
TYPE Original Research

PUBLISHED 12 July 2024

DOI 10.3389/fhpcp.2024.1384619

OPEN ACCESS

EDITED BY

Scott Klasky,

Oak Ridge National Laboratory (DOE),

United States

REVIEWED BY

Jay Lofstead,

Sandia National Laboratories (DOE),

United States

Yuri Demchenko,

University of Amsterdam, Netherlands

*CORRESPONDENCE

Arup Kumar Sarker

djy8hg@virginia.edu

RECEIVED 10 February 2024

ACCEPTED 20 June 2024

PUBLISHED 12 July 2024

CITATION

Perera N, Sarker AK, Shan K, Fetea A,

Kamburugamuve S, Kanewala TA, Widanage C,

Staylor M, Zhong T, Abeykoon V, von

Laszewski G and Fox G (2024) Supercharging

distributed computing environments for

high-performance data engineering.

Front. High Perform. Comput. 2:1384619.

doi: 10.3389/fhpcp.2024.1384619

COPYRIGHT

© 2024 Perera, Sarker, Shan, Fetea,

Kamburugamuve, Kanewala, Widanage,

Staylor, Zhong, Abeykoon, von Laszewski and

Fox. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Supercharging distributed
computing environments for
high-performance data
engineering

Niranda Perera1, Arup Kumar Sarker2,3*, Kaiying Shan2,

Alex Fetea2, Supun Kamburugamuve4, Thejaka Amila Kanewala4,

Chathura Widanage4, Mills Staylor2, Tianle Zhong2,

Vibhatha Abeykoon4, Gregor von Laszewski3 and Geo�rey Fox2,3

1Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN,

United States, 2Department of Computer Science, University of Virginia, Charlottesville, VA,

United States, 3Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA,

United States, 4Indiana University Alumni, Bloomington, IN, United States

The data engineering and data science community has embraced the idea

of using Python and R dataframes for regular applications. Driven by the

big data revolution and artificial intelligence, these frameworks are now ever

more important in order to process terabytes of data. They can easily exceed

the capabilities of a single machine but also demand significant developer

time and e�ort due to their convenience and ability to manipulate data with

high-level abstractions that can be optimized. Therefore it is essential to

design scalable dataframe solutions. There have been multiple e�orts to be

integrated into the most e�cient fashion to tackle this problem, the most

notable being the dataframe systems developed using distributed computing

environments such as Dask and Ray. Even though Dask and Ray’s distributed

computing features look very promising, we perceive that the Dask Dataframes

and Ray Datasets still have room for optimization In this paper, we present

CylonFlow, an alternative distributed dataframe execution methodology that

enables state-of-the-art performance and scalability on the same Dask and

Ray infrastructure (supercharging them!). To achieve this, we integrate a high-

performance dataframe system Cylon, which was originally based on an entirely

di�erent execution paradigm, into Dask and Ray. Our experiments show that

on a pipeline of dataframe operators, CylonFlow achieves 30× more distributed

performance than Dask Dataframes. Interestingly, it also enables superior

sequential performance due to leveraging the native C++ execution of Cylon.We

believe the performance of Cylon in conjunctionwithCylonFlow extends beyond

the data engineering domain and can be used to consolidate high-performance

computing and distributed computing ecosystems.

KEYWORDS

data engineering, data science, high performance computing, distributed computing,

dataframes

1 Introduction

Data engineering has grown rapidly in recent decades, driven by the Big Data

revolution and advances in machine learning (ML) and artificial intelligence (AI). In

today’s information age, data is measured in gigabytes and terabytes, stored in object

repositories rather than megabytes, files, or spreadsheets. Managing this vast amount

of data takes up significant developer time in preprocessing, detracting from the more

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2024.1384619
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2024.1384619&domain=pdf&date_stamp=2024-07-12
mailto:djy8hg@virginia.edu
https://doi.org/10.3389/fhpcp.2024.1384619
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2024.1384619/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

critical task of building data engineering models. Hence, it is

essential to improve the efficiency of data preprocessing to develop

effective data engineering pipelines.

Traditionally, data preprocessing was done using structured

query language (SQL) in database systems. However, Python

and R programming languages have increasingly taken on these

SQL tasks in recent years. The Python library pandas has been

instrumental in this transition, significantly boosting Python’s

popularity for data exploration. This discussion mainly focuses on

the DataFrame (DF) API, a crucial part of the pandas framework.

According to PyPI package index statistics, pandas consistently

surpasses 100 million downloads per month, underscoring its

leading role in the field (PyPI, n.d.). Despite its widespread use,

both Pandas and R DF encounter performance limitations, even

when handling moderately large datasets. (Petersohn et al., 2020;

Widanage et al., 2020; Perera et al., 2022). For example, in an

Intel R© Xeon R© Platinum 8160 high-end workstation with 240GB

memory, it takes around 700s to join two DFs with 1 billion

rows each for pandas, whereas traversing each dataframe only

takes about 4 s. On the other hand, modern computer hardware

offers significant computing power and substantial memory. On-

demand elastic cloud computing services allow tasks to be executed

on thousands of nodes with a single click. Therefore, we have

abundant resources available to create more efficient distributed

data engineering solutions.

Hadoop YARN, Dask, and Ray are examples of distributed

execution runtimes that can manage thousands of computing

resources. Developed mainly by the distributed and cloud

computing communities, these engines offer application program

interfaces (APIs) that allow users to easily deploy their logic across

numerous nodes. In the data engineering community, we have

seen several frameworks attempting to leverage these distributed

runtimes to develop distributed dataframe (DDF) solutions. Spark

SQL RDDs and Datasets was a breakthrough framework on this

front, significantly improving the traditional map-reduce paradigm

(Zaharia et al., 2012). Dask developed its own take on DDFs, Dask

DDF, closely followed by Ray with Ray-Datasets. Modin is the

latest attempt to develop scalable DF systems (Petersohn et al.,

2020), which is also built on top of Dask and Ray. However, Ray

Datasets have limitations, as they currently only support unary

operators, and operations like groupby take too long to complete.

Modin DDFs are restricted to broadcast joins and perform poorly

with dataframes of similar sizes. Dask and Spark Datasets struggle

with scalability in some operations, especially groupby, which may

indicate issues with communication implementation. Spark also

shows timing anomalies with 8–32 parallelism, which the Spark

community needs to investigate. Each framework faces challenges

in a pipeline of operators, such as communication overhead, limited

support for certain operations, and scalability issues in specific

scenarios. Users should consider these factors when selecting

a framework based on their specific needs and requirements

(Widanage et al., 2020; Perera et al., 2022).

In a previous publication, we developed an alternative to the

existing DDFs named Cylon (Widanage et al., 2020), which looks

at the problem from the HPC point of view. Cylon employs bulk

synchronous parallel BSP model for DDF operator execution,

and works on top of MPI runtimes (OpenMPI, MPICH, IBM

Spectrum MPI, etc). Due to superior scalability and HPC descent,

we differentiate Cylon as a high performance DDF (HP-DDF)

implementation. Apart from running on BSP, another notable

feature in HP-DDFs is the use of an optimized communication

library (Perera et al., 2023).

Although Cylon has managed to achieve superior scalability

compared to many well-known DDF systems, it is heavily

dependent on the MPI ecosystem. The way MPI processes are

initiated is closely linked to the specific MPI implementation

being used, such as OpenMPI, which uses PMIx. This reliance

on MPI poses difficulties for integrating with other distributed

computing libraries like Dask and Ray. The strong dependence

of Cylon on MPI for process initiation limits its ability to use

MPI as a standalone communication library on top of these other

libraries. Typically, libraries like Dask and Ray handle the initiation

of their worker processes independently, and there is no simple

method for the MPI runtime to connect with these pre-existing

worker processes.

In this paper, we propose an alternative execution methodology

to resolve this limitation. Our objective is to integrate Cylon with

other execution runtimes without compromising its scalability

and performance. It is a bipartite solution: (1) creating a stateful

pseudo-BSP environment within the execution runtime resources;

(2) using a modularized communicator that enables plugging-

in optimized communication libraries. We named it CylonFlow

because the idea carries parallels to workflow management.

We demonstrate the robustness of this idea by implementing

Cylon HP-DDF runtimes on top of Dask (CylonFlow-on-Dask)

and Ray (CylonFlow-on-Ray) that outperform their own DDF

implementations. We also confirm that the idea gives comparable

or better results than MPI-based Cylon DDF on the same

hardware. With CylonFlow, we have now enabled HP-DDFs

from anywhere to personal laptops or exascale supercomputers.

As depicted in Figure 1, it consolidates disparate execution

models and communities under a single application runtime.

To the best of our knowledge, this is the first attempt to

adapt high-performance data engineering constructs to distributed

computing environments. We believe that the methodology behind

CylonFlow extends beyond the data engineering domain, and it

could be used to execute many HPC applications in distributed

computing environments.

2 Distributed computing models and
libraries

In order to understand the design and implementation

of both Cylon and CylonFlow, it is important to discuss the

existing distributed computing models and prevalent libraries that

implement them. A distributed computing model provides an

abstract view of how a particular problem can be decomposed

and executed from the perspective of a machine. It describes

how a distributed application expresses and manages parallelism.

Data parallelism executes the same computation on different parts

(partitions) of data using many compute units. We see this at the

instruction level, single-instruction multiple-data (SIMD), as well

as in program level single-program multiple-data (SPMD). On the

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 1

Current status Quo and CylonFlow contribution.

other hand, task parallelism involves executing multiple tasks in

parallel over many compute units. This is a form of multiple-

program multiple-data (MPMD) at the program level.

2.1 Bulk synchronous parallel (BSP)

BSP or Communicating Sequential Processors (CSP) model

(Fox et al., 1989; Valiant, 1990) is the most common model

that employs SPMD and data parallelism over many compute

nodes. Message Passing Interface (MPI) is a formal specification

of BSP model that has matured over 30+ years. OpenMPI,

MPICH, MSMPI, IBM Spectrum MPI, etc. are some notable

implementations of this specification. MPI applications display

static parallelism since most often parallelism needs to be declared

at the initiation of the program. From the point of view of

the data, this would mean that the data partitions are tightly

coupled to the parallelism. At the beginning of the application, data

partitions would be allocated to executors/workers. Executors then

own data partitions until the end of the application and perform

computations on them. When the workers reach a communication

operation in the program, they synchronize with each other

by passing messages. Many high performance computing (HPC)

applications use the BSP model on supercomputing clusters and

have shown admirable scalability. However, only a handful of

data engineering frameworks have adopted this model, including

Twister2 (Kamburugamuve et al., 2020) and Cylon.

2.2 Asynchronous many-tasks

Asynchronous many-tasks (AMT)model relaxes the limitations

of BSP by decomposing applications into independent transferable

sub-programs (many tasks) with associated inputs (data

dependencies). AMT runtimes usually manage a distributed

queue that accepts these tasks (Manager/Scheduler). A separate

group of executors/workers would execute tasks from this queue,

thus following MPMD and task parallelism. Dependencies

between tasks are handled by the scheduling order. This allows

the application to set parallelism on-the-fly, and the workers are

allowed to scale up or down, leading to dynamic parallelism. AMT

also enables better resource utilization in multi-tenant/multi-

application environments by allowing free workers to pick

independent tasks, thereby improving the overall throughput of

the system. Furthermore, task parallelism enables task-level fault

tolerance where failed tasks can be rerun conveniently. These

benefits may have prompted many distributed dataframe runtimes,

including Dask DDF and Ray Datasets, to choose AMT as the

preferred execution model.

2.3 Actors

Actor model was popularized by Erlang (Armstrong, 2010). An

actor is a primitive computation which can receive messages from

other actors, upon which they can execute a computation, create

more actors, send more messages, and determine how to respond

to the next message received. Compared to executors and tasks in

AMT, actors manage/maintain their own state, and the state may

change based on the computation/communication. Messages are

sent asynchronously and placed in a mailbox until the designated

actor consumes them. Akka is a popular actor framework that was

used as the foundation for the Apache Spark project. Interestingly,

Dask and Ray projects also provide an actor abstraction on top

of their distributed execution runtimes mainly aimed at reducing

expensive state initializations.

3 Distributed data dataframes

With the exponential growth in dataset sizes, it is fair to

conclude that data engineering applications have already exceeded

the capabilities of a single workstation node. Modern hardware

offers many CPU cores/threads for computation, and the latest

cloud infrastructure enables users to spin many such nodes

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

instantaneously. As a result, there is abundant computing power

available at users’ disposal, and it is essential that data engineering

software make use of it. Furthermore, every AI/ML application

requires a pre-processed dataset, and it is no secret that data

pre-processing takes significant developer time and effort. Several

AI/ML surveys suggest that it could even be more than 60% of total

developer time (Anaconda, 2021). For these reasons, using scalable

distributed dataframe (DDF) runtime could potentially improve the

efficiency of data engineering pipelines immensely. Based on our

experiments with some widely used DDF systems (Section 5), we

believe that the idea of a high performance scalable DDF runtime is

still a work in progress.

3.1 Dataframes

Let us first define a dataframe. We borrow definitions from

the relations terminology proposed by Abiteboul et al. (1995).

Similar to SQL tables, DFs contain heterogeneously typed data.

These elements originate from a known set of domains, Dom =

{dom1, dom2, ...}. For a DF, these domains represent all the data

types it supports. A Schema of a DF SM is a tuple (DM ,CM),

where DM is a vector of M domains and CM is a vector of M

corresponding column labels. Column labels usually belong to

String/Object domain. A Dataframe (DF) is a tuple (SM ,ANM ,RN),

where SM is the Schema with M domains, ANM is a 2-D array of

entries where actual data is stored, and RN is a vector of N row

labels belonging to some domain. Length of the dataframe is N, i.e.

the number of rows.

Heterogeneously typed schema clearly distinguishes DFs from

multidimensional arrays or tensors. However data along a

column is still homogeneous, so many frameworks have adopted

a columnar data format that enables vectorized computations

on columns. A collection of numpy NDArrays would be

the simplest form of DF representation. Alternatively, Apache

Arrow columnar format (Apache Software Foundation, n.d.)

is commonly used by many DF runtimes. Arrow arrays are

composed of multiple buffers such as data, validity and offsets

for variable-length types (e.g. string). As identified in previous

literature, many commonly used DF operators are defined over

the vertical axis (row-wise) (Petersohn et al., 2020; Perera et al.,

2022). Even though columnar representation allows contiguous

access along a column, it makes indexing or slicing rows

non-trivial. Furthermore, many DF operators are defined on a

set of key columns, while the rest (i.e. value columns) move

along with the keys. As a consequence, traditional BLAS (basic

linear algebra subprograms) routines cannot be directly used for

DF operators.

3.2 DDF system design

The composition of a DF introduces several

engineering challenges in designing distributed DF systems.

Similar to any distributed/parallel system design, let

us first examine the computation and communication

aspects broadly.

3.2.1 Computation
Petersohn et al. (2020) recognize that many Pandas operators

can potentially be implemented by a set of core operators,

thereby reducing the burden of implementing a massive DDF

API. Correspondingly, in a recent publication, we observed

that DF operators follow several generic distribution execution

patterns (Perera et al., 2022). The pattern governs how these sub-

operators are arranged in a directed acyclic graph (DAG). We

also identified that a DDF operator consists of three major sub-

operators: (1) core local operator; (2) auxiliary local operators;

and (3) communication operators. Figure 2 depicts a distributed

join operation composition, and Figure 3 shows the relationship

between the concepts of Cylon and Modin. A framework may

choose to create tasks (i.e. the definition for a unit of work) for each

of these sub-operators. A typical application would be a pipeline of

multiple DDF operators.

When using the AMT model, these tasks would be further

expanded for each data partition (parallelism). Every task would

produce input data for subsequent tasks. This dataflow governs

the dependencies between tasks. When there are several operators

in a DAG, it is common to see multiple local tasks grouped

together. An execution plan optimizer may identify such tasks

and coalesce them together into a single local task. We see

these optimizations in the Apache Spark SQL Tungsten optimizer

(Apache Spark’s, 2020). Previously mentioned in Section 1, data

parallelism is natively supported by the BSP model. Since the

executors own data partitions until the end of an application,

they have the ability to perform all local compute tasks until they

reach a communication boundary. As such, coalescing subsequent

local tasks are inherently supported by the model itself compared

to AMT.

3.2.2 Communication
Implementing DDF operators requires point-to-point (P2P)

communication, as well as complex message passing between

worker processes. We have identified several such collective

communication routines, such as shuffle (all-to-all), scatter,

(all)gather, broadcast, (all)reduce, etc, that are essential for DDF

operators (Perera et al., 2022). Typically, communication routines

are performed on data buffers (ex: MPI, TCP), but the DF

composition dictates that these routines be extended on data

structures such as DFs, arrays, and scalars. Such data structuresmay

be composed of multiple buffers (Section 1) which could further

complicate the implementation. For example, join requires a

DF to be shuffled, and to do this we must AllToAll the

buffer sizes of all columns (counts). We then shuffle column data

based on these counts. In most DF applications, communication

operations may take up significant wall time, creating critical

bottlenecks. This is evident from Section 5.1, where we evaluate the

distribution of communication and computation time over several

DF operator patterns. Moreover, developer documentation of

Spark SQL, Dask DDF, Ray Datasets, etc, provide special guidelines

to reduce shuffle routine overheads (Shuffling Performance,

n.d.; Welcome to the Ray, n.d.).

While these communication routines can be implemented

ingenuously using point-to-pointmessage passing, implementation

of specialized algorithms has shown significant performance

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 2

Distributed DDF sub-operator composition (Perera et al., 2022) (Bottom: Join Operator Example).

FIGURE 3

Cylon operator patterns and modin DF algebra. ∗Not categorized in

the original Modin paper.

improvements (Bruck et al., 1997; Thakur et al., 2005; Träff et al.,

2014). For instance, OpenMPI implements several such algorithms

for its collective communications, which can be chosen based

on the application. Typically in AMT run-times, communications

between tasks are initiated with the help of a Scheduler. Another

approach is to use a distributed object store or a network file system

to share data rather than sending/receiving data explicitly, although

this could lead to severe communication overhead.

3.3 DDF systems examined

Let us examine several of the most commonly used DDF

systems to understand their distributed execution models and

broad design choices. We will then compare these systems with our

novel approach described in Section 4.

3.3.1 Dask DDF
Dask DDF is a distributed DF composed of many Pandas

DFs partitioned along the vertical axis. Operators on Dask

DDFs are decomposed into tasks which are then arranged in

a DAG (Figure 4 depicts a Join operation). Dask-Distributed

Scheduler then executes these tasks on Dask-Workers. This DDF

execution is a good example of AMT model. Core local operators

are offloaded to Pandas. Communication operators (mainly

shuffle) support point-to-point TCP message passing using

Partd disk-backed distributed object store.

3.3.2 Ray datasets
Ray Datasets is a DDF-like API composed of Apache Arrow

tables or Python objects stored in the distributed object store.

Similar to Dask, distributed operators (Transforms) follow the

AMT model. Interestingly, they support a task strategy as well

as an actor strategy. The latter is recommended for expensive

state initialization (e.g. for GPU-based tasks) to be cached. As per

communication, a map-reduce style shuffle is used which maps

tasks to partition blocks by value and then reduces tasks to merge

co-partitioned blocks together. Essentially, Ray communication

operators are backed by the object store. For larger data, the

documentation suggests using a push-based shuffle.

3.3.3 Apache spark dataset
It is fair to say that Apache Spark is the most popular actor-

based data engineering framework available today, and it has

attracted a large developer community since its initial publication,

Resilient Distributed Datasets (RDDs) (Zaharia et al., 2012). PySpark

Dataset is a DDF-like API, and recently a Pandas-like DDF

named Pandas on Spark was also released. Similar to AMT,

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 4

Dask DDF join (2 partitions).

Spark decomposes operators into a collection of map-reduce tasks,

after which a manager process schedules these tasks in executors

allocated to the application. It uses Akka-Actors to manage the

driver (i.e. the process that submits applications), the manager,

and executors. Essentially, Spark implements AMT using the actor

model for map-reduce tasks. All these processes run on a Java

Virtual Machine (JVM), and could face significant (de)serialization

overheads when transferring data to and from Python. As an

optimization, the latest versions of PySpark enable Apache Arrow

columnar data format.

3.3.4 Modin DDF
Modin (Petersohn et al., 2020) is the latest addition to the

DDF domain. It introduces the concept of DF algebra (Figure 3),

where a DDF operator can be implemented as a combination of

core operators. It executes on Dask and Ray backends, which also

provide the communication means for DDF. Modin distinguishes

itself by attempting to mirror the Pandas API and follow

eager execution.

4 Cylon and CylonFlow: high
performance DDFs in Dask and Ray

Through our research, we have encountered several

performance limitations while using the aforementioned DDF

systems for large datasets. As discussed in Section 5, many of these

DDFs show limited scalability, and we believe the limitations of

the AMTmodel could be a major contributor to that. A centralized

scheduler might create a scheduling bottleneck. Additionally, the

lack of a dedicated optimized communication mechanism further

compounds the issues. It is fair to assume that the optimization

of communication routines is orthogonal to designing distributed

computing libraries such as Dask/Ray, and re-purposing generic

distributed data-sharing mechanisms for complex communication

routines may lead to suboptimal performance when used in

DDF implementations.

In a recent publication we proposed an alternative approach

for DDFs that uses BSP execution model, which we named

Cylon (Widanage et al., 2020). It is built on top of MPI

and uses MPI collective communication routines for DDF

operator implementations. MPI libraries (OpenMPI, MPICH,

IBM-Spectrum) have matured over the past few decades to

employ various optimized distributed communication algorithms,

and Cylon benefits heavily from these improvements. It also

profits from data parallelism and implicit coalescing of local tasks

by employing the BSP model. Experiments show commendable

scalability with Cylon, fittingly differentiating it as a high

performance DDF (HP-DDF). Even though high performance

DDFs seem encouraging, having to depend on anMPI environment

introduces several constraints. MPI process bootstrapping is tightly

coupled to the underlying MPI implementation, e.g. OpenMPI

employs PMIx. As a result, it is not possible to useMPI as a separate

communication library on top of distributed computing libraries

such as Dask/Ray. Usually these libraries would bootstrap their

worker processes by themselves. There is no straightforward way

for the MPI runtime to bind to these workers.

We strongly believe it is worthwhile to expand on the HP-DDF

concept beyond MPI-like environments. Current advancements in

technology and the high demand for efficient data engineering

solutions encourage this position. Our main motivation for

this paper is to develop an execution environment where we

could strike a balance between the scalability of BSP and the

flexibility of AMT. Dask and Ray have proven track records

as distributed computing libraries. So rather than building a

new system from scratch, we focused on bridging the gap

between BSP and these libraries. We propose a two-pronged

solution to this problem. First, creating a stateful pseudo-

BSP execution environment using the computing resources of

the execution runtime. This lays the foundation for HP-DDF

execution. The second step is using a modularized communicator

abstraction (i.e. interface that defines communication routines)

that enables pluging-in optimized communication libraries. We

named this project CylonFlow, as it embraces the idea of managing

a workflow.

4.1 Stateful pseudo-BSP execution
environment

Within this pseudo-BSP environment, executors initialize an

optimized communication library and attach it to the state of

the executor. The state would keep this communication context

alive for the duration of an CylonFlow application. This allows

CylonFlow runtime to reuse the communication context without

having to reinitialize it, which could be an expensive exercise

for larger parallelisms. Once the environment is set up, the

executors implicitly coalesce and carry out local operations until a

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

communication boundary ismet. The state can also be used to share

data between CylonFlow applications as discussed in Section 4.3.

This proposition of creating stateful objects matches perfectly

with the actor model. Thus we leveraged the actor APIs available in

Dask and Ray to implement CylonFlow-on-Dask and CylonFlow-

on-Ray (Figure 5). An actor is a reference to a designated

object (CylonActor class) residing in a remote worker. The

driver/user code would call methods on this remote object, and

during the execution of this call, CylonFlow runtime passes the

communication context as an argument. Inside these methods,

users can now express their data engineering applications using

Cylon DDFs.

This approach enables partitioning of the cluster resources and

scheduling independent applications. It would be a much more

coarsely grained work separation, but we believe the abundance of

computing units and storage in modern processor hardware, and

their availability through cloud computing, could still sustain it. To

the best of our knowledge, this is the first time actors are being used

together with a dedicated communication library to develop HP-

DDF runtimes. This approach is semantically different from actors

in Apache Spark, where they would still be executing independent

tasks in an AMT manner. Neither should it be confused with other

orthogonal projects like Dask-MPI, which is used to deploy a Dask

cluster easily from within an existing MPI environment.

Upon the initialization of the application, CylonFlow sends

Cylon Actor definition (a class) to a partition of workers in the

cluster based on the required parallelism. Workers then initialize

these as an actor instance (remote object). At the same time,

the actor instances initialize communication channels between

each other, which is the entry point for creating Cylon DDFs

(i.e. Cylon_env). Instantiating an Cylon_env could be an

expensive operation, especially with large parallelism, as it opens

up P2P communication channels between the remote objects.

The Cylon actor class exposes three main endpoints.

1) start_executable: Allows users to submit an

executable class that would be instantiated inside the

actor instance.

2) execute_Cylon: Execute functions of the executable that

accepts an Cylon_env object and produces a Future.

3) run_Cylon: Execute a lambda function that accepts an

Cylon_env object and produces a Future.

The following is an example code which creates two Cylon DFs

using Parquet files and performs a join (merge) on them.

def foo(env:CylonEnv=None):
df1 = read_parquet(..., env=env)
df2 = read_parquet(..., env=env)
write_parquet(df1.merge(df2, ..., env=env), ..., env=env)

init()
wait(CylonExecutor(parallelism=4).run_Cylon(foo))

4.1.1 Spawning Dask actors
Dask does not have a separate API endpoint to reserve a set

of workers for an application. Consequentially, CylonFlow uses

the Distributed.Client API to collect a list of all available

workers. It then uses the Client.map API endpoint with a

chosen list of workers (based on the parallelism) to spawn the

actor remote objects. Dask actor remote objects open up a direct

communication channel to the driver, which they would use to

transfer the results back. This avoids an extra network hop through

the scheduler and achieves lower latency.

4.1.2 Spawning Ray actors
Ray provides a Placement Groups API that enables reserving

groups of resources across multiple nodes (known as gang-

scheduling). CylonFlow creates a placement group with the

required parallelism and submits the Cylon Actor definition to it.

In Ray documentation (Welcome to the Ray, n.d.), communicating

actors such as this are called out-of-band communication.

4.2 Modularized communicator

Once the pseudo-BSP environment is set up, Cylon HP-

DDF communication routines can pass messages amongst the

executors. However, we would still not be able to reuse the MPI

communications due to the limitations we discussed previously.

To address this, we had to look for alternative communication

libraries which could allow us to implement Cylon communication

routines outside of MPI without compromising its scalability

and performance. We achieved this by modularizing Cylon

communicator interface and adding abstract implementations of

DDF communication routines as discussed in Section 3. This

allowed us to conveniently integrate Gloo and UCX/UCC libraries

as alternatives to MPI. Communicator performance experiments in

Section 5.2 demonstrate that these libraries perform as good as if

not better than MPI on the same hardware.

4.2.1 Gloo
Gloo is a collective communications library managed by

Meta Inc. incubator (facebookincubator/gloo, n.d.) predominantly

aimed at machine learning applications. PyTorch uses this for

distributed all-reduce operations. It currently supports TCP, UV,

and ibverbs transports. Gloo communication runtime can be

initialized using an MPI Communicator or an NFS/Redis key-

value store (P2P message passing is not affected). Within MPI

environments Cylon uses the former, but for the purposes of

CylonFlow it uses the latter. As an incubator project, Gloo lacks

a comprehensive algorithm implementation, yet our experiments

confirmed that it scales admirably. We have extended the Gloo

project to suit Cylon communication interface.

4.2.2 Unified communication X (UCX)
UCX (Shamis et al., 2015) is a collection of libraries and

interfaces that provides an efficient and convenient way to

construct widely used HPC protocols on high-speed networks,

including MPI tag matching, Remote Memory Access (RMA)

operations, etc. Unlike MPI runtimes, UCX communication

workers are not bound to a process bootstrapping mechanism.

As such, it is being used by many frameworks, including Apache

Spark and RAPIDS (Dask-CuDF). It provides primitive P2P

communication operations. Unified Collective Communication

(UCC) is a collective communication operation API built on top

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 5

CylonFlow using actors for HP-DFF.

of UCX which is still being developed. Similar to MPI, UCC

implements multiple communication algorithms for collective

communications. Based on our experiments, UCX + UCC

performance is on par with or better than OpenMPI. CylonFlow

would use Redis key-value store to instantiate communication

channels between Cylon actors.

4.3 Sharing results with downstream
applications

As discussed in Section 4.1, this approach allows partitioning

of the cluster resources and scheduling of individual applications.

These applications may contain data dependencies, for example,

multiple data preprocessing applications feeding data into a

distributed deep learning application. However this typically

produces DDFs, and it would not be practical to collect

intermediate results to the driver program. We propose an

CylonFlow data store (i.e. Cylon_store) abstraction to

retain these results. In the following example, data_df and

aux_data_df will be executed in parallel on two resource

partitions, and main function would continue to execute the deep

learning model.

def process_aux_data(env:CylonEnv=None, store:CylonStore=None):
aux_data_df = ...
store.put("aux_data", aux_data_df, env=env)

def main(env:CylonEnv=None, store:CylonStore=None):
data_df = ...
aux_data_df = store.get("aux_data", timeout=..., env=env)
df = data_df.merge(aux_data_df, ...)

x_train = torch.from_numpy(df.to_numpy()).to(device)
model = Model(...)
...

init()
CylonExecutor(parallelism=4).run_Cylon(process_aux_data)
wait(CylonExecutor(parallelism=4).run_Cylon(main))

Cylon_store could be backed by an NFS or distributed object

store (ex: Ray’s Object Store). This feature is currently being

developed under CylonFlow, and is mentioned here only for

completeness. In instances where applications choose different

parallelism values, the store object may be required to carry out a

repartition routine.

4.4 CylonFlow features

The proposed actor-based solution CylonFlow provides several

benefits compared to traditional MPI-like (BSP) environments as

well as distributed computing environments.

4.4.1 Scalability
Experiments show that CylonFlow-on-Dask and

CylonFlow-on-Ray offer better operator scalability on

the same hardware compared to Dask DDF and Ray

Datasets, which employ AMT model (Section 5). It also

surpasses Spark Datasets, which uses a conventional

actor model. CylonFlow provides data engineering users

a high performance and scalable DF alternative to

their existing applications with minimum changes to

execution environments.

4.4.2 Application-level parallelism
Partitioning resources within a distributed computing cluster

enables parallel scheduling of multiple CylonFlow tasks. These

would have much more coarsely grained parallelism compared to

a typical task composed of a DDF operator. A future improvement

we are planning to introduce is an execution plan optimizer that

splits the DAG of a DF application into separate sub-applications

(e.g. coalesce an entire branch). These sub-applications can then be

individually scheduled in the cluster. Outputs (which are already

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

partitioned) could be stored in a distributed object store to be

used by subsequent sub-programs. We are potentially looking at

large binary outputs which can be readily stored as objects rather

than using the object store for internal communication routines.

This application-level parallelism could also enable multi-tenant

job submission.

4.4.3 Interactive programming environment
Petersohn et al. (2020) observed that an interactive

programming environment is key for exploratory data analytics. R

and Python being interpreted languages suits very well with this

experience. One major drawback of Cylon is that it cannot run

distributed computations on a notebook (e.g. Jupyter). CylonFlow

readily resolves this problem by enabling users to acquire a

local/remote resource (managed by Dask/Ray) and submit Cylon

programs to it interactively.

4.4.4 High performance everywhere
The concept of CylonFlow is not limited to distributed

computing libraries, but also extends to larger computing

environments such as supercomputers. We are currently

developing an CylonFlow extension for leadership class

supercomputers. Our end goal is to enable high performance

scalable data engineering everywhere, from a personal laptop to

exascale supercomputers.

5 Experiments

The following experiments were carried out on a 15-node

Intel R© Xeon R© Platinum 8160 cluster. Each node is comprised of 48

hardware cores on two sockets, 255GB RAM, SSD storage, and are

connected via Infiniband with 40 Gbps bandwidth. The software

used were Python v3.8; Pandas v1.4; Cylon (GCC v9.4, OpenMPI

v4.1, and Apache Arrow v5.0); Dask v2022.8; Ray v1.12; Modin

v0.13; Apache Spark v3.3; SQLite3. SQLite is used to compare a

join and sort operations with 1 M rows table in a single core in

Table 1. The target is to show how Cylon performs comparable

results within a single database. Performing distributed operations

with SQLite poses additional overheads. We checked two cases:

firstly, a single table from a database is accessed by multiple

workers to perform sort and join operations. We had to ensure

data consistency by implementing lock operations for each worker

which added additional latencies. Secondly, multiple tables are also

used from different databases to perform distributed sort and join

operations. In that case, additional overhead is added to create a

database connection with each worker along with joining multiple

tables. We moved our focus on distributed data frames with

underlying execution with CylonFlow on Dask and Ray clusters.

To do that, uniformly random distributed data was used with two

int64 columns, 109 rows (∼16 GB) in column-major format

(Fortran order). Data uses a cardinality (i.e. % of unique keys in

the data) of 90%, which constitutes a worst-case scenario for key-

based operators. The scripts to run these experiments are available

in Github (CylonData, n.d.). Out of the operator patterns discussed

in our previous work (Perera et al., 2022), we have only chosen

join, groupby, and sort operators. These cover some of the

most complex routines from the point of view of DDF operator

design. Only operator timings have been considered (without data

loading time). Input data will either be loaded from the driver to

the workers or loaded as Parquet files from the workers themselves

(Dask and Apache Spark discourage the former). Data is then

repartitioned based on parallelism and cached.

We admit that in real applications, operator performance alone

may not portray a comprehensive idea of the overall performance of

a data engineering framework. However we believe it is reasonably

sufficient for the purpose of proposing an alternative approach for

execution. Dask DDFs, Ray Datasets, Spark Datasets, and Modin

DDFs are only used here as baselines. We tried our best to refer

to publicly available documentation, user guides and forums while

carrying out these tests to get the optimal configurations.

5.1 Communication and computation

Out of the three operators considered, joins have the most

communication overhead, as it is a binary operator (two input

DFs). We investigated how the communication and computation

FIGURE 6

Communication and computation breakdown of Cylon join

operation (1B rows).

TABLE 1 Experiments on UVA.Rivanna with SQLite and CylonFlow with join and sort operations in a single node.

ID Experiment type AT (SQLite) AT (CylonFlow) #Rows #Nodes Dataset size

A Join operation 9.1514 9.0137 [1M] 1 1.5GB

B Sort operation 18.4042 17.9173 [1M] 1 1.5GB

We calculate average time (AT) in seconds for SQLite and CylonFlow versions.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 7

OpenMPI, Gloo, vs. UCX/UCC (1B rows, Log-Log) - Processes

spawned by mpirun.

time varies based on the parallelism (Figure 6). Even at the smallest

parallelism (32), there is a significant communication overhead

(Gloo 27%, MPI 17%, UCX 17%), and as the parallelism increases,

it dominates the wall time (Gloo 76%, MPI 86%, UCX 69%).

Unfortunately, we did not have enough expertise in the Spark,

Dask, or Ray DDF code base to run a similar micro-benchmark. But

even while using libraries specialized for message passing, Cylon

encounters significant communication overhead.

5.2 OpenMPI vs. Gloo vs. UCX/UCC

In this experiment, we test the scalability of Cylon

communicator implementations (for join operation). As

discussed in Section 4, we would not be able to use MPI

implementations inside distributed computing libraries. Figure 7

confirms that our alternative choices of Gloo and UCX/UCC

show equivalent performance and scalability. In fact, UCX/UCC

outperforms OpenMPI in higher parallelisms. We have seen this

trend in other operator benchmarks as well.

5.3 CylonFlow-on-Dask and
CylonFlow-on-Ray

In this experiment we showcase the performance on the

proposed HP-DDF approach for distributed computing libraries

(Dask and Ray) against their own DDF implementations (Dask

DDF and Ray Datasets). Unfortunately we encountered several

challenges with Ray Datasets. It only supports unary operators

currently, therefore we could not test joins. Moreover, Ray

groupby did not complete within 3 h, and sort was showing

presentable results. We have also included Apache Spark, since

the proposed approach leverages actor model. We enabled Apache

Arrow in PySpark feature because it would be more comparable.

We also added Modin DDFs to the mix. Unfortunately, it only

supports broadcast joins which performs poorly on two

similar sized DFs. We could only get Modin to run on Ray

backend with our datasets, and it would default to Pandas

for sort. Pandas serial performance is also added as a

baseline comparison.

Looking at the 1 billion rows strong scaling timings in Figure 8,

we observe that Cylon, Cylon-on-Dask, and Cylon-on-Ray are

nearly indistinguishable (using Gloo communication). Thus it

is evident that the proposed CylonFlow actor approach on top

of Dask/Ray does not add any unexpected overheads to vanilla

Cylon HP-DDF performance. Dask and Spark Datasets show

commendable scalability for join and sort, however former

groupby displays very limited scalability. We investigated Dask

and Spark further by performing a 100 million row test case

(bottom row of Figure 8) which constitutes a communication-

bound operation. Under these circumstances, both systems

diverge significantly at higher parallelisms, indicating limitations

in their communication implementations. We also noticed a

consistent anomaly in Spark timings for 8–32 parallelism. We

hope to further investigate this with the help of the Spark

community. CylonFlow also shows decreasing scalability with

much smoother gradients and displays better communication

performance. These findings reinforce our suggestion to use a

pseudo-BSP environment that employs a modular communicator.

In fact, our preliminary tests suggested that using UCX/UCC

communicator could potentially improve the performance further

in the same setup (Section 5.2).

At 512 parallelism, on average CylonFlow performs

142×, 123×, and 118× better than Pandas serial performance

for join, groupby, and sort respectively. We also observe

that the serial performance of CylonFlow outperforms others

consistently, which could be directly related to Cylon’s C++

implementation and the use of Apache Arrow format. At every

parallelism, CylonFlow distributed performance is 2 − 4× higher

than Dask/Spark consistently. These results confirm the efficacy of

the proposed approach.

5.4 Pipeline of operators

We also tested the following pipeline on CylonFlow, Dask DDF,

and Spark Datasets, join → groupby → sort → add_scalar .

As depicted in Figure 9, the gains of CylonFlow become more

pronounced in composite use cases. Average speed-up over Dask

DDFs ranges from 10 − 24×, while for Spark Datasets it is 3 −

5×. As mentioned in Section 4, Cylon execution coalesces all

local operators that are in-between communication routines in the

pipeline, and we believe this is a major reason for this gain.

6 Limitations and future work

From our findings in Section 4, the idea of using BSP

execution environments is a very common use case in HPC

and supercomputing clusters, and the CylonFlow concept readily

fits these environments. We are currently working with Radical-

Cybertools and Parsl teams to extend CylonFlow to leadership class

supercomputers based on workflowmanagement software stack. In

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 8

Strong scaling of DDF operators (Log-Log), (Top) 1B rows, (Bottom) 100M rows.

addition, we plan to extend CylonFlow on top of pure actor libraries

such as Akka. This would enable Cylon’s native performance on

the JVM using Java Native Interface (JNI). We are currently adding

these JNI bindings to Cylon and CylonFlow.

In Section 5 we saw significant time being spent on

communication. In modern CPU hardware, we can perform

computation while waiting on communication results. Since an

operator consists of sub-operators arranged in a DAG, we can

exploit pipeline parallelism by overlapping communication and

computation. Furthermore, we can also change the granularity

of a computation such that it fits into CPU caches. We have

made some preliminary investigations on these ideas, and we

were able to see significant performance improvements for Cylon.

Section 4 proposed an CylonFlow data store that allows sharing

data with downstream applications. This work is still under

active development.

Providing fault tolerance in an MPI-like environment is

quite challenging, as it operates under the assumption that the

communication channels are alive throughout the application. This

means providing communication-level fault tolerance would be

complicated. However, we are planning to add a checkpointing

mechanism that would allow a much coarser-level fault tolerance.

Load imbalance (especially with skewed datasets) could starve

some processes and might reduce the overall throughput. To

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

FIGURE 9

Pipeline of operators (1B rows, Log-Log).

avoid such scenarios, we are working on a sample-based

repartitioning mechanism.

Dataframe features discussed in this paper closely relate

to the relational algebra operations in database management

systems (DBMS). Therefore, comparing Cylon and other dataframe

abstractions’ performances with DBMSs would interest the

scientific computing community. We would be taking this up in

a future publication.

7 Related work

Initially, traditional database management systems embraced

distributed query processing. This process involves coordinating

the retrieval and aggregation of data from various distributed

sources. It demands consistency and concurrent control, which

can add complexity and overhead (Ceri and Pelagatti, 1983).

Pandas offers numerous direct advantages, including concurrent

access, data persistence, integrity, and optimized querying. But

to maintain these metrics in any relational database(SQLite),

additional overheads are added to execution time on distributed

operations. Although, in single-node operation, SQLite has

a similar performance as CylonFlow (Table 1), multiple-node

operations have significant complexity in creating connections

and performing join/sort operations to create the global tables.

Additionally, pandas provides a scripting-based programming

interface facilitating integration with other systems like data

visualization, machine learning, and web applications (McKinney,

2022). Our focus lies in implementing a distributed data

engineering framework that inherits the capabilities of pandas and

arrow-based columnar data structures, enabling the processing of

big data through bulk synchronized parallel patterns. In a previous

publication, we proposed a formal framework for designing

and developing high-performance data engineering frameworks

that includes data structures, architectures, and program models

(Kamburugamuve et al., 2021). Kamburugamuve et al. (2020)

proposed a similar big data toolkit named Twister2, which is

based on Java. There the authors observed that using a BSP-like

environment for data processing improves scalability, and they also

introduced a DF-like API in Java named TSets. However, Cylon

being developed in C++ enables native performance of hardware

and provides a more robust integration to Python and R. Being an

extension built in Python, CylonFlow still manages to achieve the

same performance as Cylon.

In parallel to Cylon, Totoni et al. (2017) also suggested a similar

HP-DDF runtime named HiFrames. They primarily attempt to

compile native MPI code for DDF operators using numba. While

there are several architectural similarities between HiFrames and

Cylon, the latter is the only open-source HP-DDF available at

the moment. The former is still bound to MPI, hence it would

be impractical to use it in distributed computing libraries like

Dask/Ray.

Horovod utilizes Ray-actors that use Gloo communication for

data parallel deep learning in itsHorovod-on-Ray project (Horovod

documentation, n.d.). From the outset, this has many similarities

to CylonFlow-on-Ray, but the API only supports communications

on tensors. Cylon/CylonFlow is a more generic approach that

could support both DFs and tensors. In fact, these could be

complementary frameworks, where data preprocessing and deep

learning are integrated together in a single pipeline.

In addition to the DDF runtimes we discussed in this paper,

we would also like to recognize some exciting new projects. Velox

is a C++ vectorized database acceleration library managed by the

Meta Inc. incubator (Pedreira et al., 2022). Currently it does not

provide a DF abstraction, but still offers most of the operators

shown in Figure 3. Photon is another C++ based vectorized query

engine developed by Databricks (Behm et al., 2022) that enables

native performance to the Apache Spark ecosystem. Unfortunately,

it has yet to be released to the open source community. Substrait is

another interesting model that attempts to produce an independent

description of data compute operations (Substrait-io/substrait,

n.d.).

8 Conclusion

Scalable dataframe systems are vital for modern data

engineering applications, but despite this many systems available

today could be improved to meet the scalability expectations. In

this paper, the we present an alternative approach for scalable

dataframes, CylonFlow, which attempts to bring high performance

computing into distributed computing runtimes. The proposed

stateful pseudo-BSP environment and modularized communicator

enable state-of-the-art scalability and performance on Dask

and Ray environments, thereby supercharging them. CylonFlow

is compared against Dask and Ray’s own dataframe systems

as well as Apache Spark, Modin, and Pandas. Using Cylon

HP-DDF C++ backend and Apache Arrow format give CylonFlow

superior sequential performance to the competition. Due to

the modular communicator in CylonFlow, it is possible to

swapp underlaying distributed communication libraries such

as swapping Gloo and UCX/UCC for DDF communications,

which enables scalable distributed performance on Dask/Ray

environments. Hence, CylonFlow creates a ubiquitous data

engineering ecosystem that unifies both HPC and distributed

computing communities.

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

NP: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Writing – original draft,

Writing – review & editing. AS: Data curation, Formal analysis,

Investigation, Methodology, Project administration, Resources,

Software, Validation, Writing – original draft, Writing – review

& editing, Conceptualization. KS: Data curation, Methodology,

Validation, Writing – review & editing. AF: Data curation,

Validation, Writing – review & editing. SK: Formal analysis,

Supervision, Writing – review & editing. TK: Formal analysis,

Investigation, Writing – review & editing. CW: Formal analysis,

Investigation, Writing – review & editing. MS: Formal analysis,

Investigation, Software, Writing – review & editing. TZ: Validation,

Writing – review & editing. VA: Formal analysis, Writing – review

& editing. GL: Formal analysis, Funding acquisition, Investigation,

Project administration, Resources, Supervision, Writing – review

& editing. GF: Formal analysis, Funding acquisition, Investigation,

Project administration, Resources, Supervision, Writing – review

& editing, Conceptualization, Methodology, Visualization, Writing

– original draft.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article.

Acknowledgments

We gratefully acknowledge the support of NSF grants 2210266

(CINES) and DE-SC0023452: FAIR Surrogate Benchmarks

Supporting AI and Simulation Research.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases, Volume 8.
Reading, MA: Addison-Wesley Reading.

Anaconda (2021). State of Data Science 2020-anaconda.com. Available online
at: https://www.anaconda.com/state-of-data-science-2020 (accessed February 27,
2022).

Apache Software Foundation (n.d.). Arrow Columnar Format x2014; Apache Arrow
v9.0.0 – arrow.apache.org. Available online at: https://arrow.apache.org/docs/format/
Columnar.html (accessed April 23, 2022).

Apache Spark’s (2020). Catalyst and tungsten: Apache spark’s speeding engine.
Available online at: https://www.linkedin.com/pulse/catalyst-tungsten-apache-sparks-
speeding-engine-deepak-rajak (accessed May 14, 2022).

Armstrong, J. (2010). erlang. Commun. ACM 53, 68–75.
doi: 10.1145/1810891.1810910

Behm, A., Palkar, S., Agarwal, U., Armstrong, T., Cashman, D., Dave, A., et al.
(2022). “Photon: a fast query engine for lakehouse systems,” in Proceedings of the 2022
International Conference on Management of Data (New York, NY: ACM), 2326–2339.
doi: 10.1145/3514221.3526054

Bruck, J., Ho, C.-T., Kipnis, S., Upfal, E., and Weathersby, D. (1997).
Efficient algorithms for all-to-all communications in multiport message-passing
systems. IEEE Trans. Parallel Distrib. Syst. 8, 1143–1156. doi: 10.1109/71.
642949

Ceri, S., and Pelagatti, G. (1983). Correctness of query execution
strategies in distributed databases. ACM Trans. Database Syst. 8, 577–607.
doi: 10.1145/319996.320009

CylonData (n.d.). Cylonflow experiments repository. Available online at: https://
github.com/cylondata/cylon_experiments (accessed June 1, 2024).

facebookincubator/gloo (n.d.). facebookincubator/gloo: Collective communications
library with various primitives for multi-machine training. Available online at: https://
github.com/facebookincubator/gloo (accessed June 5, 2022).

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D., et al. (1989).
Solving problems on concurrent processors vol. 1: General techniques and regular
problems. Comput. Phys. 3, 83–84. doi: 10.1063/1.4822815

Horovod documentation (n.d.).Horovod on ray – horovod documentation. Available
online at: https://horovod.readthedocs.io/en/stable/ray_include.html (accessed May 4,
2022).

Kamburugamuve, S., Govindarajan, K., Wickramasinghe, P., Abeykoon, V., and
Fox, G. (2020). Twister2: design of a big data toolkit. Concurr. Comput. Pract. Exp.
32:e5189. doi: 10.1002/cpe.5189

Kamburugamuve, S., Widanage, C., Perera, N., Abeykoon, V., Uyar, A., Kanewala,
T. A., et al. (2021). “Hptmt: operator-based architecture for scalable high-
performance data-intensive frameworks,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD) (IEEE), 228–239. doi: 10.1109/CLOUD53861.2021.
00036

McKinney, W. (2022). Python for Data Analysis. Sebastopol, CA: O’Reilly Media,
Inc.

Pedreira, P., Erling, O., Basmanova, M., Wilfong, K., Sakka, L., Pai, K., et al.
(2022). Velox: meta’s unified execution engine. Proc. VLDB Endow. 15, 3372–3384.
doi: 10.14778/3554821.3554829

Perera, N., Kamburugamuve, S., Widanage, C., Abeykoon, V., Uyar, A., Shan, K.,
et al. (2022). High performance dataframes from parallel processing patterns. arXiv
[Preprint]. arXiv:2209.06146. doi: 10.48550/arXiv:2209.06146

Perera, N., Sarker, A. K., Staylor, M., von Laszewski, G., Shan, K.,
Kamburugamuve, S., et al. (2023). In-depth analysis on parallel processing patterns
for high-performance dataframes. Future Gener. Comput. Syst. 149, 250–264.
doi: 10.1016/j.future.2023.07.007

Petersohn, D., Macke, S., Xin, D., Ma, W., Lee, D., Mo, X., et al. (2020).
Towards scalable dataframe systems. arXiv [Preprint]. arXiv:2001.00888.
doi: 10.48550/arXiv.2001.00888

PyPI (n.d.). Pypi download stats: Pandas. Available online at: https://pypistats.org/
packages/pandas (accessed April 10, 2022).

Shamis, P., Venkata, M. G., Lopez, M. G., Baker, M. B., Hernandez, O., Itigin, Y.,
et al. (2015). “UCX: an open source framework for HPC network Apis and beyond,” in
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects (Santa Clara,
CA: IEEE), 40–43. doi: 10.1109/HOTI.2015.13

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://www.anaconda.com/state-of-data-science-2020
https://arrow.apache.org/docs/format/Columnar.html
https://arrow.apache.org/docs/format/Columnar.html
https://www.linkedin.com/pulse/catalyst-tungsten-apache-sparks-speeding-engine-deepak-rajak
https://www.linkedin.com/pulse/catalyst-tungsten-apache-sparks-speeding-engine-deepak-rajak
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1109/71.642949
https://doi.org/10.1145/319996.320009
https://github.com/cylondata/cylon_experiments
https://github.com/cylondata/cylon_experiments
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://doi.org/10.1063/1.4822815
https://horovod.readthedocs.io/en/stable/ray_include.html
https://doi.org/10.1002/cpe.5189
https://doi.org/10.1109/CLOUD53861.2021.00036
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.48550/arXiv:2209.06146
https://doi.org/10.1016/j.future.2023.07.007
https://doi.org/10.48550/arXiv.2001.00888
https://pypistats.org/packages/pandas
https://pypistats.org/packages/pandas
https://doi.org/10.1109/HOTI.2015.13
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Perera et al. 10.3389/fhpcp.2024.1384619

Shuffling Performance (n.d.). Shuffling for group by and join – Dask documentation.
Available online at: https://docs.dask.org/en/stable/dataframe-groupby.html (accessed
May 14, 2022).

Substrait-io/Substrait (n.d.). Substrait-io/substrait: a cross platform way to express
data transformation, relational algebra, standardized record expression and plans.
Available online at: https://github.com/substrait-io/substrait (accessed October 22,
2023).

Thakur, R., Rabenseifner, R., and Gropp, W. (2005). Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput. Appl. 19, 49–66.
doi: 10.1177/1094342005051521

Totoni, E., Hassan, W. U., Anderson, T. A., and Shpeisman, T. (2017).
Hiframes: high performance data frames in a scripting language. arXiv [Preprint].
arXiv:1704.02341. doi: 10.48550/arXiv:1704.02341

Träff, J. L., Rougier, A., and Hunold, S. (2014). “Implementing a classic:
zero-copy all-to-all communication with mpi datatypes,” in Proceedings

of the 28th ACM international conference on Supercomputing (IEEE),
135–144.

Valiant, L. G. (1990). A bridging model for parallel computation. Commun. ACM
33, 103–111. doi: 10.1145/79173.79181

Welcome to the Ray (n.d.).Welcome to the ray documentation – ray 2.0.0. Available
online at: https://docs.ray.io/en/latest/index.html (accessed May 4, 2022).

Widanage, C., Perera, N., Abeykoon, V., Kamburugamuve, S., Kanewala,
T. A., Maithree, H., et al. (2020). “High performance data engineering
everywhere,” in 2020 IEEE International Conference on Smart Data
Services (SMDS) (Beijing: IEEE), 122–132. doi: 10.1109/SMDS49396.2020.
00022

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., et al.
(2012). “Resilient distributed datasets: a {Fault-Tolerant} abstraction for {In-Memory}
cluster computing,” in 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12) (IEEE), 15–28.

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1384619
https://docs.dask.org/en/stable/dataframe-groupby.html
https://github.com/substrait-io/substrait
https://doi.org/10.1177/1094342005051521
https://doi.org/10.48550/arXiv:1704.02341
https://doi.org/10.1145/79173.79181
https://docs.ray.io/en/latest/index.html
https://doi.org/10.1109/SMDS49396.2020.00022
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Supercharging distributed computing environments for high-performance data engineering
	1 Introduction
	2 Distributed computing models and libraries
	2.1 Bulk synchronous parallel (BSP)
	2.2 Asynchronous many-tasks
	2.3 Actors

	3 Distributed data dataframes
	3.1 Dataframes
	3.2 DDF system design
	3.2.1 Computation
	3.2.2 Communication

	3.3 DDF systems examined
	3.3.1 Dask DDF
	3.3.2 Ray datasets
	3.3.3 Apache spark dataset
	3.3.4 Modin DDF


	4 Cylon and CylonFlow: high performance DDFs in Dask and Ray
	4.1 Stateful pseudo-BSP execution environment
	4.1.1 Spawning Dask actors
	4.1.2 Spawning Ray actors

	4.2 Modularized communicator
	4.2.1 Gloo
	4.2.2 Unified communication X (UCX)

	4.3 Sharing results with downstream applications
	4.4 CylonFlow features
	4.4.1 Scalability
	4.4.2 Application-level parallelism
	4.4.3 Interactive programming environment
	4.4.4 High performance everywhere


	5 Experiments
	5.1 Communication and computation
	5.2 OpenMPI vs. Gloo vs. UCX/UCC
	5.3 CylonFlow-on-Dask and CylonFlow-on-Ray
	5.4 Pipeline of operators

	6 Limitations and future work
	7 Related work
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


