s requirement to

denote device data as residing in global memory as opposed to

local or constant and is ignored when compiling for CUDA or

CPUs. Similarly, kernel_group_id, kernel_local_id keywords map to

the respective blockId/get_group_id(), threadId/get_local_id()

identities of CUDA, OpenCL and a task ID, loop

index in CPUs.

3.1.1 Heterogeneous objects
Handling copies of the same data on different heterogeneous

devices can lead to error-prone and difficult-to-maintain

application code. In general, applications need to manage data

transfers among them, use the correct pointer for the respective

device, and keep track of their coherence. A hetero_object is an

abstraction that automatically handles such concerns, maintaining

the different copies of the same data in a single reference. The

underlying system controls hetero_objects to guarantee that the

most recent version of the data will be available at the target

device when needed. For example, accessing an object currently

resident on the CPU from a GPU would automatically trigger the

transfer of the underlying data from the host to the respective

device. In the same manner, accessing the same object from a

different device would initiate a transfer from the GPU to that

device, potentially after first staging the data at the host. Finally,

the runtime system guarantees data coherence among computing

devices, keeping track of up-to-date or stale copies and handling

them appropriately.

The memory captured by a hetero_object should mainly

be accessed and modified through hetero_tasks for optimal

performance. However, the application can also explicitly request

access to the underlying data on the host after specifying the type

of access requested to maintain coherence. This method will trigger

(if needed) an asynchronous transfer from the device with the most

recent version of the data and immediately return a future. The

future is a construct that acts as a placeholder for the data that will

be available once the operation is completed in the future. It allows

for querying the transfer status, synchronizing and providing access

to the raw data once the transfer has been completed. In this state,

the data of the hetero_object are guaranteed to remain valid on the

host side, preventing tasks that would alter them from executing

until the user explicitly releases their control back to the runtime

system. Since the application has no direct access to the memory

allocated to different devices, our framework monitors the memory

usage of each device. When a device’s memory is close to being

depleted, the runtime system will automatically start offloading

some of the user’s data to the host or other devices. We currently

use a Least Recently Used (LRU) policy to determine which

hetero_object should be offloaded to free a device’s memory. LRU is

preferred due to its simple implementation and maintenance and is

usually quite effective. However, an exploration of eviction policies

is out of the scope of this work. An application can explicitly

request to remove a hetero_object from all devices to help the

runtime clean up some memory; otherwise, a hetero_object will

be freed when going out of scope. In both cases, the hetero_object

will only be removed once no tasks and other operations are

referencing it.

3.1.2 Heterogeneous tasks
Heterogeneous tasks (hetero_tasks) are opaque structures that

consolidate the parameters characterizing a computational task.

Through a hetero_task, applications define the kernel to execute

(Figure 3 line 56), input/output data arguments (lines 45–47),

processing elements requested (e.g., 3D grid in a GPU– line 50),

task dependencies, and target device type (line 53). Moreover,

applications can request the allocation of a temporary shared

memory region available only for the duration of the kernel, which

maps to the concept of local/shared memory found in other GPU

programming APIs (CUDA, OpenCL).

Heterogeneous tasks are independent of the underlying target

hardware, allowing a uniform expression of the application

workflow whether they target CPUs, GPUs, or other device

types. The computational kernel they represent is defined in

a dialect similar to an OpenCL kernel (lines 3–21) that is

translated appropriately for each target device. Input/output data

arguments of a task are defined as the hetero_objects it needs

to access, along with the access type required for each (read,

write, read-write – lines 45–47). This information is used to

issue the appropriate data transfers, maintain coherence, and

infer task dependencies. Submitting a task for execution (line

56) does not immediately execute the respective kernel; instead,

the runtime system enqueues the task execution request and

immediately returns control to the user. The heterogeneous tasking

framework provides methods to query the status of a kernel
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FIGURE 3

An example of a DGEMM application using the tasking framework.

execution or wait for its completion. Moreover, task dependencies

can be defined either explicitly by the user or implicitly by

the runtime.

Applications can explicitly define a task dependency graph

using the add_dependency(task) method of hetero_tasks. For

example, one can create a graph where task a is independent
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and tasks b,c depend on it by calling b.add_dependency(a);

c.add_dependency(a). Once their dependencies have been set, the

application can submit the respective tasks for execution all at once.

This approach allows the runtime system to improve performance

while removing much of the burden of guaranteeing correctness

from the application. To further reduce the effort required to

guarantee correctness, the framework also supports implicit task

dependency detection based on the arguments accessed by each

hetero_task. Assuming that the application submits tasks in the

correct sequential order, conflicting tasks are guaranteed to execute

in the proper order; independent tasks will automatically explore

maximum parallelism and avoid race conditions.

When explicit dependencies are used, the runtime simply stores

the dependencies requested into the respective task struct. For

implicit dependencies, the runtime has to automatically detect

them based on the data accessed. Each time a new task is submitted

to the framework, the hetero_objects passed as arguments are

checked for read/write conflicts. For each hetero_object, the

runtime maintains a list of the pending tasks that need to read

from the hetero_object as well as the latest pending task that

requires write access. If a write task arrives first, all following read

tasks will add it as their dependence and will be blocked until it

executes. If another write task arrives later, it will add all the read

tasks as its dependencies and block until they all execute. In this

scenario, the runtime is now free to remove the read tasks from

its list since any new task (read or write) will now depend on the

latest write task, which already depends on the read tasks about to

be released.

3.1.3 Execution model
Heterogeneous tasks are executed asynchronously by the

tasking framework. A task submitted for execution is appended

to a list of task execution requests. The control is then

immediately returned to the application, which can continue to

issue more tasks or execute other work. A separate component

of the runtime (optionally running in a separate thread)

examines task execution requests and eventually schedules

them for execution after performing the necessary steps to

guarantee correctness.

The first step toward executing a task is to infer its

dependencies with other tasks based on their data arguments.

The runtime maintains a list of the currently submitted or

running tasks that target each hetero_object; new tasks that access

these hetero_objects with a conflicting access type have their

dependencies set accordingly. Those with at least one incomplete

dependence are pushed to another queue of blocked tasks;

otherwise, they are appended directly to the scheduler’s runnable

work pool. Blocked tasks are periodically checked for resolved

dependencies, and those with all their dependencies resolved are

moved to the scheduler’s runnable tasks pool. Each task maintains

a list of other tasks that it depends on which have to complete before

it can start its execution. Thus, for each task in the blocked list, the

framework can check its list of dependencies directly. When a task

in this list is detected to have completed, it is marked as complete

in the dependency list, so that it is not checked again. Once all

elements of its dependency list are marked as complete, the task

is runnable and is removed from the blocked list.

Once all blocked tasks have been examined, the scheduler is

ready to schedule the runnable tasks. At this stage, the scheduler

decides the order in which the tasks should execute and the device

where they should run based on the user’s device type preference

(i.e., the scheduler chooses the specific device ID while the user

only gives a selection for a device type). The runtime will then

reserve device resources and issue the data transfer requests of

the input/output hetero_objects to be accessed on the chosen

device. Moreover, it will automatically try to overlap the different

operations, if possible, by utilizing the features provided by the

target device’s API (e.g., CUDA streams or OpenCL command

queues). When all outstanding data transfers of a task have

been completed, the computational kernel will be submitted to

the target’s work pool. Submitted tasks are periodically checked

for completion by the runtime to update the status of pending

dependent tasks. The lists maintaining the submitted, blocked,

runnable, and running tasks are examined sequentially, and in

order. In this way, the framework is guaranteed to correctly

detect/resolve dependencies, update the data coherency-related

structures, and move tasks among the lists. However, once

tasks reach the runnable list, they are ensured that all of their

dependencies have been resolved and, thus, the scheduler can run

them in parallel and in any order.

3.1.4 Scheduler
With the introduction of more heterogeneous computing

devices and workloads, it is expected that scheduling and load

balancing will only become more complicated. To provide

flexibility for different use cases, the actual implementation of

the scheduler is designed to be modular and separate from the

rest of the heterogeneous tasking framework. We provide the

scheduler as an abstract class that only requires two operations to

be implemented. The push() operation adds a new runnable task

into the scheduler’s work pool while the pop() operation returns

the next task to be executed as well as the device it should run on.

The abstract scheduler class allows the development of as simple or

complex custom data structures and policies as the usermight need.

3.1.5 Implementation
The heterogeneous tasking framework is implemented in the

C++ programming language leveraging its performance and object-

oriented design. It is developed in three software layers to allow

easy integration with new device types, programming APIs, and

scheduling policies (see Figure 4).

The Device API is the bottom layer, encapsulating the

different operations provided by a heterogeneous device vendor.

It consists of abstract C++ classes that expose virtual methods for

operations required to (a)synchronously issue tasks and manage

data in such devices, query their hardware specifications, and

methods to retrieve the status of an asynchronous operation.

Currently, we provide native support with CUDA and OpenCL

for GPUs. The Device API provides the low-level, vendor-specific

implementations of all abstractions of the tasking framework,

like mapping hetero_objects to memory locations, hetero_tasks,

and task execution requests to actual kernel invocations, memory

transfer requests, etc.
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FIGURE 4

A high-level representation of the heterogeneous tasking framework software stack and operations. The operations performed by the Core Runtime

include (a) Memory monitoring to keep track of the available device memory and deallocate unused objects when running low on resources, (b)

Memory transfer and task execution request handling that dispatches such requests when it is safe, (c) Memory coherence among di�erent copies of

the same hetero_object in multiple devices, and (d) Task scheduling to optimize for a reduction in memory transfers and optimize overall execution

time. The Device API exposes an abstract “device class” that encapsulates the implementation of di�erent vendor interfaces uniformly. The device API

maps high-level abstractions like hetero_objects and hetero_tasks to actual device-specific constructs.

The next layer is the Core Runtime layer, which provides the

underlying implementation of the hetero_objects and hetero_tasks,

monitors the coherence of the different copies of the data, and

detects and enforces task dependencies. It utilizes the Device API

to coordinate data transfers, guide the correct execution of tasks

and signal the completion of different operations. This layer acts as

the “glue” between the application preferences, the scheduler and

load balancing policies, and the Device API.

At the top stands the Application Layer, which consists of a

thin API that exposes the capabilities of the tasking framework

in a high-level interface. In the current implementation, kernels

are defined in a dialect similar to OpenCL through the use

of macros which are expanded to implement a kernel version

for each available target. We should note here that the kernel

interface does not currently provide any automatic optimizations

(e.g., shared memory, thread placement) and users should handle

efficient kernel design by themselves. Our macros simply map the

iteration space according to the target device or abstract device-

specific operations/keywords with a uniform API. For example, a

parallel_region block simply injects a barrier at its end for GPUs

(since kernels run in parallel by default) while it generates a for

loop, potentially parallelized to a set of tasks, for CPUs. Another

example is the use of the keyword shared to denote an explicitly

managed cache that maps to a __shared__ memory in CUDA,

__local memory in OpenCL or stack-allocated memory in CPUs.

For each target, the kernel is compiled separately, using the vendor

provided compiler and then it can be issued for execution using the

vendor’s library.

3.2 Heterogeneity within PREMA

Integrating heterogeneity in PREMA is a crucial requirement

to handle the load of exascale-era machines. Applications should

be able to use and transfer device memory in the context of

remote handler executions without much hassle. A step toward

this direction is to allow PREMA to send and receive buffers

located in a GPU device either explicitly (currently CUDA only) or

through the abstractions of the heterogeneous tasking framework

we have introduced. The explicit approach allows users to utilize

GPUs without confining them to use our heterogeneous tasking

framework, facilitating interoperability with legacy CUDA codes.

It also provides a barebone approach to integrate heterogeneity on

top of the distributed system, which can act as the base case for our
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performance evaluation omitting the overheads related to ensuring

data consistency, dependency resolution, and task scheduling that

the tasking framework adds.

3.2.1 Explicitly handling devices
In the explicit approach, the application can directly call

the different GPU operations of the CUDA API to allocate/free

memory, initiate transfers and execute kernels. PREMA provides

a function to invoke remote handlers that include a GPU buffer

as an argument; the function requests the ID of the remote

process, the buffer to transfer, its size, the IDs of the source and

target devices, and the handler (host function) to be invoked at

the receiver. PREMA will transfer the buffer between the remote

GPUs and invoke the handler when it has been completed. The

handler can then invoke any GPU-related operation that targets

this buffer safely. However, the application needs to guarantee that

the handler does not return before the completion of the kernel

since any buffers transferred through a handler will be freed at

its return, including the GPU buffer. Waiting for all the device

operations to complete [e.g., through cudaDeviceSynchronize()]

is enough to guarantee correctness; however, this approach will

harm PREMA’s time-slicing abilities, preventing it from switching

to other tasks while GPU operations are in progress. Thus, the

user should follow a more complicated approach, querying the

status of the operations without blocking (e.g., through cudaEvents)

and periodically yielding control of the thread for PREMA to run

background jobs.

3.2.2 Utilizing the heterogeneous tasking
framework

To facilitate a higher-level interaction of PREMA with

heterogeneous devices, we introduced a set of extensions allowing

direct utilization of the abstractions provided by the heterogeneous

tasking framework. Compared to the explicit remote handler

invocation API, the user only needs to provide the handler to be

executed, the target process ID, and the hetero_object passed as an

argument (transferred).

Since the hetero_objects handle the location of the underlying

data, the user does not need to specify their location. The

framework automatically decides the device to store the received

buffer on the target process. Once a hetero_object of a remote

method invocation has been transferred, the designated handler

is invoked on the target. The application can invoke tasks that

utilize it on any available device type. Moreover, the application

is guaranteed that any hetero_object that is the target of any

hetero_task execution or messaging operation will live long enough

for all such operations to complete, even if the handler returns

earlier. In addition, the tasking framework will make sure that

no other task can start executing on a hetero_object that is in

the process of network transfer. A code example is shown in

Figure 5 where a series of two distributed DGEMM invocations is

implemented in heterogeneous PREMA. Twomobile objects create

matrices A, B, and C, then create mobile pointers out of their

data and exchange them with each other. Next, each mobile object

invokes the first DGEMM on itself and sends the result to the

remote object invoking the second DGEMM. Note that there is no

need to explicitly handle the data buffers for the network transfer

(lines 29, 55). Also, the application does not need to explicitly wait

for the completion of the DGEMM task (line 27) before sending the

results to the remote mobile object (line 29). Finally, even though

the result of the first DGEMM is stored in a local variable (lines

20, 24) and the handler can return before the asynchronous send

has completed, the data will be transferred correctly. PREMA and

the tasking framework will make sure that data are consistent and

updated in the correct order.

Another desirable requirement provided through the

hetero_objects on top of PREMA is the ability to “put”

and “get” data between potentially distributed devices. A

new extension allows users to create global pointers for

hetero_objects, i.e., unique identifiers referenceable from all

processes in the distributed system. When an application needs to

store/retrieve data to/from a remote hetero_object, it just needs

to provide its global pointer and the location (hetero_object or

pointer) of the data to be read/written, along with a callback

that is triggered on the target, signaling the completion of

the operation.

3.2.3 Implementation
Depending on the capabilities of the underlying

communication library and the target device hardware, the

actual implementation of the memory transfers differs to leverage

heterogeneity-aware communication substrates. When the

application utilizes hetero_objects, and the communication

substrate is not heterogeneity-aware, the implementation of the

memory transfers includes the following steps (also see Figure 6).

PREMA will automatically request an asynchronous read of

the hetero_object data from the device to the host. The tasking

framework will guarantee that the device-to-host transfer will start

once all previously submitted, conflicting tasks have finished and

prevent any new ones from running before PREMA has finished

its network transfer. Next, a header message encapsulating the

handler’s metadata (e.g., data pointer, target, etc.) is prepared

and pushed to a queue of pending send message requests. The

header will also incorporate a future returned by the previous step

that allows for checking for the transfer’s progress. The outgoing

message requests queue is checked periodically by PREMA. When

the future of a message signifies the completion of a device-

to-host transfer, the message is ready to be sent through the

network. PREMA will asynchronously send two messages, one for

the metadata and one for the hetero_object data, utilizing the MPI

as the communication substrate. Finally, when the transmission of

the two messages has been completed, PREMA will release its read

request from the hetero_object, notifying the tasking framework

that the object can be safely modified or deleted by another task.

On the receiving side, once the first metadata message is

detected and received, the information it carries is used to allocate

the required memory to store the actual data of the hetero_object.

Next, the second message with the actual hetero_object data is

received in the newly allocated buffer. A request to allocate the

received data in a device is sent to the tasking framework, and

the metadata message along with this request is enqueued into a

pending handler execution request queue. Finally, the scheduler

will pick one of the pending handler execution requests and run
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FIGURE 5

An example of a series of two DGEMM invocations where the results of the first are needed on a remote node to invoke the second, using the

heterogeneity-aware PREMA.
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FIGURE 6

Heterogeneous data send (left) and receive (right) in PREMA with no GPU-aware interconnect.

the respective user handler. Note that in this case, PREMA does

not wait for the host-to-device transfer to complete before starting

the handler, allowing code independent of the hetero_object itself

to run, overlapping the transfer. Furthermore, since the data of

the hetero_object will be used through a hetero_task, the tasking

framework will ensure that any task execution will be delayed until

the transfer has been completed.

The “put” operation is almost identical, with the small

difference that the receiver does not need to allocate new host

memory. Since the hetero_object already exists on the target,

PREMA will request write access on the host side, and once access

is granted, it will receive the data directly in the hetero_object’s host

memory. Note that no transfer from device to host is performed

since the data will be overwritten from the receive. The request will

just guarantee that the network transfer will not conflict with any

other task running on this hetero_object. A “get” operation also

utilizes the “put” operation internally; the initiator/reader invokes

a handler on the mobile object owning the data that calls the “put”

operation and stores the requested data into the initiator’s desired

hetero_object.

The host-staging step can be skipped if the communication

library/hardware and compute devices support direct transfers

between distributed devices (currently only tested for CUDA-

OpenMPI). In this case, the hardware can perform the data

movement between the GPU devices directly through the network

interface card (NIC), avoiding the intermediate transfers to the

main memory. Thus, in an implementation for the case where the

user uses hetero_objects, the process is as follows (also see Figure 7).

PREMA will automatically asynchronously request read access

to the hetero_objects pointer in the current device. Again, the

tasking framework will ensure that no conflicts with active tasks

will be possible, but no transfer will occur. Same as the non-GPU-

aware case, a metadata message is prepared that includes a future

generated from the previous step’s request and is appended to

the message send requests. Once it is safe for PREMA to access

the device memory, the message is ready to be sent through

the network. The metadata message is sent first, followed by

the data in the device. Under specific conditions, some MPI

implementations can directly target CUDA device memory which

is used in this case. When the message transmissions have been

completed, PREMA will release its read access to the hetero_object.

This will allow other task/messaging operations to modify the

hetero_object safely.

On the receiving side, once the metadata message is

received, the tasking framework is requested to create a dummy

hetero_object on the device that can accommodate the incoming

data. Then the metadata message along with the dummy

hetero_object are enqueued to the pending handlers queue for

execution. When the hetero_object allocation is complete, PREMA

will receive the actual data directly in the memory allocated in

the device and notify the tasking framework that it no longer

needs to keep access to the device pointer. Finally, the scheduler

will pick one of the pending handler execution requests and

run it. Again, the handler can start before the actual data have

been received in the hetero_object, leaving the tasking framework

to guarantee that no conflicts will occur by delaying tasks

as needed.

Like in the previous case, the “put” operation is similar, with

the only difference that the receiver can directly receive incoming

data on the current location of the hetero_object. Since the

hetero_object already exists on the target, PREMA will request

write access on its current device location. Once access is granted, it

will receive the data directly in the hetero_object’s device memory.

Again, data will be overwritten from the receive; thus, the request

will guarantee that the network transfer will not conflict with any

other task running on this hetero_object.

4 Performance evaluation

This section investigates optimizations that can improve the

performance of different operations provided by the heterogeneity-

aware PREMA and the tasking framework and presents the

performance of the optimized implementation on a proxy

application. We used a small 16-node cluster, with each node

consisting of two Intel Xeon Gold 6130 20-core CPUs (2.1

GHz) and four NVIDIA Tesla V100 GPUs. The connection

between the host and the GPUs is a single PCIe buss with a

bandwidth of 10 GB/s while the network interconnect is aMellanox

Infiniband EDR backbone providing 100Gbps throughput. For all

of the benchmarks presented below, the heterogeneous tasking

framework uses a locality-aware scheduler, scheduling tasks to

devices that already have a copy of (some of) the needed data (e.g.,

from a previous task execution). Moreover, it will try to map data

of the mobile object to the same GPU as they would most likely be

dependent on each other.
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FIGURE 7

Heterogeneous data send (left) and receive (right) in PREMA with GPU-aware interconnect.

FIGURE 8

E�ects of incrementally applying di�erent optimizations on the heterogeneous tasking framework’s performance for a matrix multiply benchmark on

a single GPU. The performance improvements are evaluated on multiple matrix sizes and normalized by a CUDA implementation’s performance.

CUDA: The baseline CUDA implementation. TF-Baseline: The tasking framework (TF) without any optimizations. TF-Pagelocked: TF utilizing

Page-locked host memory. TF-CustomAlloc: TF after applying the custom memory allocator optimization. TF-TPools: TF utilizing request pools.

TF-TferQueue: TF after introducing a separate queue for memory transfers. TF-MultQueue: Final version of TF, utilizing multiple queues for kernel

invocations.

4.1 Heterogeneous tasking framework

We evaluate different performance optimization techniques on

this framework for NVIDIA GPUs using a simple, double precision

matrix-matrix multiply benchmark and compare the throughput

achieved in 100 iterations with a pure CUDA implementation.

In each iteration, the three matrices are allocated in the device,

input data are transferred, and the compute kernel is executed.

Note that the results are not copied back to the host to prevent

the pure CUDA implementation from blocking. We incrementally

apply optimizations and show their effect. As shown in Figure 8,

the baseline bar indicates that the framework adds some overhead

on top of the naive CUDA implementation, which is significant,

especially for smaller matrices. This overhead stems from the

added value the tasking framework provides related to maintaining

ordering, dependencies and guaranteeing data coherency among

different devices. PREMA overcomes some of these overheads

with the optimizations presented. Note that many optimizations

applied automatically by the heterogeneous framework could also

have been implemented directly in the CUDA implementation.

However, it would require much more effort from the user and

a relatively more extensive and more complex application code.

Moreover, the code would need to be rewritten to run on non-

NVIDIA devices.

4.1.1 Page-locked host memory
To fully utilize the bandwidth capabilities of the respective

hardware, NVIDIA GPUs require that host data to be transferred

to the GPU should reside in a page-locked memory region.

Moreover, this is the only way that device-to-host transfers can be

asynchronous with respect to the host. Thus, applications need to

explicitly (de)allocate memory in a unique way, which increases

code complexity and induces an overhead much higher compared

to regular memory allocations. We incorporated this optimization

into the framework to relieve applications and PREMA from

explicitly handling this burden. For this purpose, the framework

allocates a large chunk of page-locked memory at the initialization
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step that is later used as amemory pool for host memory allocations

and prevents further expensive requests for page-locked host

memory allocations.

The optimization gives a significant boost that ranges between

30% and 145% for different matrix sizes (Figure 8; TF-PageLocked).

Specifically, the smallest improvement is observed in smaller

matrices (64× 64) with 30%, followed by the larger ones (768× 768

and 1024 × 1024) with about 70%. In the 128x128 case, it attains

90%, while the most notable improvement with more than 100% is

achieved when 256 × 256 (120%) and 512 × 512 matrices (145%)

are used.

4.1.2 Custom device memory pools
Allocating and freeing device memory are expensive operations

that may require synchronization between the host and the device.

Moreover, the two functions might require the completion of

previously issued asynchronous operations before running. The

proposed runtime system uses a custom memory allocator per

device to avoid overheads from constantly requesting new memory

(de)allocations. During the initialization of the runtime system, a

request to allocate most of the available memory of each device

(except the host) is issued, and the custom memory allocator

handles the returnedmemory.Whenmemory needs to be allocated,

the custom allocator is used instead of the one provided by the

device library.

The most significant improvement of this optimization is

manifested for the smallest matrix case (64× 64) with another 60%.

As the size of the matrices increases, the improvement observed

declines with 25%, 12%, and 6%, respectively, for matrices ranging

from 128× 128 to 512× 512. For larger matrices, the improvement

is negligible (Figure 8; TF-CustomAlloc).

4.1.3 Enabling concurrent GPU operations
So far, all the optimizations implemented were focused on

improving the overlap of the CPU and GPU operations; however,

processes that run in the GPU are still serialized by default. We

enable implicit concurrency between the different GPU operations

by utilizing multiple execution streams provided by the device

implementations (OpenCL command queues or CUDA streams

for NVIDIA GPUs). Our implementation uses multiple streams

for submitting computation kernels and two for memory transfer

operations (one for each direction). We found that five streams for

computation kernels are generally enough to saturate the device

capabilities for concurrent kernel executions. Still, we also provide

an environmental variable that allows the application to change this

without recompilation.

The results of this optimization are substantial in most matrix

sizes when the overlap between memory transfers and kernel

executions can be large enough. This is the case for all matrix sizes

larger than 64 × 64. Since the overhead of transferring data to the

device is substantial, a great percentage of that can be overlapped

with the kernel execution of the previous iteration. Thus, the

results show improvements of 75%, 50%, 50%, 85%, and 100%,

respectively, for matrices of size 128 × 128–1024 × 1024. On the

other hand, the improvement in the case of 64 × 64 is 10% due to

the small amount of data that needs to be transferred (Figure 8; TF-

TferQueue, TF-MultQueues). The final optimization applied in this

aspect was to use more than one stream per data transfer direction.

However, this did not improve performance further because the

device hardware only supports two copy engines.

4.1.4 Other optimizations
We have introduced request memory pools to mitigate the

effects of system calls and thread synchronizations. Request pools

are maintained per active thread, and the memory of a request

is recycled in the pool once the respective operations have

been completed. Another optimization regarding requests was

implemented on the queues used to submit a request to a device.

Initially, we used structures provided by the C++ STL, protected by

a mutex, to implement such queues. These queues were substituted

with custom lists that avoid allocating nodes to store new elements.

Moreover, the mutex locking step was moved after the queue’s

size was checked to eliminate unneeded locking operations. This

optimization is less important than the ones discussed above, about

2% improvement, but helps to attain a more consistent latency,

especially when the dedicated thread is used (Figure 8; TF-Tpools).

4.1.5 Putting it all together
To summarize, we have applied a series of optimizations

that affected the performance of the tasking framework on the

specific benchmark in different percentages depending on the size

of the matrices. The most important optimizations include the

automatic use of page-locked host memory and the introduction

of multiple streams. However, the custom device memory pool

also substantially improved the cases of smaller matrices. The

overall performance improvement achieved from this series of

optimizations can exceed 300%, depending on the size of the

matrices. Our framework offers all these optimizations with

minimal user involvement and will continue to improve without

any modifications required in the application code. Note that the

performance improvements will increase as the number of memory

transfers per computation decreases.

4.1.6 Multi-device platforms
The above results show the performance of the heterogeneous

tasking framework on a single device. However, our framework

is able to utilize multiple devices automatically. This is where

the importance of using dedicated threads per device becomes

apparent. While dedicated threads do not help when only a single

GPU is in use (as shown in Figure 9), they are crucial to scale

beyond a single device since they allow the host side to provide

enough work for them to process and saturate their capabilities.

Figure 9 shows that the framework can scale almost linearly as

we add more devices, achieving up to 3.8 speedup on 4 GPUs.

The superlinear speedup observed in the case of one and two

GPU devices is an effect of the optimizations presented so far

for a single device. As we add more devices, the effect of these

optimizations declines, and the speedup becomes linear. The green

line presents the performance improvement stemming only from

the introduction of dedicated threads, which shows increasing gains
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FIGURE 9

Performance of the heterogeneous tasking framework on a 64 × 64 matrix multiply benchmark utilizing multiple GPU devices with and without

dedicated threads per device. The performance is shown as speedup against a simple CUDA implementation. The performance gain between the

two approaches is also presented.

as we introduce more GPUs to the system. This is expected as

a single CPU cannot saturate the capabilities of mulitple GPUs.

We must note that the hardware available to us constraints the

framework’s capabilities. All the devices in the specific machine

share a single bus with the host. Thus, the maximum memory

transfer throughput is constant whether one or four devices are

utilized. For the specific benchmark, a maximum of 2 64 × 64

matrices can be moved simultaneously to any device since they are

enough to saturate the available memory bandwidth between the

host and the devices. Given a more capable hardware, we expect

the framework to perform much better in a multi-device context.

4.2 Heterogeneous PREMA

To optimize the performance of the new heterogeneity-aware

version of PREMA, we experiment with optimizations that can

help us mitigate the overheads following the implementation of

remote handler invocations that include heterogeneous memory

both without and with the tasking framework (without a dedicated

thread). We evaluate our optimizations on a simple ping-pong

benchmark for inter-node communications and compare it with an

MPI+CUDA implementation. The benchmark runs 100 ping-pong

iterations with message sizes ranging between 8 bytes to 8 MBs,

and the average latency and bandwidth observed per message size

are reported.

4.2.1 Device message receiving cache
In PREMA, messages are one-sided and asynchronous and are

received implicitly to invoke a designated task on their target. Thus,

the receiver cannot specify a memory region where the message

buffer shall be stored (like MPI). PREMA has to dynamically

allocate memory to receive the incoming message buffer and

provide it to the application handler invocation. In our initial

implementation, without the tasking framework, simply allocating

new device memory for each incoming message resulted in poor

performance, increasing the latency experienced up to ten times

compared to the respective MPI implementation. We avoided this

behavior by allocating a cache in the device specifically for the

buffers of received messages. When a new message buffer is about

to be received, memory is requested from the cache instead of the

device API if possible. The cache allowed us to attain performance

within 10% overhead of that achieved by the MPI (Figure 10;

PREMA+CUDA). It is also important to note here the consistent

“spike” observed in theMPI performance for messages of size 256B,

which does not seem to affect our implementation when using the

device cache. It is not clear what is the reason causing the spike in

the MPI implementation, but it seems to be an effect of caching in

the CUDA architecture. This would explain why introducing our

custom cache alleviates this behavior since a specific “chunk” of

memory is always reused, allowing the architecture to cache it. On

the other hand, the MPI+CUDA implementation needs to allocate

a new “chunk” for each new message size that potentially points to

a different address in memory which needs to be cached again.

4.2.2 Preallocating hetero_objects
Hetero_objects automatically utilize memory pools for device

memory, thus, implicitly overcoming the issue faced in the

case where device memory is handled explicitly and achieving

performance within 25% of the MPI+CUDA implementation

(Figure 10; PREMA+TF-0). However, we can still improve some

latencies caused by the constant allocation and deallocation of

temporary hetero_objects that wrap message buffers targeting

device memory. Specifically, we found that the data structures
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FIGURE 10

Performance evaluation of di�erent optimization techniques in terms of (A) latency and (B) bandwidth on a ping-pong benchmark without direct

network device-to-device transfers. Optimizations are compared against the baseline performance of an MPI+CUDA implementation.

PREMA+CUDA: Integration of PREMA with CUDA directly, without involving the heterogeneous tasking framework. PREMA+TF-0: The baseline

integration of PREMA and the heterogeneous tasking framework. PREMA+TF-1: PREMA+TF-0 plus the introduction of memory pools. PREMA+TF-2:

PREMA+TF-1 plus the optimization of avoiding message bu�er copies for very small messages. PREMA+TF-Put: The remote put operation after the

optimizations of PREMA+TF-2. (A) Latency for small messages (left) and overall (right). (B) Bandwidth for small messages (left) and overall (right).

allocated for a hetero_object for bookkeeping different operations

targeting the object in various devices can significantly affect

communication performance. Since these structures can be

allocated in advance, we use a pool of preallocated semi-initialized

hetero_objects to mitigate this effect. This optimization improved

the latency experienced for small messages by about 10%, bringing

the performance of PREMA within 15% overhead of MPI+CUDA,

as can be seen in Figure 10 (PREMA-TF-1). Moreover, for larger

messages the performance achieved is better from the MPI+CUDA

by almost 10% as can be seen when zooming in the latency of

8MB messages.

4.2.3 Avoiding message bu�er copies
The process of inter-node message transfers presented in

Section 3.2.3 with host-staging includes an optimization for small

buffer sizes to only send one message. Small messages with a size

up to 512 bytes (header + buffer size) will consist of the actual

application data/buffer appended at the end of the message. This

helps optimize the performance of small messages where even

negligible overheads are noticeable. However, when hetero_objects

are used, this introduces an extra copy. As explained before,

requesting access to the underlying data of a hetero_object will

implicitly copy the data to the host in a buffer maintained by the

framework. To append the data at the end of the message header,

PREMA needed to copy the data from the framework’s location to

the message header.

A new method is introduced in the hetero_object API that

allows the user to request a copy of its underlying data to a

designated memory region at the host. PREMA utilizes this feature

to request from the framework to directly transfer the device data at

the end of the message header buffer. This change slightly improves

the communication critical path and attains up to 5% lower latency

for smaller messages (Figure 10; PREMA-TF-2).

4.2.4 Put operation
Another operation introduced to further increase the

performance of inter-device communication over the network is

the put operation. As mentioned earlier, the put operation allows
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FIGURE 11

Performance evaluation of di�erent optimization techniques in terms of (A) latency and (B) bandwidth on a ping-pong benchmark with direct

network device-to-device transfers. Optimizations are compared against the baseline performance of an MPI+CUDA implementation.

PREMA+CUDA: Integration of PREMA with CUDA directly, without involving the heterogeneous tasking framework. PREMA+TF-2: Integration of

PREMA and the heterogeneous tasking framework incorporating all the optimizations presented in this section. PREMA+TF-Put: The remote put

operation after the optimizations of PREMA+TF-2. (A) Latency for small messages (left) and overall (right). (B) Bandwidth for small messages (left) and

overall (right).

PREMA to utilize the existing memory of heterogeneous objects

that is also page-locked. By leveraging these optimizations, the

put operation outperforms all previous optimizations that use the

tasking framework since the transfer from the host to the device

is much faster on the receiver side. Figure 10 (PREMA-TF-Put)

shows its performance reaching and overcoming the one of the

PREMA+CUDA implementation for messages larger than 64 bytes

and even the MPI+CUDA for messages larger than 8KB achieving

up to 20% better performance for messages of 8MB.

4.2.5 Direct to device transfers
The optimizations presented so far target the generic

implementation of heterogeneity on top of PREMA, where

the communication library/hardware is not heterogeneity-

aware. However, as mentioned in detail in Section 3.2.3,

PREMA can leverage the capabilities of hardware/libraries

that have been integrated with support for direct device-to-device

communication. Following the previously presented procedure,

the latencies observed for heterogeneity-aware hardware can

be significantly mitigated. Figure 11 shows the performance of

the optimized version of each operation and the MPI+CUDA

when direct-to-device communication is possible. The attained

performance, in this case, is up to 100% better than the host-staging

case for small messages and up to 200% for large messages, as

shown in Figure 12. In this case, we experience a “spike” across all

implementations for 32KB-sized messages. Even though we do not

know the exact details of this issue, it seems related to the protocol

switch limits that OpenMPI uses. Specifically, OpenMPI switches

to “pipelined transfers of size 128 KB through host memory”

for message sizes ≥ 30,000 bytes (OpenMPI, 2024). Thus, one

explanation for this spike could be the cost of the host buffer

allocation/initialization/registration, which is alleviated for the

following messages by reusing the buffer.
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FIGURE 12

Comparison of the optimal performance in terms of (A) latency and (B) bandwidth using host-staging or Device-to-Device (DD) network transfers for

the ping-pong benchmark. (A) Latency for small messages (left) and overall (right). (B) Bandwidth for small messages (left) and overall (right).

4.2.6 Summary
Overall, all three operations introduced in PREMA to

handle heterogeneity, including the transfer of CUDA buffers,

hetero_objects, and the remote put operation, significantly simplify

application development, saving hundreds of lines of boilerplate

code while maintaining reasonable overhead (10%–15%) compared

to MPI+CUDA regarding latency and bandwidth. Moreover, it

is interesting to notice that some of these operations, like the

put operation, outperform MPI+CUDA (by up to 20%) for large

messages (Figures 10, 11) by implicitly leveraging from the page-

locked memory of hetero_objects. Page-locked memory forces

the operating system to lock a virtual memory address to a

specific physical address, allowing CUDA GPUs to use DMA and

significantly improve the throughput of read and write operations.

4.3 Proxy application: Jacobi3D

To evaluate the performance of the distributed memory

framework, we have adapted a proxy Jacobi3D iterative method

application (Laboratory-UIUC, 2022) on PREMA. The Jacobi3D

iteration operates on a 3D grid where each update is a stencil

computation that calculates a weighted average of a cell with its

neighbors in the six cardinal directions, as in Equation (1):

Cx,y,z = αCx,y,z + β(Cx−1,y,z + Cx+1,y,z+

Cx,y−1,z + Cx,y+1,z+

Cx,y,z−1 + Cx,y,z+1)

(1)

where Cxyz is the cell in position (x,y,z) of the grid.

The proxy performs a fixed number of iterations of the Jacobi

iterative method on GPUs in a 3D domain of cells decomposed

into cuboids and wrapped into mobile objects, where each mobile

object consists of approximately equal number of cells. In each

iteration, the mobile objects exchange halo data, packing the

GPU data and transferring them to their neighbors (up to 6

neighbor cuboids; two for each dimension). On the receiving

side, the data are unpacked into the GPU, and once all halos

have been received, the Jacobi update is executed. Figure 13A

shows the execution time of the heterogeneous PREMA vs. the

MPI+CUDA counterpart for a 1024 × 1024 × 768 domain

(strong scaling). The implementation with PREMA achieves up

to 23% better performance. For weak scaling, the domain’s size

is increased according to the number of distributed GPUs. The
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A B

FIGURE 13

Strong (A) and weak (B) scaling performance of the Jacboid3D proxy application.

performance achieved is up to 25% (Figure 13B) better than

the MPI+CUDA implementation. The improvements observed

stem from automatically overlapping message passing, host-device

memory transfers, and kernel invocations.

4.4 Over-decomposition

A common practice that PREMA applications utilize

for performance improvement is over-decomposition. Over-

decomposition is used to decompose the data domain into

more chunks than the number of PEs, allowing PREMA more

flexibility to load balance workload and overlap latencies. The

effectiveness of this approach has already been demonstrated in

previous work for homogeneous platforms (Thomadakis et al.,

2022; Thomadakis and Chrisochoides, 2023). In the context

of heterogeneity, host-to-device, and device-to-host memory

transfers are broken into pipelined pieces and can be overlapped

much more easily with the following kernel invocations. An

example of the execution timeline that is achieved can be seen in

Figure 14. Please note that the duration assigned to each task in the

example is not strictly accurate. For instance, the time allocated for

processing the halos is not necessarily equal to the time spent in

the computation process. However, such exaggeration is employed

for the sake of clarity and readability, rather than precision. The

effects of over-decomposition are shown in Figure 15 for the same

Jacobi3D proxy application. Different levels of over-decomposition

are attempted in this benchmark, with each level up attaining

improvements over the MPI implementation as well as the PREMA

implementation without over-decomposition (OD1) when using

more than 1 GPU. The best performance is observed with an

over-decomposition of two, which achieves improvements of up

to 40% vs. the MPI implementation and about 20% over the initial

PREMA implementation for 12 GPUs. When only a single GPU is

in use over-decomposition does not seem to help and can actually

harm performance (e.g., OD6). The reason for this decline is that

in a single GPU and over-decomposition level 1 the data will only

need to be moved in once and no packing/unpacking needs to take

place, since they are no halo buffers to exchange. By increasing

the level of over-decomposition, we create the need for halo buffer

exchanges among different addresses within the same GPU, as well

as introducing the packing/unpacking kernels again.

5 Conclusion and future work

On top of the end-user productivity and ease of use provided

by the abstractions introduced, the framework provides numerous

quantitative enhancements. Overall, this work has presented the

following improvements:

1. Implicitly managing memory transfers and task execution

dependencies across multiple hardware devices eliminates the

need for code refactoring and decreases complexity.

2. Computing performance is boosted by up to 300% implicitly

leveraging from hardware-specific optimizations on a single

GPU.

3. A configurable scheduler that optimizes data locality and evenly

distributes workload across multiple devices allows seamless

utilization of multi-GPU nodes and attains linear scalability.

4. The potential heterogeneity awareness of the underlying

network interface is automatically utilized, eliminating the need

for explicitly written code to take advantage of this feature,

providing up to three times better performance.

5. The portable abstractions for communication among distributed

devices remove the need for explicit monitoring of device-

host and inter-node transfers to ensure data consistency and

completion. While this approach does incur some overheads

within 10% of MPI for small messages, it also delivers

exceptional performance for large messages, with gains of up to

20%.

6. Leveraging from these optimizations, a proxy 3-dimensional

Jacobi application on top of PREMA achieved performance

improvements of up to 30%.
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FIGURE 14

An example of the Jacobi3D execution timeline with no and 2-level over-decomposition. Each kernel invocation requires the copy of the six halo

bu�ers, left (L), right (R), top (T), bottom (B), forward (F), and back (B), into the GPU. By decomposing the data domain (and the kernel invocation) into

two pieces, PREMA can overlap the memory transfers of the second with the kernel invocation of the first, saving a significant amount of time. Note

that the timeslots attributed to halos processing in the example are exaggerated to enhance clarity.

A B

FIGURE 15

Strong (A) and weak (B) scaling performance of the Jacboid3D proxy application with di�erent levels of over-decomposition.

7. Introducing over-decomposition further increases the

distributed Jacobi’s performance by 40% compared to the

MPI+CUDA implementation by allowing implicit operation

pipe-lining and latency overlapping.

In the future, we plan to improve the tasking framework’s

performance further, introduce more sophisticated schedulers, and

provide compiler support to generate device kernels automatically.

Moreover, we intend to extend PREMA’s implicit load balancing

layer to accommodate the workload of heterogeneous devices and

experiment with a range of load balancing and scheduling policies.
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