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The Statewide (formerly Southern) California Earthquake Center (SCEC)

conducts multidisciplinary earthquake system science research that aims to

develop predictive models of earthquake processes, and to produce accurate

seismic hazard information that can improve societal preparedness and resiliency

to earthquake hazards. As part of this program, SCEC has developed the

CyberShake platform, which calculates physics-based probabilistic seismic

hazard analysis (PSHA) models for regions with high-quality seismic velocity

and fault models. The CyberShake platform implements a sophisticated

computational workflow that includes over 15 individual codes written by

6 developers. These codes are heterogeneous, ranging from short-running

high-throughput serial CPU codes to large, long-running, parallel GPU codes.

Additionally, CyberShake simulation campaigns are computationally extensive,

typically producing tens of terabytes of meaningful scientific data and

metadata over several months of around-the-clock execution on leadership-

class supercomputers. To meet the needs of the CyberShake platform, we

have developed an extreme-scale workflow stack, including the Pegasus

Workflow Management System, HTCondor, Globus, and custom tools. We

present this workflow software stack and identify how the CyberShake platform

and supporting tools enable us to meet a variety of challenges that come

with large-scale simulations, such as automated remote job submission,

data management, and verification and validation. This platform enabled us

to perform our most recent simulation campaign, CyberShake Study 22.12,

from December 2022 to April 2023. During this time, our workflow tools

executed approximately 32,000 jobs, and used up to 73% of the Summit

system at Oak Ridge Leadership Computing Facility. Our workflow tools

managed about 2.5 PB of total temporary and output data, and automatically

staged 19 million output files totaling 74 TB back to archival storage on the

University of Southern California’s Center for Advanced Research Computing

systems, including file-based relational data and large binary files to e�ciently
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store millions of simulated seismograms. CyberShake extreme-scale workflows

have generated simulation-based probabilistic seismic hazard models that are

being used by seismological, engineering, and governmental communities.

KEYWORDS

scientific workflows, probabilistic seismic hazard analysis, high performance

computing, seismic simulations, distributed computing, computational modeling

1 Introduction

Large-scale simulation has become a key technique in

scientific research. Referred to as the “third pillar of science”

(Reed et al., 2005), computational modeling enables investigation

of phenomena inaccessible to traditional experimentation.

Simulation-based science is heavily utilized by disparate domains,

such as astrophysics, climate science, biomedical engineering, and

seismology, to evaluate hypotheses and predict future behavior.

Growing computational capability—approximately 7 orders of

magnitude in the past 30 years (Top500, 2023)—has expanded the

scope of scientific computation, but with this expansion comes

challenges. Larger, more complex simulations require organization

beyond the capacity of a single developer with shell scripts. To

assist with automated job management, data management, and

other challenges of extreme-scale simulations, many computational

researchers now utilize scientific workflow tools.

The Statewide (formerly Southern) California Earthquake

Center (SCEC) has utilized computational modeling to investigate

earthquake system science for decades. One way to categorize

physics-based earthquake ground motion simulations is into

(1) validation simulations; (2) scenario simulations; and (3)

probabilistic seismic hazard analysis (PSHA) simulations.

Validation simulations, such as the 2010 El Mayor-Cucapah

earthquake (Graves and Aagaard, 2011), the 2014 La Habra

earthquake (Taborda et al., 2018; Hu et al., 2022), and the 2019

Ridgecrest mainshock (Yeh and Olsen, 2023), model historic

earthquakes and compare simulation results against observed

ground motions. Scenario earthquake simulations, such as

TeraShake (Olsen et al., 2006), ShakeOut (Bielak et al., 2010),

M8 (Cui et al., 2010), the EQSIM project (McCallen et al., 2021),

and nonlinear simulations (Roten et al., 2023), model possible

future earthquakes to quantify the hazard associated with a

particular earthquake. Physics-based PSHA simulations such as

CyberShake (Graves et al., 2011; Jordan et al., 2018) model all

scientifically plausible earthquakes for a region of interest. As

a result, physics-based PSHA hazard calculations require large

ensembles of scenario earthquake simulations and typically require

significantly more computing resources than the other types

of simulations.

In this paper, we describe how SCEC uses open-science

workflow tools and leadership class high performance computer

resources to calculate CyberShake Study 22.12, a physics-based

PSHA model for Southern California. We identify the challenges

confronted in performing CyberShake simulation campaigns: (1)

hardware heterogeneity; (2) software heterogeneity; (3) data type

heterogeneity; (4) complexity and scalability; (5) reproducibility;

(6) verification and validation; (7) resource provider policies; and

(8) personnel and resource constraints. We believe that many

of the computing challenges we face performing CyberShake

studies are domain-independent issues, common to many existing

and future large-scale computational research efforts, including

the following. CyberShake includes a heterogeneous collection of

both short-running serial CPU and long-running parallel GPU

codes written inmultiple programming languages. The CyberShake

workflow consists of multi-stage calculations that require an

ordered sequence of execution, with multiple data dependencies

between the computational stages. CyberShake calculations are

distributed among multiple resource providers based on resource

availability and the required computing resource type. Automation

is required to perform large calculations on supercomputers with

limited numbers of personnel, and the multi-stage calculations

may need to be restarted, and rerun, without restarting from

the beginning. The provenance of CyberShake results must be

preserved to support transparency and reproducibility.

In this paper, we describe how the CyberShake computational

framework uses the Pegasus Workflow Management System

(PegasusWMS) (Deelman et al., 2019) andHTCondor (Thain et al.,

2005) workflow tools to address these challenges and coordinate the

extreme-scale computational and data management requirements

for the CyberShake 22.12 study, using computing and storage

resources from the Oak Ridge Leadership Computing Facility

(OLCF), from the Center for Advanced Leadership Computing

(CARC) at the University of Southern California (USC), and

from SCEC.

2 Materials and methods

2.1 Background and methodology of
CyberShake

Probabilistic Seismic Hazard Analysis (PSHA) (Cornell, 1968)

has been widely used for over 50 years by governments and

industry in applications with significant societal impact such as

deciding safety criteria for nuclear power plants, constructing

national hazard models, developing building code requirements,

and determining earthquake insurance rates. PSHA is the basis

for defining the seismic loads on civil structures in terms of

ground shaking and is used in seismic design activities. PSHA

provides the probability of exceeding a certain level of shaking

over a given period of time by performing an integration over two
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main types of input: (1) a list of possible earthquakes given by an

earthquake rupture forecast (ERF) and (2) a ground motion model

(GMM) to determine the shaking from each earthquake. The main

products of PSHA are hazard curves that relate the probability of

exceedance (or rate) to the ground motion intensity measure of

interest, e.g., acceleration at a certain period or peak velocity. ERFs

describe the earthquake sources, including faults, and detail their

location, geometry, and the distribution of earthquakes of various

magnitudes that the faults can generate, along with the expected

long-term rate, or probability, of each possible earthquake (e.g.,

Field et al., 2009). These parameters are derived from seismological

principles that integrate results from diverse disciplines including

geodesy, paleoseismology and earthquake geology. ERFs may also

account for yet unknown earthquake sources by the inclusion of

background seismicity models. GMMs are used to calculate ground

motions at a site for earthquakes from the ERF. The current

standard practice in PSHA uses empirically-based ground motion

models developed using global seismicity catalogs and observed

ground motions (e.g., Bozorgnia et al., 2014).

SCEC has developed the CyberShake method as the first three-

dimensional physics-based computational PSHA platform (Graves

et al., 2011; Jordan et al., 2018). Instead of using empirically-based

GMMs, CyberShake calculates ground motions from finite fault

ruptures and wave propagation simulation. Physics-based ground

motions are produced up to a predefined frequency, typically 1Hz,

but can be augmented with stochastic-based methods to produce

broadband (low- and high-frequency) results up to 25Hz (Graves

and Pitarka, 2015). CyberShake can sample from an existing ERF

to generate rupture models for a large number of earthquake

sources using a kinematic rupture generator, which generates a

model of rupture slip without simulating the underlying physics

(Pitarka et al., 2021), or it can use an earthquake simulator to

generate fault ruptures through evolving seismicity and stress on

a California fault system (Milner et al., 2021). A CyberShake study

is defined by selecting sites of interest and specifying a specific set

of input configuration parameters, then calculating PSHA seismic

hazard products for each site. A typical CyberShake study produces

seismic hazard curves for hundreds of sites by performing physics-

based earthquake wave propagation calculations to generate

ground motions for hundreds of thousands of unique earthquakes.

Since CyberShake uses wave propagation simulations, it generates

seismograms in addition to the intensity measures, hazard curves,

and hazard maps produced by standard empirically-based PSHA

methods. This makes the resulting CyberShake hazard model

useful for a broad variety of applications interested in simulated

seismograms for large-magnitude earthquakes.

A key modeling ingredient in CyberShake is the 3D velocity

model, which is a volumetric representation of Earth material

properties that impacts earthquake wave propagation. Different

consensus community velocity models (CVMs) are used depending

on the region of interest or the goals of the project (Small et al.,

2017). The CVMs used in Study 22.12 were tested during project

planning and shown to improve validation results compared to

a 1D model. Figure 1 illustrates the difference between using a

3D and 1D velocity model on hazard. Wave propagation software

is then used to propagate seismic waves and generate Strain

Green Tensors (SGTs), which represent the relationship between

fault slip at one location and ground motion at another. Each

individual seismogram in a CyberShake study is simulated by

convolving the SGTs with the slip time history for that earthquake,

a process referred to as reciprocity (Zhao et al., 2006). The

CyberShake simulation results are two-component orthogonal

horizontal seismograms at each site for each earthquake source.

Derived parameters of interest to the community, including peak

acceleration, peak velocity, and shaking duration, are calculated

from these ground motion timeseries. These results are then

combined with the long-term earthquake rates on the faults,

as defined by the ERF, to generate seismic hazard curves at

selected sites. Additional CyberShake output data products include

regional hazard maps, disaggregation results showing the largest

contributors to hazard, and databases containing engineering

design metrics. The relationship between various CyberShake

output data products is illustrated in Figure 2.

An advantage of the CyberShake method is that it produces full

time series (seismograms), as opposed to empirically-based GMMs

that only provide peak ground motion intensity measures. This is

critical given the paucity of observed strong ground motion data

and the increased reliance of engineering designs on non-linear

response history analyses, where seismograms are direct inputs to

computer models of engineering structures (Gerstenberger et al.,

2020). Simulated seismograms can be used by a wide range of

researchers in science and engineering to perform novel research.

Examples of research enabled by CyberShake include the impact

of site location in relation to fault ruptures and sedimentary

basin structures (Baker and Chen, 2022; Nweke et al., 2022),

the proper characterization and modeling of rupture directivity

effects (Milner et al., 2021), near-surface site response (Villani

and Abrahamson, 2015), and the combined impacts of these

effects on buildings and other structures (Teng and Baker, 2019;

Bijelic et al., 2020). By incorporating 3D wave propagation effects,

CyberShake results capture 3D effects not included in empirical

ground motion models including rupture directivity and its

interaction with 3D geologic structures, particularly basins. This is

especially critical in estimating the vulnerability of infrastructure

distributed over large areas, such as roads and pipelines. We

expect that CyberShake physics-based PSHA models will play an

increasing role in improving hazard estimation and enhancing

societal earthquake preparedness as this method is applied to more

seismically vulnerable regions.

2.2 CyberShake computing and data
requirements

The large-scale computing and data management requirements

of CyberShake hazard models are imposed by the scientific goals

and the specific scientific software elements which are used.

In this paper, we use the following terms to describe various

aspects of the CyberShake workflows. A “simulation” is run by

executing software on a computer to model a physical process

like earthquake waves propagating through the solid earth.

Within CyberShake workflows, simulations consist of a series of

computational “tasks”, where a task is an individual execution
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FIGURE 1

Probabilistic seismic hazard maps for southern California calculated using a 1D velocity model (Left) and a 3D velocity model (Right), indicating the

ground motion level for which the model gives a 2% chance of exceedance in 50 years. Units are g (acceleration due to gravity). Warm colors

indicate areas of higher hazard. The 3D PSHA hazard model shown on the right captures basin amplification e�ects near the western (Ventura Basin)

and eastern (San Bernardino Basin) edges of the region. PSHA models that make use of a 3D velocity model can provide detailed seismic hazard

information that includes the impact of established geological features in a region.

FIGURE 2

The di�erent layers of data products produced by a CyberShake (Graves et al., 2011; Jordan et al., 2018) study. Clockwise from upper left: a regional

hazard map; a site-specific hazard curve; hazard disaggregation at a point on the curve; slip details for an individual rupture; the seismogram

simulated for that rupture; intensity measures derived from the seismogram.

of a code. We define a “job” as a computer program that is

queued, then run, by a scheduler. Tasks and jobs are similar, but

multiple tasks can be combined into a single job, then the job

is submitted to a scheduler. A “workflow” is a sequence of jobs

with a defined execution order and data dependencies that produce

specific data products. We typically describe workflows using
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directed acyclic graphs (DAGs). We define a “CyberShake Study”

as a collection of one or more probabilistic seismic hazard models

for a specific geographic region. During a CyberShake Study, most

input parameters, such as the earthquake rupture forecast, are held

constant, and results are calculated using a consistent methodology

for multiple sites. A CyberShake Study may require use of multiple

workflows. Makespan as applied here refers to the elapsed time

between the submission of the first job and the termination of the

last job of a study.

The CyberShake processing components in CyberShake have

been developed and updated during the development of the

CyberShake project. We designed the CyberShake system to

implement a standard PSHA hazard calculation that retains

well-established standard practices, while replacing the use of

ground motion prediction equations with the use of 3D wave

propagation simulations to calculate ground motion amplitudes at

sites of interest. Since initially assembling all the processing codes

required to perform a full PSHA site-specific hazard calculation,

we have updated and improved our workflows by integrating the

best available science codes, and selectively optimized the most

computationally expensive processing stages for use on available

leadership class open-science supercomputers.

For CyberShake Study 22.12, CyberShake consists of 16

different software codes (SCEC Cybershake-Core Software

Repository, 2022), but we usually think of the CyberShake

workflow as having four stages:

• The SGT stage (8 unique codes), which determines the

simulation volume, creates a velocity mesh (a Cartesian mesh

populated withmaterial properties at each node), and runs two

3D physics-based wave propagation simulations to generate

SGTs. The key codes are an MPI CPU code for generating

a velocity mesh, Unified Community Velocity Model (Small

et al., 2017), and an MPI GPU fourth-order staggered grid

finite difference wave propagation code, AWP-ODC-SGT (Cui

et al., 2013). These two codes are responsible for 97% of the

computational requirements of this stage.

• The post-processing stage (two unique codes), which uses

the SGTs generated in (1) to synthesize low-frequency

deterministic seismograms for each earthquake in the

earthquake rupture forecast. Intensity measures and durations

are also derived from these seismograms. The key code is an

MPI CPU manager-worker code for producing seismograms

and intensity measures, responsible for over 99% of the

computational requirements of this stage (DirectSynth Github

Code Repository, 2024).

• The broadband stage (three unique codes), which generates

high-frequency stochastic seismograms for each earthquake

in the earthquake rupture forecast and combines them with

the seismograms in (2) to produce broadband seismograms,

intensity measures, and durations. This stage is optional.

The key codes are serial CPU codes from the SCEC

Broadband Platform (Maechling et al., 2015) for synthesizing

high-frequency seismograms and combining high- and low-

frequency results.

• The data products stage (three unique codes), which populates

a relational database with a subset of the most commonly

used intensity measures produced in (2) and (3), checks that

all expected output files are present, and produces derived

aggregate data products such as hazard curves and maps.

These data products are constructed using an open-source

seismic hazard analysis toolkit, OpenSHA (Field et al., 2003).

This stage is run separately on the outputs from (2) and (3).

The codes are all CPU serial codes.

Stages 1, 2, and 3 require high performance computing

resources, and are typically executed on remote clusters. Not all

CyberShake simulations include stage 3. Stage 4 can be executed

anywhere, but is fastest when run on a local system, close to the

archived output data files and the relational database. Graphical

depictions of the steps involved in each stage are illustrated

in Figure 3. The computational and data requirements of each

workflow stage are given in Table 1. Note that the number of jobs

and amount of data varies greatly depending on the workflow stage.

To perform a CyberShake study, also referred to as a

simulation campaign or production run, we perform seismic

hazard calculations for several hundred sites. Given the scale of

the available computational resources, CyberShake studies have a

makespan, or elapsed time between the submission of the first job

and the termination of the last job, of 1–3 months when using

shared, open-science, leadership-class supercomputers, depending

on the number of sites included in the study and the number of

earthquakes in the ERF. This long makespan imposes additional

requirements on an execution solution since it must be able to

run jobs in an automated fashion over a long period of time. We

also expect that during the course of a simulation campaign, we

will encounter job and filesystem errors, so a CyberShake execution

solution also requires checkpoint and restart capability.

2.3 Need for extreme-scale scientific
workflows

To achieve the scientific goal of performing large-scale PSHA,

CyberShake requires the use of extreme-scale scientific workflows.

The basic CyberShake computational unit of work is an end-to-

end workflow, running all four stages, for a single site of interest.

This workflow performs all the calculations required to produce

PSHA results for that location.When performing studies for several

hundred sites in a geographic region, CyberShake must execute

several hundred independent site-specific workflows in parallel.

The CyberShake project moves through different phases as

we prepare for a new Study. First, we develop scientific goals

for the Study, such as a new geographic region, new physics in

the wave propagation codes, a new velocity model, or a different

earthquake rupture forecast. Then, based on these goals, we identify

changes that need to be made to the CyberShake calculations.

These may include the addition of new codes, updates to previous

codes, optimizations to be able to complete the calculations using

the available resources, or migration to a new system. We then

integrate these changes and perform verification tests, comparing

CyberShake results on a new system with those generated on an

established system, and validation tests, including a comparison
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TABLE 1 Approximate computational and data requirements of each stage of the CyberShake Study 22.12 workflow for a single site of interest.

Workflow stage Job count CPU-hours GPU-hours Temporary data Output data

1 (SGT) 12 355 425 3.2 TB 1.5 TB

2 (Post-processing) 3 36,750 0 1.5 TB 38 GB

3 (Broadband) 77,000 33,850 0 37 GB 190 GB

4 (Data products) 7 1 0 228 GB 2 MB

Total 77,022 70,936 425 5.0 TB 1.7 TB

CPU and GPU hour requirements are for jobs running on Summit at the Oak Ridge Leadership Computing Facility. Note that stages 1 and 2 mostly consist of large parallel jobs, while stage 3

consists of high throughput serial jobs.

between simulated and observed seismograms for a selected

earthquake, to establish confidence in our results. Finally, we

perform a production run, typically lasting multiple months, to

calculate one or more seismic hazard models for the selected

region. Each seismic hazard model contains a variety of seismic

hazard products including rupture models, synthetic seismograms,

hazard curves, and hazard maps for the study region. Once

the production run is complete, the cycle starts again as we

evaluate the results, identify potential computational or geophysical

model improvements, and define new scientific goals. We assign

a CyberShake Study number based on the year and month that

the production run started for the study. For example, CyberShake

Study 22.12 was started in December, 2022.

The software elements which make up the CyberShake

workflow are periodically updated through the addition of new

physics, additional parameters, or more complex representations

which improve the ability of the codes to model ground truth.

Therefore, we must be able to update or add new individual

software elements as the science behind PSHA progresses, while

still utilizing the same workflow approach. Computational stages

we have improved over the years include the wave propagation

codes, the rupture generator software, and the codes that calculate

amplitudes from seismograms. Most CyberShake studies require

either the addition of a new code or an update to an already existing

one, representing scientific enhancements since the previous study.

To enable us to meet the computational, data, and scientific needs

of the project, we use a complex stack of workflow tools to execute

our extreme-scale workflows.

Since the first CyberShake study in 2008 (Jordan et al.,

2018), CyberShake workflows have run on 13 different clusters,

typically large-scale open science systems funded by the National

Science Foundation (NSF) or the Department of Energy (DOE)

(Comparison of CyberShake Studies, 2024). We have performed 12

studies over those 15 years. This paper will focus on the workflows

and cyberinfrastructure created and used to support the most

recent CyberShake production study, Study 22.12.

2.4 Design of CyberShake workflows

While developing the CyberShake architecture, we analyzed a

wide range of workflow systems and technologies including shell

and Python scripts, business process workflows, graphical workflow

construction tools, and open-source scientific workflow systems.

During this architectural phase of CyberShake development, we

identified five essential features that our CyberShake research

calculation required from a workflow system. (1) A format for

expressing program execution order and data dependencies that

does not tie execution to a particular computing resource. (2)

A job scheduler that automates the orderly execution of the

programs. (3) File and metadata management to track files in

the system and transfer them when necessary. (4) Support for

distributed processing across multiple computing resources. (5) A

solution which does not require modifications to scientific codes.

We then identified an open-source scientific software stack based

on Pegasus WMS (Deelman et al., 2015, 2021) and HTCondor

(Thain et al., 2005) that provides these capabilities. A number

of alternative workflow tools with these capabilities exist today,

such as Makeflow (Albrecht et al., 2012), Nextflow (Di Tommaso

et al., 2017), Parsl (Babuji et al., 2019), and Apache Airflow

(2024). Pegasus andHTCondor have continued to provide excellent

support for CyberShake workflows since our initial selection of

these tools in 2007. In the following sections, we describe how we

combine these five basic capabilities into the CyberShake extreme

scale workflows.

Our CyberShake workflows make an important distinction

between an abstract workflow and an executable workflow. An

abstract workflow defines the jobs, files, and dependencies between

jobs, but uses placeholders and variable names for the programs

and files involved. It depicts the flow of the execution without

regard to system specifics and could theoretically be executed on

any system. We use directed acyclic graphs (DAGs) to represent

our abstract workflow. A program called a workflow planner, part

of Pegasus WMS (pegasus-plan), converts the abstract workflow

into an executable workflow before the workflow is submitted

to a job scheduler. The executable workflow defines a series of

execution-ready job descriptions, with system-specific paths to

executables and files and scheduler-specific parameters such as

runtime, number of nodes, and submission queue. In addition to

replacing the placeholders in the abstract workflow with actual

executables and files in the executable workflow, the workflow

planner adds additional jobs, such as working directory creation

jobs, data product registration jobs, and data transfer jobs, that

are implied, but unspecified, in the abstract workflow. A simple

example is shown in Figure 4. For example, if parts of the workflow

are executed on different systems, files generated from early jobs

on the first system might need to be transferred (“staged”) to the

second system to be consumed by later jobs. Data staging jobs

are added by Pegasus and are performed using Globus Online

(Foster, 2011; Allen et al., 2012) during execution. The planner

also wraps executables to gather runtime provenance information,

such as execution time, execution environment, and task success
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FIGURE 3

Flow chart showing the CyberShake workflow for a single site with serial processing programs (green boxes), parallel executable programs (blue

boxes), parallel GPU programs (blue checked boxes), and data stores (yellow boxes). The workflow stages include (1) the SGT stage, which constructs

a velocity model and performs wave propagation simulations; (2) the post-processing stage, which uses the SGTs to synthesize low-frequency

seismograms; (3) the broadband stage, which synthesizes high-frequency stochastic seismograms; and (4) the data product stage which produces

aggregate data products. The SCEC relational database contains data products once a run completes (5).

or failure. This approach also enforces separation between task

implementation details and the abstract workflow. Thus, it is simple

to update or replace scientific codes while continuing to use the

same abstract workflow.
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FIGURE 4

A comparison between an abstract workflow (Top) and an executable workflow (Bottom) shows that the abstract workflow defines the programs

and data dependencies in the workflow and that an executable workflow defines the specific computers, files, and executables to be run. Files

(yellow boxes) are inputs and results, and programs (blue circles) consume and produce results. Note that the planning process adds a

Pegasus-transfer data staging job (Deelman et al., 2019) that uses Globus data transfer (Foster, 2011; Allen et al., 2012) to move output files to a

di�erent system where they are needed to complete the workflow.

The Pegasus WMS workflow planning software manages the

transformation from abstract to executable workflow by utilizing

three data stores called the Replica Catalog, the Transformation

Catalog, and the Site Catalog (Pegasus WMS Documentation,

2023). The Replica Catalog (RC) contains a database of input

files involved in the workflow and after execution is populated

with information about the output files. The relational model

associates logical file names for each file with one or more

physical file names, which represent actual files on a file system.

When the workflow is planned, the RC is used to identify the

location of any files which are external inputs to the workflow

and stage them in, if needed. The planner may also add jobs

to register in the RC output files generated by the workflow,

by creating new RC entries containing a mapping of logical

filename to physical pathname(s). The Transformation Catalog

(TC) contains a list of executables or “transformations” in the

workflow. For CyberShake, these correspond to our scientific

application programs. The transformation catalog contains entries

for each logical transformation name, and associates with it one

or more actual executables, along with system-specific runtime

information. For example, perhaps one system has twice as many

cores per node as a second system, so the job should request twice

as many nodes when running on the second system. By allowing

us to specify a logical program and then providing options to

use alternative executables, the TC supports flexibility in selecting

target systems for execution.

The Site Catalog (SC) provides system-specific information

which is shared by all jobs running on that system. This includes

paths to scratch storage, the type of batch scheduler, and paths

to Pegasus and HTCondor installs. When we plan the workflow,

Pegasus WMS produces an executable workflow, ready for the

job scheduler, that directs each processing stage to an appropriate

computer resource with all needed parameters. This includes the

addition of data transfer jobs and RC data registration jobs, so that

as the workflow executes and generates files, the physical files that

are produced are registered into the RC.

Pegasus includes the DAGMan component of the HTCondor

software as a job manager to manage the execution of executable

workflows (Deelman et al., 2019). Many of the jobs in our

CyberShake workflows execute on shared, open-science

supercomputer systems, such as Summit at the Oak Ridge

Leadership Computing Facility (OLCF), and these shared

computer resources typically manage jobs using a batch

scheduler, such as Slurm (Jette and Wickberg, 2023) or LSF

(IBM Spectrum LSF Documentation, 2024). DAGMan works as a

meta-job-scheduler. Pegasus submits the executable workflows to

DAGMan/HTCondor, which runs on a local, USC-based dedicated

workflow submission host. DAGMan manages the executable

workflow and identifies which jobs are ready to be run. Then

DAGMan, through the HTCondor schedd, submits the jobs to

the batch scheduler on the target remote system. When the job

completes, HTCondor receives a notification, and based on the

structure of the workflow, new jobs may be ready to run. If a

job fails, it is automatically retried a user-configurable number of

times. If it fails repeatedly, DAGMan will execute any other jobs

in the workflow not dependent on the failed job, write errors to

a log file, and create a workflow checkpoint file (called a “rescue”

file by DAGMan). Once the developer has fixed the underlying

problem based on information from the error logs, the workflow

can be resumed from the failed job using the rescue file. One

can also resubmit the original workflow to Pegasus to replan

the workflow on different resources. Pegasus will only replan
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the portions of the workflow that remain to be executed. Since

CyberShake studies may run for multiple months, the availability

of required computing resources may change during that time. If

the available resources change, we can update our Site Catalog,

replan the abstract workflow, and re-distribute our workflows to

the most appropriate resources during a Study.

There are many complexities involved in these HTCondor

meta-scheduling capabilities. A few examples may serve to

make this point. Communications between our local HTCondor

workflow submission host, and the remote systems running

our workflow jobs, present security issues for both systems.

Automated remote job submission for systems that require two-

factor authentication can be an issue. Each external system has

its own policies for the number of jobs a user can submit to its

queue, so HTCondor must comply with the appropriate policy for

each resource provider. The utilization and throughput that our

workflow jobs can obtain on an external supercomputer depends

strongly on how the number, size, and runtime of the workflow

jobs mesh with the scheduling priorities of the external system.

For leadership class systems such as OLCF Summit, priorities are

often given to jobs that use a substantial portion of the system.

Serial and short running jobs and jobs that produce many small

files are discouraged. Solutions for these issues, supported by

Pegasus WMS, include bundling of serial and short running jobs

into large, multi-node long-running jobs (Rynge et al., 2012).

HTCondor also provides a technology called glideins that enables

users to utilize pilot jobs to run many-task workloads efficiently on

supercomputers.We provide technical details on howwe addressed

these issues for CyberShake 22.12 in Section 3.2 below.

The concept of planning has proved to be particularly

important and valuable for our CyberShake workflows because we

depend on open-science shared computing resources allocated via

a proposal process. We don’t have access to dedicated computer

systems that can support our CyberShake workflows. As a result,

our access to specific computer resources varies by year. Once

we receive an allocation, the availability of any specific computer

resource is still dependent on both scheduled and unscheduled

maintenance and workload. Heterogeneity in computing hardware

and job requirements leads us to direct each of our computing

stages to the most appropriate resource provider, and in many cases

the workflow is distributed between several resource providers. The

ability to update our workflow planner data stores, including the

RC, the TC, and the SC, then replan a workflow to redirect to a

different system without changing the abstract workflow has been

particularly valuable. We have used this capability to dynamically

allocate CyberShake workflows to resources based on their real-

time workload, system queue times, and to avoid resources during

periods of planned maintenance (Callaghan et al., 2019).

The CyberShake workflow architecture also establishes an

interface between the scientific software elements that are run

as workflow jobs and OpenSHA, our aggregate data product

generation tool (Field et al., 2003). We designed a relational

database schema that stores necessary PSHA input parameters from

the ERF generated by OpenSHA. We also defined a schema that

stores the data products produced by the CyberShake workflows,

including ground motion intensity measures and probabilistic

seismic hazard curves, that can be read by OpenSHA. When

CyberShake workflows execute, they read their input parameters

from the relational database, execute multiple computing stages,

and write a subset, consisting of the most commonly used results,

into a relational database. OpenSHA and end users query the

relational database for these data products. This architectural

approach separates the interactive stages of the PSHA calculations,

including configuration of the inputs, and analyzing and visualizing

the results, from the extended high-performance processing stages

which are asynchronous and automated and therefore would be

slowed down by human interactions. End usersmay need to process

seismograms to access results not written to the relational database.

We have chosen to preserve the stages described in Section 2.2

in our workflow representation. Although these stages could be

combined, keeping them loosely coupled has provided additional

flexibility. For example, Stage 3 can be easily omitted, Stage 2 can

be run multiple times with different earthquake input parameters

for comparisons, or different stages can be distributed to different

HPC resources.

The SCEC-developed software tools to support CyberShake

workflows are available through the CyberShake tools code

repository (SCEC Cybershake-Tools, 2022).

3 Results

To accomplish our scientific goals of advancing PSHA in

Southern California, in early 2022 we began planning for the

execution of a new CyberShake set of broadband simulations, Study

22.12, for 335 sites in the greater Los Angeles area with an updated

set of events and an improved 3D velocitymodel. Belowwe describe

the computational system used to perform this study, summarize

the technical scope of the simulations, and briefly describe the

scientific advancements enabled by this new model.

3.1 Description of CyberShake study 22.12
computational system

To perform a CyberShake study, we implement the workflow

system described above, using a dedicated SCEC workflow

submission host (WSH) located at SCEC headquarters at USC

to orchestrate the workflows and a dedicated relational database

server, both for metadata and the storage of output data products.

Before the study can begin, we perform initial setup. This

includes performing verification and validation of the software

stack, selection of the geographic sites to be used in the study,

and insertion into the relational database of needed input data

(for example, the latitude and longitude of the sites, and the

earthquakes in the ERF with their metadata). This may also include

the installation or updating of software packages. On the SCEC

WSH, we install both Pegasus (Deelman et al., 2015, 2021) and

HTCondor (Thain et al., 2005) and any required dependencies.

On the remote system, Pegasus is required to support transferring,

wrapping executables, and running jobs in a high-throughput

manner. HTCondor is also required to support our methods

of remote job submission, detailed below. Both Pegasus and

HTCondor can be installed in user space on the remote system.
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Once the scientific goals and configuration for a study have

been determined, prior to launching a large-scale CyberShake

production run, we conduct group meetings that we call “readiness

reviews” to review the scientific and technical details of the planned

study. We conduct our scientific readiness review with our project’s

scientific and engineering collaborators. These reviews ensure that

the input simulation configuration, and the planned data products

that will be produced by the study, properly address the scientific

goals of the study.We also conduct technical readiness reviews with

software, computer science, and cyberinfrastructure developers on

the project, and we include representatives from the computer

system resource providers. These reviews discuss the study’s target

computing resources, identify the software versions to be used,

review the computing and storage estimates from the study, and

confirm that appropriate computing and storage resources are

available for the planned study.

Next, we perform a stress test, in which we runmany workflows

simultaneously to test the software stack under production-level

load. Once any identified issues are resolved, we begin the main

production run.

An individual CyberShake workflow, which produces PSHA

results for a single geographic site, is initiated by invoking the

Pegasus Java API on theWSH to create a programmatic description

of the workflow. At this time, scientific parameters are selected

(the site of interest, the specific input models to use, the maximum

seismic frequency, etc.), and an entry for the run is created in the

relational database, so the run’s status can be monitored. Once the

abstract workflow is created, it is written to the filesystem on the

WSH. This abstract workflow is then converted into an executable

workflow for execution on one or more specific systems, using

pegasus-plan, which is then passed off to HTCondor DAGMan

(Deelman et al., 2019) to manage the runtime execution.

For a CyberShake study, individual workflows define the

processing required to produce a PSHA hazard model for a specific

site; Study 22.12 required 335 sites and therefore 335 workflows.

We obtain higher throughput by running multiple workflows

simultaneously. We find that 30–40 works well; this is high enough

to keep a variety of jobs in the remote scheduler and low enough so

that workflows are still able to make progress and aren’t blocking

each other. We set HTCondor configuration parameters to enforce

a per-user limit on the number of jobs the HTCondor scheduler

will send to the remote system, so that we don’t exceed the

jobs per user limit on the system. To keep multiple workflows

running simultaneously without human interaction, we developed

an additional layer of automation. We have constructed a Python

workflow submission script which parses a Pending Site File with

a list of sites to run, and then creates, plans, and submits the

workflow for the sites in this file. This script supports execution

of workflows on distributed systems and includes a limit as to

how many workflows can be simultaneously executing on each

system. Because the Pegasus Java planning processes can require

extensive memory resources, we also limit the number of new

workflows submitted per script execution cycle to 3. We then set

up a cron job on the WSH to run this script every 10min and

submit new workflows if there are still sites to run and the remote

resource has available workflow slots. Thus, to start up a study,

we construct the Pending Site File with a list of all the sites, along

with scientific parameters such as the velocity model to use and the

maximum simulated frequency. The workflow submission script

slowly digests the Pending Site File over the course of the study.

The Pending Site File also supports workflow restart, so that if a

workflow experiences an error and is fixed, it can be added back

to the Pending Site File and restarted automatically. The workflow

submission system used in CyberShake is illustrated in Figure 5.

As workflows are executing, Pegasus via HTCondor DAGMan

keeps a queue of workflow jobs and submits them for execution

on their target resource, either Summit or the WSH for Study

22.12. Our workflows support both push-based and pull-based

job submission approaches. Jobs submitted to Summit use the

push-based rvGAHP approach by default (Callaghan et al., 2017),

since for most jobs we prefer a low-overhead push-based solution.

rvGAHP is supported by a long-running daemon on an OLCF

data transfer node, which initiates the connections to the WSH

so that the two-factor authentication token is not needed for job

submission. However, the SGT wave propagation code is executed

in large bundles using pull-based HTCondor glideins to enable job

bundling. To support glideins, we created a Python script to check

the WSH DAGMan queue from the remote system and submit a

glidein job when a minimum threshold of queued SGT jobs is met.

We use a cron job on anOLCF data transfer node to run this Python

script and submit glidein jobs when needed. For more details about

our remote job submission approaches, see Section 3.2.7.

3.2 CyberShake workflow challenges and
solutions

In the process of designing the CyberShake workflow system

and utilizing it for large-scale scientific investigation, we have

encountered and solved a variety of challenges that may be

applicable to other extreme-scale workflow applications.

3.2.1 Hardware Heterogeneity
High performance computing is a rapidly changing field, and

applications which make use of it must be able to adapt. Over

the 15-year lifetime of CyberShake, we have seen clusters advance

from several hundred CPUs to hundreds of thousands of cores to

predominantly GPUs and accelerators. A challenge for CyberShake

has been to keep up with these changes in hardware.

Scientific workflow tools have been key in enabling CyberShake

to migrate to the latest cutting-edge HPC systems. The Pegasus

WMS abstract/executable workflow paradigm described in Section

2.4 enables reuse of the abstract workflow, since the overall

processing workflow remains the same regardless of the execution

system. Entries are added to the Transformation Catalog for the

executables and the Site Catalog for the filesystem and scheduler,

and then the abstract workflow can be planned into an executable

workflow on the new system. This separation of the high-level

workflow description from the system-specific details simplifies

migration, enabling us to take advantage of the best available

hardware. Pegasus also supports distributed execution, so that

different parts of the workflow can be executed on different systems.

This enables us to run the GPU codes on systems with high GPU
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FIGURE 5

Schematic of the workflow submission system utilized by CyberShake. Purple boxes are software executables; yellow boxes are data stores. The

workflow submission script, invoked by a cronjob, processes the pending sites file to construct a list of sites to run. A site is removed from the

pending site list when a workflow has completed for that site. A study is complete when the pending site list is empty for that study. For each site, the

script calls (1) the workflow generator, which constructs an abstract workflow; (2) pegasus-plan, which uses the TC, RC, and SC to convert the

abstract workflow into a concrete workflow; (3) pegasus-run, which sends the concrete workflow to DAGMan (Deelman et al., 2019) for execution

on local or remote resources. (4) Tasks are then run on either a remote system for stages 1–3 or locally for Stage 4.

counts, the CPU codes on predominantly CPU systems, and data

product generation codes locally, close to the relational database

and the scientific output files. The coordination of different

computing resources is presented in Figure 6.

We have also found that testing is vital when running on

heterogeneous hardware. When CyberShake is migrated to new

hardware, each code must be tested to confirm that it is producing

correct results. This is discussed in more detail in Section 3.2.6.

3.2.2 Software heterogeneity
Another challenge for CyberShake is the heterogeneity of

the scientific software elements. CyberShake consists of over

15 codes, written by six different developers, in C, Fortran,

Python, and Java. These codes use several processing methods

including serial, OpenMP-parallel, tightly coupled MPI-parallel,

and manager/worker MPI-parallel. Our GPU wave propagation

code, AWP-ODC-SGT (Cui et al., 2013), has both CUDA and

HIP implementations for running on NVIDIA and AMD GPUs,

respectively. The shortest codes take a few seconds to run, and the

longest can take over 8 h.

Pegasus supports the execution of a heterogeneous code base

like CyberShake. Since Pegasus wraps scientific codes without

changing their contents, scientific software development can

remain separate from technical workflows. Scientific codes are

required to return a zero exitcode upon successful execution, and

a non-zero exitcode if an error is encountered, for the Pegasus

wrappers to correctly identify jobs which have succeeded and

failed. The CyberShake workflow software stack also supports

heterogeneous task execution through a variety of execution

paradigms, including push-based, pull-based, bundled jobs through

glideins, and pegasus-mpi-cluster jobs, discussed further in

Section 3.2.7.

3.2.3 Data type heterogeneity
CyberShake workflows have large data requirements driven by

diverse types of data and metadata. This includes workflow catalog

data, temporary data produced and consumed by workflow jobs,

and final output data products conserved and archived for usage by

seismic researchers.

Workflow catalog data—the Replica Catalog, Transformation

Catalog, and the Site Catalog—used for converting the abstract

workflow description into an executable workflow are kept in files

and SQLite databases on the workflow submission host.

CyberShake workflows produce large volumes of temporary

data. Most jobs in the workflow communicate through the

filesystem, so temporary data produced by one job is consumed

by a later job. The file-based interfaces between the codes are

used in a CyberShake workflow because they typically require
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FIGURE 6

Schematic showing the computational coordination between the workflow submission host, the remote system, and the relational database.

minimal modifications to the original scientific codes as they are

integrated into the workflow processing. Study 22.12 produced

about 2.5 PB of temporary data, most of which was the velocity

meshes and SGT files. Pegasus automatically adds data transfer jobs

at planning time to stage temporary data when necessary, a feature

especially important when CyberShake workflows are running on

distributed systems. This way, we can run the Stage 1 workflows

on a GPU-heavy system to produce the SGTs efficiently, and then

automatically stage them to a CPU-heavy system for Stages 2 and 3.

Users of CyberShake data are interested in both aggregate

hazard products, such as hazard curves and regional maps,

and also in earthquake-specific data products such as individual

seismograms and intensity measures. Thus, we archive these output

data products for researchers to access. CyberShake produces

four types of output files: seismograms, geometric mean intensity

measures, rotational intensity measures, and durations. Initially

CyberShake produced over two million small (300 B−100KB)

files per run, so we modified our codes so that output data for

earthquakes that share a magnitude and fault is aggregated into

the same file. This reduced the total number of files to ∼28,000

per site, or 19 million files for Study 22.12. To facilitate storage

of these files, the workflow tools automatically stage them back to

long-term SCEC disk storage at USC CARC using Globus for high-

speed transfer performance. We use a directory hierarchy to keep

the number of files per directory low and to avoid overwhelming

the filesystem. Since the intensity measure data is particularly

useful to our community, we select a subset (about 25%) of the

intensity measure data and store it in our relational database

to streamline access. This also enables fast generation of hazard

curves, disaggregations, hazard maps, and other aggregate data

products in Stage 4. The different types of data and their storage

locations are presented in Figure 7.

3.2.4 Complexity and scalability
The trend in scientific modeling is toward larger, more

complex models. Most projects start with a simple model, and as

sources of mismatch with observations are identified, additional

model complexity is added to more closely reproduce reality. As

computing resources expand, larger, more complex simulations

become computationally feasible. Thus, a challenge for scientific

workflows is to scale with the growing needs of modelers.

In CyberShake, we have seen this trend as well. Over the

lifetime of the CyberShake project, the number of sites, maximum

frequency, number of earthquakes, velocity model complexity, and

rupture complexity have all increased to produce more accurate

and useful PSHA estimates (Comparison of CyberShake Studies,

2024). Individual codes have gone through optimization cycles as

well. Serial pre- and post-processing codes which initially took a

few seconds to run became bottlenecks as the data and compute

scales increased, so we converted them to parallel versions. Our

main Stage 2 code, which synthesizes low-frequency seismograms,
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FIGURE 7

Schematic of the di�erent types of data utilized in CyberShake and their storage locations. The majority (97%) of the data requirements come from

the temporary files stored on the remote high performance filesystem.

was initially a series of serial jobs which wrote intermediate files

and then used them to produce one seismogram at a time, but as

CyberShake computational demands grew to match the scientific

goals, we converted this code to a manager-worker MPI code for

scalability. Both our main Stage 2 code and our Stage 3 codes were

modified so that instead of reading earthquake rupture forecast

files from disk, ruptures were generated in memory to reduce

filesystem load.

To support scientific and technical optimizations, we rely on

the scientific workflow stack to easily update codes with new

physics or new implementations and add additional codes when

necessary. For example, one of the steps in CyberShake is the

creation of a Cartesian velocity mesh, where each node in the mesh

contains earth material properties such as the speed of seismic

waves obtained from a CVM. In early CyberShake studies, the

mesh was created by querying a single velocity model. However,

as we expanded the geographic scope of CyberShake, no single

velocity model covered the entire simulation region, requiring the

use of multiple velocity models. However, this can lead to sharp,

artificial interfaces between models. To mitigate this, we created

a code to smooth the transitions between models to minimize

reflection and refraction artifacts, and added it to the abstract

workflow as a new job. The simplicity of adding new jobs to

the workflow has been vital in enabling CyberShake to improve.

Other modifications have included updates to the SGT code to

support GPUs, checks on output files to identify file system errors,

and the addition of Stage 3 to enable high-frequency stochastic

calculations. Problems that have occurred during previous large

workflow runs have motivated the development of testing scripts

that we integrate into the workflows at crucial stages in the

processing. These scripts detect errors such as empty files, correct

file sizes, or files with NaNs, and confirm the integrity of the

calculation before proceeding. These kinds of issues reflect what

we have generally found: although performance optimizations are

helpful for reducing computational cost, our biggest bottlenecks

come from the overall complexity of CyberShake. The flexibility of

scientific workflows enables CyberShake to continue to produce the

best available scientific results.

3.2.5 Reproducibility
As the scale and importance of computational research

continues to increase, there has been an increased focus on

reproducibility in scientific simulations. In the CyberShake context,

we use reproducibility to refer to the ability to use the CyberShake

codebase to rerun a simulation, using the same inputs, and

produce exactly the same outputs as in the previous run.

Reproducibility is vital for scientific results to be trusted and

for other researchers to evaluate the work. CyberShake provides

reproducibility through its use of open-source scientific codes,

official USGS earthquake rupture models, and published seismic

velocity models. This capability is also used to perform verification
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testing when CyberShake is migrated to a new system, as described

in Section 3.2.6.

To support reproducibility, we tag both the scientific and

supporting code in Github before beginning a production run.

This has also proved useful in determining if bugs have affected

past results. Pegasus wraps all executables in pegasus-kickstart, a

lightweight wrapper which captures the command-line parameters,

the job runtime, and the execution environment (Papadimitriou

and Deelman, 2021). Additional scientific parameters, such as the

velocity model, the rupture generator, and the maximum frequency

are tracked in the relational database, for transparency as to what

set of parameters have yielded a particular set of output data

products. Also, since CyberShake workflows are described in an

abstract form, other scientists can potentially run these workflows

in their environments, using Pegasus to map the workflows to their

own resources.

3.2.6 Verification and validation
Based on the intended use of CyberShake results in broad

impact seismic hazard applications, verification and validation are

essential elements of every CyberShake study. In this paper, we refer

to verification as the process of confirming code correctness, and

validation as the process of confirming that the model expressed by

the code reflects reality (Boehm, 1981).

Whenever we migrate CyberShake to new platforms, we go

through a process of verification to ensure that the codes are

producing comparable results on the new platform. Typically,

we follow the following procedure: (1) Run each code by hand

on a small problem, using batch scheduler submission scripts.

Compare the results of each code to a reference solution. (2)

Using Pegasus, run the small problem end-to-end and compare

the final outputs to reference solutions. (3) Using Pegasus, run

a production-sized problem end-to-end and compare the final

outputs to reference solutions. This approach enables us to identify

problems quickly and confirm that both the individual scientific

codes and the workflow tools are running correctly on a new

system. The Pegasus workflow tool streamlines this process, as the

separation of the abstract workflow from system-specific details

means that the same abstract workflow can be used on a new system

by just adding catalog entries. Pegasus also captures command-line

parameters, runtime metadata, and environment details at runtime

through executable wrappers, simplifying the process of tracking

down differences between two systems. Due to accumulated single-

precision floating-point errors and rounding operations in the

codes, we do not expect to exactly reproduce reference solutions.

Typically, we see differences of O(0.1%) when comparing results

generated on different systems, largely driven by differences in

earthquake rupture descriptions due to integer rounding.

An ongoing effort for CyberShake—and, indeed, all scientific

modeling codes—is to perform validation, to show that the

scientific codes are able to reproduce a natural phenomenon closely

enough to be a useful model. Validation results provide vital

evidence to end users that simulation results can be relied upon.

In CyberShake, we perform validation by simulating the ground

motions produced by historic earthquakes in our study region and

comparing the simulated ground motions against the observed

ground motions. We begin the validation process by creating a new

earthquake rupture forecast which contains moderate magnitude

(Mw 5.5–7.5) historic earthquakes. We then run workflows using

this ERF to simulate the historic earthquakes in CyberShake, and

compare the simulated results to observed seismograms. In general,

we have found that the 3D physics-based approach in CyberShake

generates synthetic seismograms that more closely match observed

seismograms from historic earthquakes in Southern California on

earthquake engineering goodness-of-fit measures than empirically-

defined GMM methods (Callaghan et al., 2022). Validation is an

ongoing process which must be repeated as new earthquakes occur,

new physics are integrated into the codes, and improved input

datasets are made available.

3.2.7 Resource provider policies
Computing clusters are large, complex systems, and each

system has its own policies regarding security, authentication,

network access, and scheduling. To reduce CyberShake time to

solution on diverse systems and optimize throughput, resource

provider policies must be considered when designing a scientific

workflow solution.

3.2.7.1 Scheduler policies

One challenge is that CyberShake consists of both short-

running (<1min) serial loosely-coupled high-throughput tasks

and long (>6 h) tightly-coupled parallel tasks. However, most

cluster schedulers have particular job profiles that they favor, based

on the goals of the cluster. For example, OLCF Summit favors large

jobs, giving a 5-day priority boost to jobs which use at least 20% of

the system, and a 15-day boost to jobs that use at least 50% (Summit

User Guide, 2023). To shape CyberShake workflow job size to best

fit a target system, we have developed two approaches. The first is to

use HTCondor glideins to bundle together multiple workflow jobs

into a single cluster scheduler job, referred to as a pilot or glidein

job. For example, on Summit a job requires at least 922 nodes to

trigger the 5-day priority boost. Since our largest SGT tasks only

required 67 nodes, we gathered the SGT tasks into groups of 14

(since 67 × 14 = 938 nodes, more than 20% of the system). This

was done by letting SGT tasks wait in the DAGMan queue until

at least 14 were ready to run. We then submitted a job to Summit

for 938 nodes. When this job started, it advertised 14 slots to the

HTCondor collector process, and DAGMan could then assign 14

SGT jobs to the available resources simultaneously. Bundling can

be done in time as well; for instance, if a task typically takes an

hour to run, a glidein can be submitted for 3 h, and three tasks

can be run sequentially. This also can improve throughput, since

often scheduler queue times are shorter for 1 job on H hours × N

nodes than for H jobs on 1 h × N nodes. To automate the process

of requesting glideins, we used a long-running daemon running on

the remote cluster, as described in Section 3.1.

To improve throughput, we bundled short serial tasks together

and ran them as a single job using pegasus-mpi-cluster (PMC)

(Rynge et al., 2012), a tool included in Pegasus WMS and initially

developed for use with CyberShake. PMC is a wrapper that

executes an executable workflow as a single MPI job. A manager

process digests the DAG file describing the workflow and assigns

workflow tasks to workers, honoring dependencies. When tasks

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1360720
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Callaghan et al. 10.3389/fhpcp.2024.1360720

complete, the workers ask the manager for new tasks until the

workflow finishes. This enables CyberShake to execute tens of

thousands of short-running tasks with high throughput, since the

task scheduling is handled by PMC over MPI rather than by

the batch scheduler, which is typically not configured to handle

large numbers of short-running jobs. Both HTCondor glideins

and PMC enable the CyberShake workflow system to create jobs

with runtime parameters optimized for the target systems, reducing

overall makespan.

3.2.7.2 Two-factor authentication

In the past 5 years, most clusters have moved to mandatory

two-factor authentication (2FA) when using SSH to access login

and compute nodes. One factor is the user’s password; the

other factor is a one-time token with a brief (<1min) lifetime,

typically delivered through a dedicated fob, an app, or a push

notification. Requiring 2FA for cluster logins is popular because

it offers additional security. However, 2FA complicates automated

job submission since it does not permit traditional automated

access approaches such as SSH keys. To enable automated job

submission—critical for long-running simulation campaigns like

CyberShake—on machines with 2FA, we have developed two

approaches. The first is rvGAHP, a push-based approach which is

an implementation of the HTCondor GAHP protocol (Callaghan

et al., 2017). This approach was initially developed by the Pegasus

team for use with CyberShake. A long-running daemon is started

up on the remote system and initiates an SSH connection from

the remote resource back to the workflow submission host. Once

this connection is established, Pegasus/HTCondor can use it to

submit ready-to-run jobs to the cluster scheduler. 2FA is not

needed because the connection was initiated from the cluster,

behind the 2FA. The rvGAHP approach is illustrated in Figure 8.

The second approach is to use HTCondor glideins, a pull-based

approach, that runs a process on the supercomputer to monitor the

CyberShake HTCondor task queue. The glidein daemon schedules

pilot processes on supercomputer nodes when there are workflow

tasks waiting. Again, since the connection is initiated from the

glidein on the cluster side, 2FA is not required. This arrangement

requires collaboration with the resource providers on both sides

of the process and may require whitelisting specific IP addresses

to allow the required network connections between specific

known trusted research computing systems. TheHTCondor glidein

approach is illustrated in Figure 9.

3.2.8 Personnel and resource constraints
To make continued progress performing our CyberShake

research we must deal with several characteristics of this large-

scale calculation. The CyberShake research process is divided into

three phases: preparation, computation, and analysis. We have

completed about 1 CyberShake study per year, on average, over the

last 15 years. While time in each phase varies, typical durations

are 8 months for preparation, 2 months for production run, and

2 months for analysis. The preparation phase must coincide with

the availability of the research scientists. The computation phase

must coincide with the availability of computing resources and the

computing staff. The analysis phase involves reporting to stake-

holders and potential users.

As with many groups, over time, we are faced with

accomplishing more work with fewer human resources. While the

scale of the CyberShake calculations has increased nearly six orders

of magnitude, the staff available to perform the calculations has

been reduced. Workflow tools, with their automation capability

and error recovery, are the essential technical elements that have

allowed us to increase the amount of computing work we can

perform with a smaller number of personnel.

The extended, multi-month makespan for our CyberShake

production exceeds what individual developers can manually track

and monitor. Our production runs are submitting jobs around the

clock for weeks, so automated monitoring tools are essential. In

most cases, detecting error conditions and alerting an operator is

sufficient; the monitoring tools do not need to fix the problems.

In addition to monitoring the DAGMan queue, we have developed

a login-protected web interface to obtain the status of individual

runs in the relational database. By accessing the website, developers

can monitor run status (“running,” “completed,” “error”) as well as

see what percentage of a study is complete and what the estimated

end date is. The website provides study-level status information

and provides optional email notifications to alert the workflow

operators when, for example, a proxy certificate is about to expire,

or a workflow completes. A typical error resolution process begins

with operators noticing an issue through the web interface. A

developer can then investigate the HTCondor error log for that

workflow, resolve the error, and put that workflow back into the

Pending Sites File for the automated system to restart.

We approach our CyberShake production runs as

collaborations with resource providers, such as OLCF and

USC CARC, and cyberinfrastructure providers, such as Pegasus

WMS and HTCondor. All the groups involved want the available

software and computer systems to produce useful research results.

To build a shared interest in a positive result, and increase the

chances of help when needed, we keep the resource providers

apprised of our computational plans, and give them a chance to

provide input and modifications. We recognize that the open-

science computing resources we use are shared resources, and we

respect the administrative policy decisions of the system operators.

Throughout the study we continue to communicate; sometimes

we request policy changes to improve throughput, and sometimes

they request throughput adjustments to reduce impact on other

users. We describe our results at conferences and in science articles

and we acknowledge resource providers and collaborators in our

presentations and publications.

3.3 CyberShake study 22.12 technical
results

Previous CyberShake studies have been run both on multiple

remote clusters and on a single remote cluster (Jordan et al.,

2018). For this study, we selected to use a single resource, OLCF

Summit, as our target remote execution system. Summit was

chosen for a number of reasons. It is operated by OLCF as an

open-science system, and significant computing time is awarded

to academic research groups through the ALCC and INCITE

allocation programs. The overall capability of the system, including
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FIGURE 8

The approach used by CyberShake for push-based job submission using rvGAHP (Callaghan et al., 2017). The blue region denotes the workflow task

list, and the purple squares show the separate computing processes involved: (1) The rvGAHP server on the remote system creates an SSH

connection to the workflow submission host and starts up the rvGAHP proxy. (2) When a task is ready to run, the local GridManager submits it

through the rvGAHP proxy. (3) The rvGAHP proxy sends the job over the SSH connection to a GAHP process on the remote resource. (4) The GAHP

process sends the tasks to the remote queue. (5) The task starts up and runs on a compute node. More details are available in Callaghan et al.2(017).

FIGURE 9

The approach used by CyberShake for pull-based job submission with HTCondor glideins. The blue region denotes the workflow task list, and the

purple squares show the separate computing processes involved. (1) The pilot job manager daemon on the remote system monitors the DAGMan

queue over SSH. (2) When a user-specified number of jobs are waiting, the pilot job manager daemon submits a pilot job to the remote queue. (3) A

pilot job that can run tasks on the nodes start on compute nodes. (4) Each pilot job calls back via SSH to the HTCondor collector and advertises its

available resources. (5) The HTCondor negotiator matches tasks with the advertised slots.

a large number (4,000+) of hybrid CPU and GPU compute

nodes and a large and fast filesystem, matched the resource

requirements for our planned CyberShake study. Its large number

of GPUs is a good match for our GPU wave propagation code,

and the large number of compute nodes enabled many of our

site-specific workflows to run simultaneously, reducing makespan.
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Additionally, though the CyberShake workflow system supports

execution across an arbitrary number of systems, performing stages

1, 2, and 3 on the same system reduces the amount of data

transferred over the network.

The Study 22.12 stress test ran from December 17, 2022 to

January 7, 2023, and ran all four stages of the workflows for 20

(6%) of the sites. After all the stress test workflows completed,

we examined the results and identified and fixed several issues,

before we began the rest of the Study. We identified selected

parameters that needed to be propagated between workflow jobs.

We found problems that prevented some glidein jobs from starting

promptly, and a problem where bundling was set up incorrectly

for certain tasks. We found that we needed to correct runtime and

memory requirements for some of our codes. Once these issues

were addressed, we began our CyberShake Study 22.12 production

run. We have consistently found that running a stress test before

beginning the full study enables us to find and fix problems more

easily and improves our overall time to solution.

The production run for CyberShake Study 22.12 ran from

January 17, 2023 to April 4, 2023. We chose to run the four

workflow stages as described in Section 2.2 sequentially. This was

to simplify management of the study and utilize compute time

on Summit strategically, in case the computational cost of the

study meant that a second system would be needed. It was our

highest priority to finish Stage 1 (SGT) workflows due to their GPU

jobs; Summit has over 18,000 GPUs. Our second priority was to

finish all Stage 2 workflows, to avoid having to migrate the SGT

intermediate data files to a separate filesystem.We finished all Stage

1 (SGT) workflows on January 26, the Stage 2+4 (post-processing

and data products) workflows on February 22, Stage 3 (broadband)

on March 6, and the remaining Stage 4 (data products) workflows

on April 4. Thankfully, we were able to complete the entire study in

the available allocation on Summit.

We have found that the extreme scale of the CyberShake

workflows often leads to unforeseen problems during production

runs. In Study 22.12, we ran out of disk space on our relational

database, so the last month was spent clearing additional space

and running the remaining Stage 4 workflows. Periodically the

Globus proxy would expire; this was fixed by easily renewing

it. Occasionally the long-running daemons to support glideins

and rvGAHP jobs would terminate due to a node restart; these

were simple to restart. Additionally, we encountered a number of

issues on Summit in which files were not copied or written to the

filesystem correctly and parts of some of the files were missing,

even though the copy command or write call had a successful return

code. We configured Globus to include checksum integrity checks

for all transfers, and we added a post-transfer file checking stage

that signals an error if it detects any empty files. We mitigated the

data transfer issues by manually modifying workflows to resume at

either the data generation or data copy job. We then automatically

restarted the workflows via the Pending Site File. Problems like this

illustrate the importance of checkpointing and restart capabilities

in CyberShake workflows.

Overall, Study 22.12 required 772,000 node-hours on Summit,

equivalent to using the entire system [#5 on the Top500 list

(Top500, 2023)] for a week. The makespan was 1,829 h, yielding

an average of 442 nodes (9%) usage on Summit during the entire

study. Our workflow system executed jobs on a peak of 3,382 nodes

(73% of Summit) without using a reservation. We were able to

obtain this high level of system utilization by bundling our SGT jobs

and submitting jobs to Summit with node counts large enough to

obtain queue priority. We managed about 2.5 PB of data, of which

74 TB was output data products. The output data was comprised

of about 19 million files, which were staged back to USC CARC

for long-term storage. This included 420 million two-component

seismograms, and 83 billion intensity measures.

3.4 CyberShake study 22.12 scientific
results

This study advanced the state-of-the-art in physics-based PSHA

for Southern California. Scientific advancements in this model

included (1) integration of the low-frequency deterministic results

generated in Stage 2 with the high-frequency stochastic results

generated in Stage 3 to produce a broadband CyberShake hazard

model up to 50Hz; (2) increased sampling of hypocentral, slip, and

rupture velocity variability; (3) updates to the rupture generator

used to produce the suite of earthquakes from the earthquake

rupture forecast; and (4) improvements to the 3D velocity model

to reduce the near-surface velocities outside of the sedimentary

basins (Callaghan et al., 2023). While previous CyberShake studies

have been used in broad impact public seismic hazard products,

including the 2023 National Seismic Hazard Model (NSHM)

(Field et al., 2023), the results from CyberShake Study 22.12 are

provisional and under scientific review. More details about the

data from the study are given in the Data Availability Statement.

Multiple seismological, civil engineering, and risk management

research groups have retrieved selected data products from the

CyberShake Study 22.12 model to further their research (e.g., Lee

et al., 2023), using the results to investigate the impact of rupture

directivity on ground motion models, seismic hazard and risk

assessments of distributed water and transportation infrastructure,

tall building response to strong ground motions, and basin effects

on ground motions. We anticipate that as the CyberShake Study

22.12 results are fully validated, they will be used for a variety

of broad impact seismic hazard and risk assessment purposes like

previous CyberShake studies.

Figure 10 presents a sample hazard map produced from Study

22.12.

The CyberShake workflow framework executed 31,897 jobs, of

which 19,184 were remote, in 988 workflows. Individual workflow

makespans varied from 2.5 h to 30 days. We used the task bundling

techniques described in Section 3.2.7 to bundle 27 million short-

running serial tasks in the broadband stage into 349 longer jobs.

On average, each remote job waited for 5.5 h before executing,

reflecting queue times on Summit.

4 Discussion

We have highlighted a series of technical challenges

encountered by the CyberShake collaboration, and solutions

engineered with the help of extreme-scale scientific workflow

tools. We anticipate that as the CyberShake project continues, we

will encounter new challenges driven by scientific demands. For
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FIGURE 10

Hazard map for southern California generated with Study 22.12, showing the ground motion expected with a 2% chance of exceedance in 50 years.

Units are g (acceleration due to gravity). Warm colors indicate higher hazard.

example, if we increase the frequency of the wave propagation

simulations, we may need to more tightly couple our velocity

mesh and wave propagation codes to reduce filesystem load. We

will continue to evolve the workflow solution presented here to

accomplish our science goals.

Our CyberShake studies have provided impactful scientific

and technical developments over 15 years. CyberShake results

have informed the USGS National Seismic Hazard Model Project

(Moschetti et al., 2017); the Building Seismic Safety Council and

the American Society of Civil Engineers for use in building designs

(Crouse et al., 2018); and the City of Los Angeles for adoption in tall

building design regulations (Crouse and Jordan, 2016). CyberShake

simulations have been also used to train the Earthquake Early

Warning system developed for California (Böse et al., 2014).

The computing requirements CyberShake are already

significant and are likely to increase as future CyberShake PSHA

hazard models are developed with higher resolution earth models

and more realistic physics. Our workflow tools help to automate

complex calculations, and extensive automation is essential for

dealing with extreme scale computing without extreme scale

personnel. The workflow solutions described here have helped

SCEC advance leading-edge seismic hazard analysis from terascale

to exascale—six orders of magnitude—and through more than four

generations of supercomputers, while accommodating increasing

computational and data capabilities and requiring fewer people

to perform the simulations. There is a good match between the

computational needs of CyberShake, the capabilities of Pegasus

and HTCondor workflow tools, and the availability of open-science

supercomputing resources through the NSF and DOE. Our

workflow tools also support computational reproducibility by

providing definition, tracking, and logging of complex computing

essential for scientific transparency and reproducibility.
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CyberShake shows how extreme-scale scientific workflows can

utilize open-science supercomputers to produce transformative,

simulation-based, seismic hazard models.
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