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Neutron scattering science is leading to significant advances in our

understanding of materials and will be key to solving many of the challenges

that society is facing today. Improvements in scientific instruments are actually

making it more di�cult to analyze and interpret the results of experiments due

to the vast increases in the volume and complexity of data being produced

and the associated computational requirements for processing that data.

New approaches to enable scientists to leverage computational resources are

required, and Oak Ridge National Laboratory (ORNL) has been at the forefront

of developing these technologies. We recently completed the design and initial

implementation of a neutrons data interpretation platform that allows seamless

access to the computational resources provided by ORNL. For the first time, we

have demonstrated that this platform can be used for advanced data analysis of

correlated quantum materials by utilizing the world’s most powerful computer

system, Frontier. In particular, we have shown the end-to-end execution of the

DCA++ code to determine the dynamic magnetic spin susceptibility χ (q,ω) for

a single-band Hubbard model with Coulomb repulsion U/t = 8 in units of the

nearest-neighbor hopping amplitude t and an electron density of n = 0.65.

The following work describes the architecture, design, and implementation of

the platform and how we constructed a correlated quantum materials analysis

workflow to demonstrate the viability of this system to produce scientific results.

KEYWORDS

neutron scattering, workflows, high-performance computing, data management, data

analysis

1 Introduction

Emerging global challenges such as climate change will require technological solutions

that will only come to fruition with the aid of consequential scientific advances. These

advances will not be possible without significant scientific discovery. For example, the

ability to transition to other forms of energy beyond fossil fuels hinges on developments

such as the storage capacity of batteries and new structural components for wind turbines,

and keeping global temperatures within an acceptable range is likely to require direct

extraction of carbon emissions from the atmosphere. Many of these technological advances

are predicated on a deep understanding of the properties of existing materials and the

discovery of new classes ofmaterials. One key technique for ascertaining information about

the nature of materials is neutron scattering, which occurs when a beam of neutrons is

directed at a material and some of those neutrons interact with the atomic nuclei or the

electronic spin and bounce away at an angle. Special detectors can be used to measure the

properties of the scattered neutrons and enable scientists to better understand thematerial’s

structure.
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Oak Ridge National Laboratory (ORNL) has been at the

forefront of materials science for over half a century. ORNL

operates two world-leading neutron sources: the High Flux Isotope

Reactor (HIFR) and the Spallation Neutron Source (SNS), both

of which are funded by the US Department of Energy’s (DOE’s)

Office of Science and Office of Basic Energy Sciences. HFIR began

operations in 1965 and is currently themost powerful reactor-based

source of neutrons in the United States. The SNS is the world’s most

powerful accelerator-based spallation source of neutrons.

Collecting neutron scattering data is only the beginning of the

journey to scientific discovery. To fully understand the material

properties, data must first be reduced, analyzed, interpreted (i.e.,

modeled), and finally published. Instruments at ORNL’s facilities

record individual neutron events that comprise three elements:

a detector pixel identifier, the total neutrons’ time-of-flight from

source to detector, and the wall-clock time of the proton pulse

for the associated neutron. Data reduction involves a series of

steps to remove instrument-specific artifacts and convert this

raw, event-based data into physical quantities of interest such as

histograms and images. Reduction has traditionally been a manual

process that often requires intervention by an instrument scientist,

but fortunately ORNL has been able to automate data reduction

for some of the instruments. Although this helps streamline the

use of some data for subsequent analysis, there are complex

manual processes needed to conduct post-experiment analysis and

interpretation by the materials scientists to generate publishable

results. This analysis and interpretation relies on a byzantine

assortment of tools that include a mix of homegrown, open

source, and commercial packages (with associated licensing and use

restrictions). Automating both the reduction and analysis processes

will not only simplify and streamline the experimental process,

but has the potential to enable new capabilities, such as the ability

of a scientist to use the results to alter the conditions during the

experimental run, thereby potentially increasing overall scientific

productivity.

To meet the challenges inherent in new materials science

discoveries, the number of neutron scattering instruments

employed at SNS and HFIR has steadily increased, as have

the corresponding complexity and volumes of data being

produced. New instruments such as the Versatile Neutron Imaging

Instrument are expected to generate orders of magnitude more

data than previously available. These improvements have driven a

need for more advanced data analysis capabilities, including high-

performance computing (HPC) materials modeling, data analytics,

ML, and real-time analysis workflows, which require significantly

more computational and data-intensive resources than have been

needed in the past. The ability to effectively interact and visualize

these high volumes of data is becoming an essential aspect of the

analysis and interpretation process. With improvements to the way

neutrons data is processed, the ability to collaborate directly with

facilities such as the Center for Nanophase Materials Sciences and

other scientific and computational facilities run by DOE is also

becoming an area of significant growth potential.

To address many of the issues arising from the greater

burden of computationally intensive data processing and enhanced

visualization requirements, ORNL has been investing in a

next-generation data analysis platform for neutron scattering

science—the Neutrons Data Interpretation Platform (NDIP). The

overarching goal of this initiative was to create an ecosystem

to support and enable the growth of science applications for

analyzing neutron scattering data. This process began in 2021 with

a requirements analysis, the development of a system architecture,

and a comprehensive assessment of existing scientific workflow

systems that ultimately resulted in the selection of Galaxy as

the common framework technology (Watson et al., 2022). In

consultation with a number of computer, computational, and

instrument scientists, we developed a set of key criteria for the

platform, including computing and data resource management

capabilities, a workflow execution mechanism with support for

human-in-the-loop interaction, a web-based user interface, a

scripting application programming interface (API), and integration

with security architectures, amongst others. We used this

information to develop a high-level architecture for the platform

that enabled further refinement and discussion with stakeholders.

We then undertook a side-by-side assessment of 37 existing

workflow systems against the key criteria. The goal was not to

build a new platform from the ground up but to leverage existing

technology to deploy the system and produce science as soon as

possible.

ORNL’s computational and experimental facilities operate

in distinctly independent realms, and interoperating between

these facilities requires interaction across different security and

administrative domains. As a consequence, considerable work was

required to ensure that the platform could schedule computational

tasks and coordinate the delivery of data in a timely manner.

In parallel to this, a number of science teams were developing

new neutron science data analysis workflows that would integrate

with the NDIP platform. By early 2022, we had deployed an

instance that enabled these workflows to utilize the on-premises

virtual computing infrastructure known as the Compute and

Data Environment for Science. During 2022, we focused on the

ability to seamlessly transfer data between compute resources by

utilizing a data broker architecture. We also worked to extend the

computational capability to include the HPC systems (particularly

ORNL’s Summit system) provided by the Oak Ridge Leadership

Computing Facility. This culminated in the first demonstration

of an end-to-end neutron science workflow across the full extent

of computational resources in early 2023. For the remainder of

2023, we consolidated the architecture by developing automated

deployment through infrastructure-as-code platforms such as

Terraform1 and Ansible,2 expanding our computational resources

to include stand-alone hardware, incorporating an automated

data ingress mechanism for raw and reduced neutrons data, and

providing additional data visualization and interactive analysis

tools.

To illustrate the importance of investing in a platform

such as NDIP, we will show how NDIP was able to produce a

scientific result that would have been difficult or impossible with

conventional techniques. For this purpose, we will consider one

class of materials for which neutron scattering is a particularly

1 https://www.terraform.io

2 https://www.ansible.com

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1390709
https://www.terraform.io
https://www.ansible.com
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Watson et al. 10.3389/fhpcp.2024.1390709

powerful probe, known as correlated quantum materials. These

materials exhibit many novel properties, including quantum

magnetism, high-temperature superconductivity, quantum

criticality, and topologically protected states, many of which

promise to revolutionize a wide range of technologies. However,

predicting how these properties can be tuned and optimized—

thereby guiding the synthesis of new useful materials—requires

a detailed understanding of the mechanisms that underlie a

material’s behavior. This is one of the most significant challenges

in materials science. Neutron scattering, with its unmatched ability

to probe a material’s magnetism, has proven to be one of the

most important tools in the experimental study of these materials.

Together with modeling and simulation, it may be used to obtain

detailed knowledge of the microscopic interactions and physical

mechanisms that determine a material’s behavior.

2 Architecture

From its inception, the goal of NDIP was to provide

an ecosystem for developing neutron science data analysis

applications. Figure 1A shows a high-level conceptual architecture

of the platform. The neutron science applications shown in the

diagram are a set of tools and workflows that can be utilized

by neutron scientists to reduce, analyze, and interpret neutron

scattering data. The intention was to provide both web-based

and stand-alone applications that interact with components and

services in the platform. The platform itself comprised a number

of standard services such as workflow management and data

provenance tracking, and additional functionality that could be

added through a modular architecture. The platform would in turn

communicate with and leverage the federated computing and data

services provided by the institutional infrastructure. One of the

main challenges encountered while implementing this architecture

is that many of these federated services do not currently exist

at ORNL. However, we were able to overcome this problem by

developing modules within the platform that emulated or replaced

these services. This will be discussed in more detail in the following

sections.

By building on Galaxy as the core of the platform architecture,

we were able to leverage its considerable strengths for a variety of

key services. Additionally, the modular design of Galaxy allowed

us to adapt and extend the framework so that it was suitable for

neutron scattering science applications. Figure 1B shows the high-

level architecture after adapting the design to incorporate Galaxy

as the core of the platform. The Galaxy framework (Community,

2022) was originally developed for the bioinformatics community

in 2005 and since then has been integrated with over 8,000 software

packages and has been used to generate scientific results reported

in over 10,000 publications. The Galaxy framework provides a

graphical interface for interacting with data analysis tools and

managing data provenance by using histories. It also provides a

workflow engine and the infrastructure to execute workflows on

local or remote compute resources. Data can be easily accessed from

public repositories, and the data created from analysis in Galaxy

can be shared and published through the framework. In addition

to the framework itself, Galaxy also provides a public repository

of analysis tools, called the Tool Shed, and a number of public

instances of Galaxy in Europe, North America, and Australia that

are available for free research use. A large Galaxy community also

creates and maintains content for the Galaxy Training Network,3

which provides tutorials and workflows for performing a range of

data analysis tasks.

Although Galaxy provides many capabilities that we were

looking for in our platform, it was designed for a different

community with a different set of requirements. As expected, we

needed to add new functionality to support our neutron scattering

data analysis environment. The most significant need was a data

management capability to ensure that data was available to execute

workflows across a range of remote compute resources with

separate data storage systems. Although Galaxy has an extensible

architecture to support data movement (known as the object

store), it assumes that the data is available from a centralized

storage system. Other functionality we needed included support for

authentication using Open ID Connect (OIDC) tokens, the ability

to visualize neutron data files, the ability to monitor command

execution output, and a number of other smaller requirements.

However, we were convinced that the cost to implement a new

framework with the same capabilities as Galaxy would far outweigh

the cost of implementing these missing features. To date, we have

employed ∼5 person-years of effort on core NDIP development

activities. It is hard to compare this directly with the effort that has

gone into Galaxy, however we know that there have been around

330 contributors making over 76,000 commits to the Galaxy core

repository over a period of 16 years (the start of git commit record).

Our experience leads us to believe that this is at least an order of

magnitude more effort than we have expended to date.

3 Implementation challenges

ORNL’s computational and data resources are managed by

different groups in different security and administrative domains.

This disparate environment makes for a complex situation when

trying to provide seamless access to these resources—something

that had so far been impossible to achieve. Although Galaxy

provides a general workflow platform designed to support a

wide range of different environments, its design makes some

basic assumptions about the configuration of resources and

infrastructure and how these can be accessed. Unfortunately,

these do not always align well with the network architecture at

ORNL. Figure 2 depicts a schematic of the design we developed

to overcome these limitations. The diagram shows a number

of administrative domains separated by firewalls (heavy-dashed

lines). Domain 1 represents an organizational unit that provides

some dedicated compute resources that they want to leverage in

the NDIP ecosystem. To do this, a Pulsar server and an RDB

client must be available on the compute resource. Domain 2

represents the HPC resources at ORNL. These are fronted by an

OpenShift4-based cluster that provides job submission capability

and access to the shared HPC data storage. One or more Pulsar

servers and an RDB client must run on this cluster. Domain 3

represents the main Galaxy instance along with an OpenStack5

cluster that provides virtualized compute resources. The message

3 https://training.galaxyproject.org/

4 https://docs.openshift.com

5 https://openstack.org
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FIGURE 1

High-level architecture of the Neutrons Data Interpretation Platform shown in the green boxes before and after adopting the Galaxy framework as

the core of the platform. The yellow boxes represent instruments that generate experimental data. The blue boxes show the federated services and

the di�erent requirements after Galaxy adoption. (A) shows the platform providing workflow management and data provenance services as core

components. Other services are extensible via a plug-in mechanism. This platform relies on a range of external capabilities provided by federated

compute and data services that also enable acquisition (and control) of instruments. (B) Galaxy provides data and compute management services by

utilizing a custom data broker built on top of Rucio along with the Galaxy Pulsar services which communicate using the RabbitMQ message broker.

The science applications are now workflows and tools integrated with the Galaxy platform.

server (RabbitMQ in the diagram) is also shown in this domain.

Domain 4 represents a data storage resource (perhaps containing

experimental data acquired from a scientific instrument). Only an

RDB client is required. Communication across domains is limited

to messages passed via the message broker (dashed arrows) or

outbound connections between the RDB clients and the RDB server

when an interdomain data transfer is required.

3.1 Security

One of the goals of NDIP was to provide seamless execution of

workflows across a range of computational resources. Although the

identity and access management functionality provided by Galaxy

supports a number of options, including local username/password

administration, OIDC, and external authentication services such

as the Lightweight Directory Access Protocol, none offered

the functionality we required. This was primarily because

authentication/authorization in Galaxy only applies to user

identities for controlling access to histories, datasets, visualizations,

and other user-related information. Although Galaxy can be

configured for remote job execution on clusters or other HPC

resources (either directly or by leveraging the Pulsar service), it is

limited to two types of remote job submission: either using a service

account that has been pre-authorized or by configuring the remote

system to allow switching credentials using the sudo6 command.

Galaxy can use the OIDC authorization code flow protocol

to authenticate a user. The OIDC specification defines this as

a process that allows a user’s identity to first be verified by

an identity provider; security tokens (e.g., ID token and access

token) are then received from the provider which contain claims

6 https://www.sudo.ws

about the authentication and authorization of the user. These

are JavaScript Object Notation (JSON) Web Tokens (JWTs) that

are cryptographically signed. As described in the literature (Jalili

et al., 2019), it is possible to then use the identity token to obtain

credentials that allow access to resources in a cloud environment.

Our goal was to provide similar functionality but utilize the JWT

credentials to enable traditional access control mechanisms in

an HPC environment using RFC86937 token exchange to enable

impersonation semantics.

To meet these security requirements, we modified Galaxy to

expose the OIDC tokens to Pulsar servers. This simple change

allowed the token to be used for additional authorization steps

on remote resources. We developed a command-line tool that

takes an OIDC access token and uses it to impersonate a user

when executing a command (similar to how the sudo command

operates). Additionally, we developed a pluggable authentication

module (PAM) that allows SSH (Secure Shell Protocol) to issue

remote commands that are authenticated by the OIDC access token

(Yakubov et al., 2024). Our module is different from other PAM

modules that utilize the OAuth 2.0 device flow (Surkont et al., 2020)

because it is designed primarily for automated execution of remote

commands with transparent credential validation. We describe

how these tools are used in more detail in later sections. Finally, we

used a combination of these methods to allow containerized tools

to assume the same identity as the user who initiated the tool.

3.2 Data management

As discussed previously, separating computing resources into

different security and administrative domains causes problems

7 https://www.rfc-editor.org/info/rfc8693
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FIGURE 2

Major components of the Neutrons Data Interpretation Platform. The dashed lines indicate separate security or administrative domains. Traversing a

domain generally requires passing through a firewall. Galaxy components are shown in the gray boxes and include Galaxy Server, Galaxy User

Interfaces, and Pulsar. Other technologies we leveraged are shown in dotted boxes: RabbitMQ and Rucio. Components we developed locally include

the Rucio Object Broker Plugin (OBP) and the Remote Data Broker (RDB) client and server. The Resource Storage Elements (RSEs) are data storage

resources that are known and accessible to Rucio. Using a message broker for communication is key to the implementation. All connections are

outbound, and this significantly simplifies deployment across multiple domains (as shown) because many firewall policies allow outbound

connections or are amenable to opening a single port.

when attempting to provide seamless and secure workflow

execution across arbitrary resources. In addition to hindering

remotely executed commands, these separate domains also impact

users’ ability to share/transfer data for analysis. For its part, Galaxy

natively supports two primary mechanisms for data management.

The first is to rely on a shared file system being available

across all the services in the installation. This approach works

well in some instances but is not usable when multiple security

domains are employed (such as in our case). The second is

to use object storage (e.g., S3 object store) to download/upload

data to some central location. Although this second approach

would work in our environment, it severely limits the data

sizes that can be transferred in a timely manner. Our users are

expecting files in the gigabyte and terabyte ranges, so this option

is inadequate.

Our solution was to employ different protocols depending on

the restrictions imposed by the underlying security/administrative

domains. After some investigation, we found that Rucio provided

the best decentralizedmultiprotocol solution for data management.

Rucio is a scientific data management system developed by CERN

and adopted across a number of scientific disciplines. A key feature

of Rucio is that it provides centralized management, but the data

can be stored on heterogeneous servers. This was particularly

important to us because we needed to utilize data servers that were

being used for other purposes but could be integrated into the

NDIP environment. We implemented a Galaxy object store that

can use Rucio for data management and an RDB that simplified

transferring data across security domains. These are labeled as the

Rucio Object Store Plugin (Rucio OSP), RDB client, and RDB

server, respectively, in Figure 2. The RDB is used primarily to
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facilitate data management operations from HPC storage when a

firewall allows only outbound connections. This enables Galaxy

to request data necessary for displaying in Galaxy’s web interface

or providing input to a tool that executes on a compute resource

without direct HPC storage access (e.g., on a cloud-based virtual

machine). Similar to Pulsar, the RDB listens to the message queue

for commands to send data and then uploads the data to the final

destination.

3.3 HPC resources

Because of firewall restrictions and the absence of shared

storage between the cloud and HPC resources, Galaxy cannot

directly submit jobs to our HPC systems (including both Summit

and Frontier). To address this issue, we leveraged a local OpenShift-

based cluster that had direct access to the HPC resources for batch

job submission and access to HPC data storage systems. OpenShift

is a container orchestration platform for running user-managed

persistent application services. Using this capability, we developed a

mechanism for navigating the security and administrative problems

typically encountered in computing facilities such as the Oak Ridge

Leadership Computing Facility.

Our approach was to deploy a Pulsar server that contained the

Rucio OSP to manage data and submit jobs for each HPC resource,

along with a single RDB client to handle data transfers outside the

domain. Both ran as services in Kubernetes pods and listened for

messages from Galaxy via a queue on the message broker. When

Galaxy had a job ready for execution on an HPC resource, it sent

a message containing job information (e.g., tool to execute, tool

parameters, input and output data information) to this queue. The

Pulsar service then performed the following operations:

• Authorized the job by verifying the OIDC token for the user

and extracting the username. If the user was not authorized,

then the job was rejected.

• Handled input data by requesting it from the object store

(Rucio OSP). Depending on the data location, this could be

as simple as creating a symlink to the data on the HPC storage

system, or it may have required data to be downloaded from

remote storage, in which case the appropriate request was sent

to the RDB server.

• Monitored the job execution and sent updates to Galaxy. It

also periodically sent updates about stdout/stderror to

provide live information to the user.

• After the job finished, Pulsar uploaded output data

information to the object store (the data itself was not

uploaded but remained in HPC storage). The RDB client

running in the second pod was then able to process requests

to serve this data to external (to HPC) services.

4 Advanced neutron data analysis for
quantum materials

One of the science teams involved early in the initiative

focused on data analysis for correlated quantum materials. We

will use this as an example of the type of complex problem

that NDIP is aiming to help solve, and so it is illustrative to

describe the nature of the analysis in more detail. In particular,

modeling the physics of these systems is itself a grand challenge,

so establishing a tight link between experiment and theory

for correlated quantum materials is incredibly difficult. This is

because the electron-electron interactions in these materials are

strong. Mainstream modeling approaches used to analyze neutron

scattering experiments often include density functional theory and

linear spin wave theory. However, these techniques generally fail to

describe the complexity arising from the simultaneous presence of

correlated localized electronic states and other, weakly correlated

itinerant states and the coupling between them. For example,

linear spin wave theory cannot describe the broadening of spin

wave excitations due to their interaction with the itinerant degrees

of freedom. Instead, sophisticated many-body approaches that

accurately handle the interactions between many electrons are

needed to reliably model these systems.

The approach taken for developing a reliable neutron data

analysis capability for correlated quantum materials was based on

dynamical mean-field theory (DMFT) (Georges et al., 1996) and

its cluster extension, the dynamic cluster approximation (DCA)

(Maier et al., 2005), as implemented in ORNL’s DCA++ code

(Hähner et al., 2020). These methods are particularly well-suited

to treat the coupling between strongly correlated local degrees

of freedom with itinerant states that govern the physics in these

systems. They also provide a powerful approach (Park et al.,

2011) to calculating the dynamic magnetic neutron scattering

form factor S(Q,ω), which is measured in inelastic neutron

scattering experiments and provides important information about

the magnetic excitations of quantum materials.

DMFT and DCA make the many-body problem tractable by

partitioning the full problem into two parts: (1) a single atom

(DMFT) or a cluster of atoms (DCA) for which the many-body

problem is solved exactly and (2) the remaining sites in the

crystal that are coupled with the impurity or cluster through

a dynamic mean-field that is determined self-consistently. This

approximation retains the effects of local (DMFT) or short-ranged

(DCA) dynamical electron-electron correlations but neglects

longer-ranged correlations. These methods are particularly well-

suited to describe on equal footing the effects of local and short-

ranged correlations associated with localized degrees of freedom

as well as their coupling with itinerant degrees of freedom. The

physics is beyond the capabilities of standard analysis approaches,

including density functional theory or linear spin-wave theory,

and is particularly important for an accurate description of several

interesting phenomena such as the broadening of spin-wave

excitations caused by interaction with the Stoner continuum (Do

et al., 2022).

The effective impurity (DMFT) or cluster (DCA) problem is

solved with a numerically exact quantum Monte Carlo (QMC)

algorithm (Jarrell et al., 2001; Gull et al., 2011), which, despite

the reduced complexity, is in general still a formidable task

that requires high-end computing resources (Balduzzi et al.,

2019) owing to the exponential scaling of the computational

requirements for solving the underlyingmany-body problem. Once

this computation is converged, an additional analytic continuation
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is required to extract the real time or real frequency dynamics

for S(Q,ω) because QMC provides data only with imaginary time

or frequency dependence. This is an ill-posed inverse problem

that requires regularization, for which we will use a Bayesian

inference–based Maximum Entropy (MaxEnt) approach (Jarrell

and Gubernatis, 1996) as the workhorse.

Calculations for complex multi-orbital models of interest

for most quantum materials, for which the DMFT impurity

or the DCA cluster problem is too small to provide sufficient

momentum Q-resolution, require the additional computation of a

4-point scattering vertex function, Ŵℓ1 ,ℓ2 ,ℓ3 ,ℓ4 (ω1,ω2,ω3); a high-

dimensional rank-4 tensor that depends on the energies ω, spin;

and orbital quantum numbers ℓi of two incoming and two

outgoing electrons. This quantity is needed to construct the full

Q-dependence of S(Q,ω) through an additional Bethe-Salpeter

equation (Maier et al., 2005). Earlier work that used DMFT to

calculate S(Q,ω) for iron-based superconductors neglected the

energy dependence of Ŵ to reduce this complexity (Do et al., 2022).

The subsequent analytic continuation requires O(1, 000) data bins

for this quantity. The complete workflow to predict S(Q,ω) for a

quantum material is illustrated in Figure 3.

Prior to the deployment of NDIP, there was noway to run a fully

automated end-to-end correlated quantum materials data analysis

workflow using the HPC resources available at ORNL. Users had to

build and install the DCA++ code on the destination HPC system

themselves, write a job submission script that requested resources

necessary for the run, manually transfer the input configuration

files, and then submit the script to the job scheduler. On completion

of the HPC portion of the run, it was then necessary to copy the

resulting data files to a different system to perform the remaining

steps due to policy restrictions preventing small jobs from running

on HPC resources.

5 Methodology

Since no previous capability existed to enable the automated

workflows of this nature, our primary objective was to demonstrate

that the system could execute an end-to-end correlated quantum

materials data analysis workflow using a combination of the

HPC and cloud computing resources available at ORNL. This

would prove our architecture’s ability to support advanced neutron

FIGURE 3

Illustration of the DCA++ based workflow to predict the magnetic inelastic neutron scattering intensity S(Q,ω). The workflow involves two DCA++

calculations: one for convergence and a second one to generate data bins for the 4-point correlation function, which is then used in a

Bethe-Salpeter post-processing script that extends the local DCA++ results to the full crystal lattice for full momentum Q resolution. This data is

then fed into the final analytic continuation step in which a Maximum Entropy based script generates data that is assembled into S(Q,ω).

FIGURE 4

DCA++ Workflow in Galaxy. Each step is supplied with one or more inputs and generates an output file. If the data type of an output matches that of

an input, then the two steps can be connected together and Galaxy will manage the data transfer. This workflow begins with two data files

(conv.json and input.bins.json) that are used as inputs to subsequent steps and ends with the DCA Plot step.
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TABLE 1 DCA++ workflow components showing the source language,

input file format, output file format, and the computational resource

requirements for the tool.

Tool name Source Input
format

Output
format

Resources

Convergence C++ json hdf5 HPC/GPU

Binning C++ json, hdf5 hdf5 HPC/GPU

Bins for S(Q,ω) Python hdf5 txt Cloud VM

MaxEnt Python txt txt Cloud VM

Plot Python txt png Cloud VM

scattering analysis techniques. We felt that this would be a

significant advancement in workflow capability at ORNL, as it

would transform a manual process requiring advanced developer

skills (even if the compiled DCA++ executable was made generally

available for other users) into a process that any user could initiate

with a few mouse clicks.

To achieve this required some work to transform the DCA++

based workflow to the Galaxy-based workflow shown in Figure 4

so that it could be integrated into the platform. First, we split the

workflow into five separate modules: (i) Convergence, (ii) Binning,

(iii) Bins for S(Q,ω), (iv) MaxEnt, and (v) MaxEnt Plot. These

modules were then used to create tools that could run on the

required (HPC or non-HPC) computational resources and be

integrated into the Galaxy platform. Our reasoning for separating

the workflow into components is as follows:

• Not all components required (or can even be run on) HPC

resources but could be run on smaller and more efficient

resources.

• The execution time of each component could be easily

measured, which enables us to identify and address workflow

bottlenecks.

• The workflow can be restarted at an arbitrary point (e.g.,

when/if incorrect data is discovered).

• The tools can also be reused to implement other analysis

workflows.

Table 1 provides a summary of the tools, including data format

and computational requirements. As shown, the first two tools are

very compute- and data-intensive and required significant HPC

resources to run.

Integrating a Galaxy tool required the creation of an XML file

that described, among other things, the input data consumed by

the tool, the output data generated by the tool, and how to execute

the tool itself. The Galaxy platform manages the transfer of data

from tool to tool, thereby ensuring that the data is available in the

correct location prior to the tool’s execution. Galaxy also initiates

the execution of the tool on the remote computational resource.

For some tools, the input and/or output files comprise gigabytes

of data, so it was important that they were not transferred unless

absolutely necessary. We did this by configuring the Rucio object

store to ensure that the data from these tools remained local to

the computational resources where it was generated. Tools can

specify arbitrary mechanisms to use for execution such as running

an executable command, launching a containerized application,

or submitting a batch job. Galaxy enables a series of tools to be

combined into a Galaxy workflow, and this was done to implement

the full DCA++ workflow.

Listing 1 Convergence step input file.

"output": {
"directory": "./",
"output-format": "HDF5",
"g4-ouput-format": "HDF5",
"filename-dca": "conv.hdf5",
"dump-lattice-self-energy": true,
"dump-cluster-Greens-functions" : true,
"dump-every-iteration" : false,
"dump-Gamma-lattice" : true,
"dump-chi-0-lattice" : true

},
"physics": {

"beta": 100.0,
"density": 0.65,
"adjust-chemical-potential": true

},
"single-band-Hubbard-model": {

"t": 1,
"t-prime": 0.0,
"U": 8

},
"DCA": {

"initial-self-energy": "zero",
"iterations": 10,
"accuracy": 1e-3,
"self-energy-mixing-factor": 0.8,
"interacting-orbitals": [
0

],
"coarse-graining": {
"k-mesh-recursion": 3,
"periods": 0,
"quadrature-rule": 1,
"threads": 2,
"tail-frequencies": 10

}
},
"domains": {

"real-space-grids": {
"cluster": [

[
1,
0

],
[

0,
1

]
],
"sp-host": [

[
20,
20

],
[

20,
-20

]
],
"tp-host": [

[
8,
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8
],
[

8,
-8

]
]

},
"imaginary-time": {
"sp-time-intervals": 512,
"time-intervals-for-time-measurements": 32

},
"imaginary-frequency": {
"sp-fermionic-frequencies": 2048,
"four-point-fermionic-frequencies": 64,
"HTS-bosonic-frequencies": 32

}
},

"Monte-Carlo-integration": {
"warm-up-sweeps": 500,
"sweeps-per-measurement" : 32,
"measurements": 10000000,
"seed": 9854510000,
"threaded-solver": {
"accumulators": 4,
"walkers": 4,
"shared-walk-and-accumulation-thread": true

}
},
"CT-INT": {

"initial-configuration-size": 15,
"max-submatrix-size": 256

}

Listing 2 Binning step input file.

"output": {
"directory": "./",
"output-format": "HDF5",
"g4-ouput-format": "HDF5",
"filename-dca": "g4_bins.hdf5",
"dump-lattice-self-energy": true,
"dump-cluster-Greens-functions" : true,
"dump-every-iteration" : true,
"dump-Gamma-lattice" : true,
"dump-chi-0-lattice" : true

},
"physics": {

"beta": 100.0,
"density": 0.65,
"adjust-chemical-potential": false

},
"single-band-Hubbard-model": {

"t": 1,
"t-prime": 0.0,
"U": 8

},
"DCA": {

"initial-self-energy": "conv.hdf5",
"iterations": 100,
"self-energy-mixing-factor": 0.8,
"do-not-update-Sigma": true,

"interacting-orbitals": [
0

],
"coarse-graining": {
"k-mesh-recursion": 3,
"periods": 0,
"quadrature-rule": 1,

"threads": 6,
"tail-frequencies": 10

}
},
"domains": {

"real-space-grids": {
"cluster": [

[
1,
0

],
[

0,
1

]
],
"sp-host": [

[
20,
20

],
[

20,
-20

]
],
"tp-host": [

[
8,
8

],
[

8,
-8

]
]

},
"imaginary-time": {
"sp-time-intervals": 512,
"time-intervals-for-time-measurements": 32

},
"imaginary-frequency": {
"sp-fermionic-frequencies": 2048,
"four-point-fermionic-frequencies": 128,
"HTS-bosonic-frequencies": 32

}
},

"Monte-Carlo-integration": {
"warm-up-sweeps": 500,
"sweeps-per-measurement" : 32,
"measurements": 100000,
"seed": 9854510100,
"threaded-solver": {
"accumulators": 4,
"walkers": 4,
"shared-walk-and-accumulation-thread": true

}
},
"CT-INT": {

"initial-configuration-size": 15,
"max-submatrix-size": 256

},
"four-point": {
"channels": [
"PARTICLE_HOLE_MAGNETIC"

],
"frequency-transfer": 32,
"compute-all-transfers": true
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},
"analysis": {

"q-host": [
[

10,
0

],
[

0,
10

]
]

}

For the DCA++ workflow, two input files in JSON format

were required: conv.json (Listing 1) and input.bins.json

(Listing 2). The first specifies the parameters required for the

Convergence tool, and the second specifies parameters for the

Binning tool. The contents of these files are available in our GitHub

repository. Once these data files were provided as inputs to the

workflow, Galaxy could then run an end-to-end simulation by

executing the series of tools in sequence. The final tool was used

to generate the results as a plot. Notably, the entire workflow was

automated and managed by Galaxy, which eliminates the need for

user interaction during workflow execution. The workflow could

be easily rerun with different input parameters, and all results were

stored in a Galaxy history to facilitate sharing with other scientists,

reproducibility at a later time, and comparison of different software

versions.

6 Results

Our first attempt at running the end-to-end workflow was on

the Summit system, as at the time the Frontier system was not

due to enter service until January 2024. For this run, we chose 100

nodes (600 GPUs) as a reasonable compromise between system

availability and expected runtime. The run eventually completed

successfully (in excess of 3 days), and this enabled us to fully verify

the operation of the entire workflow.

Due to issues with the correctness of DCA++ code

dependencies, we were unable to test large-scale runs on Summit

until late 2023, and Summit was taken out of service before we were

able to complete a final run. As a consequence, we transferred our

attention to Frontier. However, due to issues using the OpenShift

cluster to directly submit jobs to Frontier, we had to manually run a

Pulsar and an RDB server on one of Frontier’s login nodes to allow

for Galaxy job submission. Since we had previously verified the full

workflow on Summit, we believed that this would not detract from

the final result.8 Additionally, while this was not an ideal situation

for the final run, it does demonstrate the considerable flexibility of

the architecture in overcoming such an adverse situation.

To demonstrate the flexibility of the system to adapt to different

resource requirements and allow for future optimization and

scaling studies, we spent some time experimenting with different

job sizes for the workflow steps. Since we had no previous

experiments to compare with, we decided to focus on generating

8 Once the job submission issue is resolved we will revert back to using the

OpenShift cluster for future job submissions.

TABLE 2 DCA++ workflow execution results showing the tool runtime,

the number of CPUs and GPUs used in each run, and the resulting file

sizes.

Tool name Runtime (s) CPUs GPUs Output
data
size

Convergence 6,576 1,024 8,192 7.2 MB

Binning 6,626 184 1,472 3.5 GB

Bins for S(Q,ω) 14,220 64 – 1.7 MB

MaxEnt 6,180 8 – 4.9 MB

Total 33,602

The final plot is not included because the runtime and output size were negligible.

simulation results using a large resource allocation that would result

in a reasonable wall-time of around 2 hours per step. By varying the

requested resources via a parameter in the workflow job step, we

found that 1,024 Frontier nodes (8,192 GPUs) for the Convergence

step and 184 nodes (1,472 GPUs) for the Binning step produced

results in the desired time frame, thus demonstrating the ease at

which different resource requirements could be accommodated.

One particular feature of this workflowwas that the post-processing

steps were not parallelized and therefore not able to be run

on Frontier due to local allocation size/time limit policies. As a

consequence, this provided a good use-case for demonstrating the

capability of the system to run part of the workflow on HPC

resources and part on a cloud-based virtual machine. During the

workflow execution, Galaxy seamlessly transferred the required

data from Frontier to cloud storage and executed the remaining

workflow steps, hence demonstrating the viability of this approach.

Table 2 shows the corresponding job sizes and run times for each

tool. The overall runtime for the workflow was 33,602 s which

provides a useful benchmark for future improvements in improving

the overall efficiency of the workflow.

From the neutron science perspective, we were able to provide

a significant result, with the final output of the workflow shown

in Figure 5. This calculation of the dynamic magnetic spin

susceptibility χ(q,ω) was performed for a single-band Hubbard

model with Coulomb repulsion U/t = 8 in units of the nearest-

neighbor hopping amplitude t and an electron density of n =

0.65, relevant for materials like the copper-oxide high-temperature

superconductors with a single electronic band crossing the Fermi

energy. From the heatmap showing the imaginary part of χ(q,ω)

one sees that at this electron density, the magnetic excitation

spectrum is broad and incoherent, with most of the spectral weight

located at high energies ω > t, except for a small region of lower

energy excitations near q = (π ,π/2). The magnetic susceptibility

χ(q,ω) can potentially be measured in future inelastic neutron

scattering experiments.

7 Future work

The NDIP is under active development, and there are many

opportunities for improvement.We currently have over 60 neutron

scattering tools integrated, including the DCA++ tools and many

others. This is only a small fraction of the total tool requirements
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FIGURE 5

Final result from running the DCA++ based workflow on Frontier. The imaginary part of the dynamic magnetic susceptibility χ ′′(q,ω) displayed as a

heatmap over frequency ω and along a path in two-dimensional momentum (q) space provides information on the magnetic excitation spectrum of

a material. This data was obtained for a single-band Hubbard model with Coulomb repulsion U/t = 8 in units of the nearest-neighbor hopping

amplitude t and an electron density of n = 0.65, relevant for materials like the copper-oxide high-temperature superconductors with a single

electronic band crossing the Fermi energy.

for ORNL’s SNS and HFIR facilities, which operate over 30 different

scientific instruments.

Another important area for future work is to transition

to cyberinfrastructure being developed at ORNL and beyond.

The ORNL Interconnected Science Ecosystem (INTERSECT)

effort (Engelmann et al., 2022) is working to develop infrastructure

to more easily connect scientific instruments to computational

resources. As this system becomes more stable and functional,

we plan to transition NDIP to leverage the services provided by

INTERSECT rather than our own. Initially, this would involve the

message service but would ultimately extend to job orchestration

and data management services. In addition to intra-organizational

resources, DOE’s Integrated Research Infrastructure (IRI) (Miller

et al., 2023) aims to provide connectivity and services between

DOE facilities. Many scientists already utilize services beyond their

own organizations (e.g., resources at the National Energy Research

Scientific Computing Center) and are familiar with navigating

them. By leveraging IRI, we expect to bring this capability to data

analysis for neutron scattering.

From a security perspective, the use of ODIC tokens provides

a uniform and future-proof authentication and authorization

mechanism. However, ORNL computational resources still rely

on more traditional authentication and authorization. A more

scalable and secure approach would be to employ a role-based

access control (RBAC) system that uses custom claims embedded

in the OIDC tokens. This would allow user roles to be assigned

at the institutional level and have this propagate all the way to the

computational resources being employed by the user. Our goal is to

replace the existing mechanisms with RBAC as this becomes more

widely adopted across ORNL’s infrastructure.

From the scientific workflow perspective, DCA++ requires

leadership-class computing resources to simulate complex

quantum materials on a reasonable timescale. This is due to the

underlying quantum many-body problem that scales exponentially

in the degrees of freedom (atomic orbitals). The DCA++ code

currently employs a QMC algorithm to repeatedly solve this

many-body problem until the calculation converges. Although this

algorithm is exact, its computational burden is often excessive.

The use of less numerically expensive surrogates as a stand-in

for the expensive QMC solver is therefore an important future

goal. Approximate physics-based algorithms used to solve the

quantum many-body problem, often perturbative in nature, can

speed up simulations significantly, albeit at a reduced accuracy

vs. the numerically exact QMC solution. Another complementary

strategy that is rapidly gaining traction is the use of ML. If trained

by the original QMC algorithm, such ML surrogates could deliver

similar accuracy as the QMC solver but at a fraction of the cost.

The acceleration of DCA++ simulations resulting from such

surrogates would therefore enable rapid materials parameter scans,

deployment on smaller-scale resources such as edge devices, and

near–real time interpretation and feedback for the experiments.

For this initial experiment we were not concerned with overall

runtime or the scalability of the workflow. However, we did

observe that one of the workflow steps, “Bins for S(Q,ω),” was

a significant outlier in terms of wall-clock time when compared

with the other steps. This step would be a worthy candidate for

additional optimization and/or parallelization efforts. We intend

to perform further experiments to compare the execution time

of the workflow steps and overall workflow execution time with

the manually executed code to determine scalability and potential

optimization opportunities.

8 Conclusion

We have described the architecture and implementation of

a platform for the analysis of neutron scattering data and

demonstrated that it can be used for real-world problems such

as correlated quantum materials data analysis. We have shown

that existing technologies combined with new functionally that

we developed result in a novel architecture that addresses the

needs of a complex computational and data environment across
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multiple security and administrative domains. We demonstrated

that this system can be used to run real neutron science problems

at a massive scale on leadership-class computing resources. We

did this by running a numerically exact QMC algorithm using

8,192 GPUs on Frontier followed by data binning for the 4-point

correlation function using 1,472 GPUs on the same machine.

The remaining post-processing steps were performed by utilizing

virtual machines from on-premises cloud resources. The entire

workflow was completed in under 10 h of wall-clock time.

For the first time, we (at ORNL) have been able to run a complex

workflow utilizing a combination of cloud and leadership-class

computing resources to achieve a real scientific result. We have

demonstrated that this is not only possible for a specific scientific

workflow, but that it can be employed as a general approach to

meeting the computational needs of advanced neutron scattering

data analysis problems.
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