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Neural architecture search for
adversarial robustness via
learnable pruning

Yize Li*, Pu Zhao, Ruyi Ding, Tong Zhou, Yunsi Fei, Xiaolin Xu

and Xue Lin*

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA,

United States

The convincing performances of deep neural networks (DNNs) can be degraded

tremendously under malicious samples, known as adversarial examples. Besides,

with the widespread edge platforms, it is essential to reduce the DNN model

size for e�cient deployment on resource-limited edge devices. To achieve

both adversarial robustness and model sparsity, we propose a robustness-

aware search framework, an Adversarial Neural Architecture Search by the

Pruning policy (ANAS-P). The layer-wise width is searched automatically

via the binary convolutional mask, titled Depth-wise Di�erentiable Binary

Convolutional indicator (D2BC). By conducting comprehensive experiments

on three classification data sets (CIFAR-10, CIFAR-100, and Tiny-ImageNet)

utilizing two adversarial losses TRADES (TRadeo�-inspired Adversarial DEfense

via Surrogate-loss minimization) and MART (Misclassification Aware adveRsarial

Training), we empirically demonstrate the e�ectiveness of ANAS in terms of

clean accuracy and adversarial robust accuracy across various sparsity levels.

Our proposed approach, ANAS-P, outperforms previous representative methods,

especially in high-sparsity settings, with significant improvements.

KEYWORDS

e�cient AI, neural network sparsity, neural architecture search, adversarial robustness,

adversarial pruning

1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable progress in various

tasks, including image classification (Yu et al., 2022; Xin et al., 2024), object detection (Li

et al., 2022; Yang et al., 2022), and languagemodeling (Vaswani et al., 2017; Dao et al., 2023).

However, despite their achievements, several challenges may limit their wide applications.

On one hand, reliability and security concerns restrict the extensive real-world deployment

of DNNs. For instance, adversaries can introduce imperceptible perturbations to benign

inputs, named adversarial examples (Luo et al., 2018; Xiao et al., 2018; Bai et al., 2023),

resulting in extremely bad inference performance. To enhance the dependability and safety

of DNNs, research on trustworthy artificial intelligence has been actively investigated,

where considerable efforts are devoted to robustifying DNNs (Apruzzese et al., 2019;

Boopathy et al., 2020; Tramer et al., 2020) that can effectively defend against adversarial

examples (Sun et al., 2022; Chen et al., 2023). On the other hand, DNNs may suffer from

substantial over-parameterization with enormous computational overhead and massive

memory requirements (Li et al., 2020; Yuan et al., 2021a).
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To achieve high accuracy performance, the models typically

cost a huge number of parameters, ranging from millions to

billions (Mahajan et al., 2018; Yuan L. et al., 2021). Thus, they

heavily rely on powerful Graphics Processing Units (GPUs) for

training and can hardly deploy on resource-limited edge devices,

such as mobile phones. To deal with this problem, many research

efforts are devoted to exploring the potential of compact and

sparse networks (Liu et al., 2021; Gong et al., 2022b; You et al.,

2022), aiming for faster inference speed and smaller storage (Yuan

et al., 2021b; Wu et al., 2022) compared to dense models without

compromising the accuracy performance.

Several methods aim to obtain sparse and robust models from

the pruning perspective, such as alternating direction method of

multipliers (ADMM; Ye et al., 2019), Dynamic Network Rewiring

(DNR; Kundu et al., 2021), HYDRA (Ye et al., 2019), and

Masking Adversarial Damage (MAD; Lee et al., 2022). However,

the previously mentioned methods either depend on carefully

crafted scoring metrics or exhibit poor generalization at high

sparsity. The most relevant work is ANP-VS (Madaan et al., 2020),

which employs a regularized loss for pruning dense networks.

Nevertheless, their pruning approach also performs poorly with

high pruning ratios.

To simplify the training and pruning pipelines with enhanced

robustness-sparsity trade-offs for DNNs, we propose a channel

pruning and width search framework, Adversarial Neural

Architecture Search by the Pruning policy (ANAS-P), for

identifying the sparsity mask and improving the adversarial

robustness. ANAS-P consists of three training stages. The first stage

is to conduct common adversarial training to prepare a pretrained

robust model. The, in the second step, the pruning policy is

learned by minimizing the adversarial loss with the constraint for

model computations measured by multiply-accumulate operations

(MACs). Specifically, the binary convolutional (CONV) mask,

titled Depth-wise Differentiable Binary Convolutional indicator

(D2BC), is attached after each CONV layer to select the appropriate

number of CONV channels in the DNN. Finally, the pruned (or

searched) network is fine-tuned via the adversarial loss used in the

first step.

Compared with traditional adversarial pruning methods with

manually designed metrics to sort the significance of the

weights and determine the corresponding pruning policy, our

method can automatically learn the weight importance and the

pruning policy based on the trainable masks to achieve better

adversarial robustness by the adversarial model itself, which is

more straightforward and efficient. Furthermore, in contrast to

adversarial Neural Architecture Search (NAS) approaches (Guo

et al., 2020; Devaguptapu et al., 2021; Cheng et al., 2023) with

tremendous computing costs for large search space, our ANAS-

P is instead dedicated to updating the model parameters and

sparsity masks simultaneously without significant computation and

memory costs.

We conduct numerous experiments to validate the effectiveness
of ANAS-P on CIFAR-10, CIFAR-100 and Tiny-ImageNet data sets.
The proposed ANAS-P outperforms previous adversarial model

compression approaches, especially at high sparsity levels. For
example, ANAS-P only has a minor decrease of 0.75% in clean

accuracy and a reduction of 4.58% in robust accuracy for VGG-16

under AutoAttack at the sparsity of 99% on CIFAR-10, while the

baselines suffer from more significant robust accuracy loss (larger

than 18.4%).

To summarize, the contributions of our work are the

following:

- We introduce an adversarial pruning framework to search for

the appropriate per-layer width with the D2BC mask that is

learnable with model weights directly.

- The proposed ANAS-P can train the model weights and the

sparsity masks simultaneously, thus greatly saving on the

computational costs for the search.

- Through extensive experiments, we empirically validate

ANAS-P in terms of clean accuracy and robust accuracy

against various adversarial attacks for different sparsity levels.

2 Related work

2.1 Adversarial attacks and adversarial
training

In general, adversarial attacks (Goodfellow et al., 2015; Carlini

and Wagner, 2017; Madry et al., 2018; Croce and Hein, 2020a;

Sriramanan et al., 2020) introduce imperceptible perturbations into

the clean inputs to generate adversarial examples, deceiving the

DNN’s decision-making. Specifically, Fast Gradient Sign Method

(Goodfellow et al., 2015) attacks the model with one-step gradient

descent, while Projected Gradient Descent (PGD; Madry et al.,

2018), and Carlini and Wagner (2017) achieve stronger attack

performance with iterative multistep gradient descent. Aside

from their detrimental effects, adversarial examples are frequently

utilized for model robustness evaluation, as seen in AutoAttack

(AA; Croce and Hein, 2020b), which uses ensembles’ multiple

attack strategies to conduct a fair and dependable validation of

model adversarial robustness.

Although many works (Xu et al., 2019; Chen et al., 2020;

Freitas et al., 2020; Zhou et al., 2021; Gong et al., 2022a) are

committed to investigating and addressing the fragility of DNNs,

adversarial training is one of the most effective methods. It

trains DNNs on adversarial examples by solving the min-max

optimization. PGD-based adversarial training (Madry et al., 2018)

yields strong defensive impact (Madry et al., 2018), but the

clean accuracy drops (Su et al., 2018; Tsipras et al., 2018). In

pursuit of enhancing the trade-off between clean accuracy and

adversarial robustness, TRadeoff-inspired Adversarial DEfnese via

Surrogate-loss minimization (TRADES; Zhang et al., 2019) and

Misclassification Aware adveRsarial Training (MART; Wang et al.,

2020) incorporate both the natural error term and the robustness

regularization term in their training losses. Moreover, efficient

adversarial training (Shafahi et al., 2019; Zhang et al., 2020, 2022;

Chen et al., 2022; Li et al., 2023) accelerates the entire training

significantly.

2.2 Adversarial model pruning

Adversarial robustness has been studied in the field of

compressed DNNs recently. To cope with the issue that adversarial
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robustness is at odds with high model sparsity (Guo et al.,

2018), several works have focused on both model sparsity and

robustness. ADMM (Ye et al., 2019) conducts adversarial training

and weight pruning jointly. From the adversarial latent feature

level, vulnerability suppression (Madaan et al., 2020) is proposed to

prune the model by a novel regularized training loss. Furthermore,

the dynamic pruning approach is adopted during adversarial

training via weight regrowth (Kundu et al., 2021). However, all

these approaches either generalize poorly to ultra-sparse networks

or are limited to one adversarial training objective. To achieve end-

to-end robust learning, adversarial sparse training is proposed via

Bayesian connectivity sampling (Özdenizci and Legenstein, 2021).

Another category considers pruning and retraining

adversarially pretrained DNNs under the heuristic weight

magnitude criterion. HYDRA (Sehwag et al., 2020) attains model

compression from the robustness-aware importance score. MAD

(Lee et al., 2022) determines the pruning score via the second-

order information of adversarial loss. While their approaches are

compatible with diverse adversarial losses, the pruning metric

requires elaborate design. What is more, the assumption that

weights with smaller magnitudes are less crucial for robustness

may not always hold true. Following the assumption that pruning

smaller weights may lead to inferior robustness performance.

Besides, early pruning of small weights prevents them from

contributing to robustness and accuracy later. Consequently, layers

at the initial stage are continuously pruned and induce irreversible

pruning and overexploitation. In contrast, our method with the

D2BC mask layer is independent of the weight magnitudes and

allows direct binary training.

3 Methodology

In this section, we present our proposed approach, ANAS-

P, followed by detailed discussions on how to design the model

pruning or channel search effectively.

3.1 Width search with D2BC layer

To achieve both sparsity and robustness, the width search is

executed within each CONV layer to select the number of CONV

channels autonomously. Precisely, we attach a D2BC indicator

layer, which is a depth-wise 1 × 1 CONV layer, after each CONV

layer to function as the per-layer trainable mask in the adversarial

setting. The formulation is as follows:

al = ml ⊙ (wl ⊙ al−1),

where ⊙ stands for the convolution operation. wl ∈ Ro×i×k×k

represents the weight parameters with o output channels, i input

channels, and kernel size k × k in the lth CONV layer. al ∈

Rbs×o×s×s′ denotes the output features of lth layer (with the D2BC

mask layer) with o channels, s × s′ feature size and bs batch sizes.

ml ∈ Ro×1×1×1 is the weights of the trainable D2BC mask.

Each element of ml serves as the channel pruning indicator for

the homologous output channel of wl ⊙ al−1. The pruning policy

is determined by the magnitude of the elements ml. To be more

specific, the elements of ml with smaller values signify the pruning

of channels, whereas larger elements indicate the preservation

of the corresponding channels. Subsequently, channel pruning is

converted to a binarization problem via a threshold as shown:

bl =

{

1,ml > thres

0,ml ≤ thres
(element-wise),

where bl ∈ {0, 1}o×1×1×1 is the element-wise binarized ml, which

is initialized randomly between 0 and 1. And the thres is manually

set to 0.5 in our case.

However, during the training phase, the binary mask with the

non-differentiable binarization operation for each CONV layer

leads to challenges for back propagation. In quantization tasks, the

straight-through estimator (STE) approach (Bengio et al., 2013)

was initially proposed to circumvent non-differentiable problems

(Yin et al., 2019; Spallanzani et al., 2022). Thus, to address the

aforementioned issue, we incorporate the STE (Bengio et al., 2013)

to directly pass the gradients through the binarization, as follows:

∂L

∂ml
=

∂L

∂bl
.

By leveraging binarization and the STE method, we can design a

trainable mask that effectively indicates whether the corresponding

channel should be pruned or preserved. We emphasize the

following advantages by incorporating the STE with the D2BC

layers in the pruning task:

• Our approach simplifies the mask generation and training

process compared to other more complex techniques like

DifferentiableMarkov Channel Pruning (DMCP) by aMarkov

process (Guo et al., 2020) or softmax function in Differentiable

Network Channel Pruning (DNCP; Zheng et al., 2022).

Instead, our binary masks are simply generated through a

threshold and trained directly via the STE.

• It can facilitate the concurrent training of the sparsity mask

and model parameters to enable the end-to-end channel

pruning, thus saving search efforts compared with previous

adversarial NAS methods (Guo et al., 2020; Mok et al., 2021;

Cheng et al., 2023), which train multiple epochs for each

architecture candidate.

• In contrast to magnitude-based adversarial pruning (Sehwag

et al., 2020; Lee et al., 2022), our approach decouples the

trainable masks from the original model weights, thereby

overcoming the aforementioned shortcomings of magnitude-

based pruning. Instead of obtaining the trade-off between the

accuracy and sparsity with suboptimal solutions in previous

magnitude-based pruning, the model weights in our method

focus on improving the accuracy while the pruning function is

handled by the sparsity mask.

• Pruned channels are allowed to recover freely and contribute

to accuracy dynamically. During training, if the D2BC mask

layer identifies a channel for pruning, the corresponding

weights are not updated. Consequently, the information

in pruned channels is retained, preventing the suboptimal

gradient updating by zero elements in D2BC layers. In

contrast, other pruning methods (Gui et al., 2019; Rakin et al.,

2019; Ye et al., 2019; Kaur et al., 2022) corrupt weights in

pruned layers by forcing them toward zero values. Later, if
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the mask is updated from 0 to 1, the corresponding pruned

channel can be recovered to contribute to the accuracy again.

3.2 Adversarial training loss

Adversarial training (Madry et al., 2018) promotes model

robustness against adversarial examples under perturbative inputs

by solving the min–max optimization as follows:

min
θ

1

|D|

∑

(x,y)∈D

[

max
δ∈△

L(f (θ; x+ δ), y)

]

,

where θ denotes the model parameter, x and y are the data

point and label from the training data set D; δ means adversarial

perturbations injected into x under the constraint with the constant

strength ǫ, that is, △ : = {‖δ‖∞ ≤ ǫ}; and L is the training

loss. During adversarial training, the optimization first achieves the

inner maximization for adversarial attacks, followed by minimizing

the outer training error with respect to the model parameters θ .

The conventional procedure for generating adversarial examples

involves multi-iteration to modify the more formidable adversary,

for example:

xt+1 = Proj△(x
t + α sign(∇xtL(θ; x

t , y))),

where the projection utilizes the sign of gradients at step t with step

size α.

In order to reach the trade-off between natural and robust

errors, TRADES (Zhang et al., 2019) combines the natural loss

with the regularization term for both natural examples and the

corresponding adversarial ones by

min
f

E{L(f (θ; x), y)+
1

λ
max

x′∈B(x,ǫ)
L(f (θ; x), f (θ; x′))}, (1)

where λ is a coefficient controlling the relative importance

of two terms and B(x, ǫ) indicates a neighborhood of

x : x′ ∈ X : |x′ − x| ≤ ǫ.

Furthermore, MART (Wang et al., 2020) highlights the

influence of misclassified examples, as shown:

min
f

E{L(f (θ; x), y)+
1

λ
(1− fy(θ; x)) max

x′∈B(x,ǫ)
L(f (θ; x), f (θ; x′))},

(2)

where fy(θ; x) depends on ground truth label y.

3.3 Adversarial pruning loss

Equipped with the D2BC layer, the network parameters and
the pruning masks are trained via gradient descent optimizers
simultaneously. The overall training objective is to achieve
robustness and model sparsity as follows:

LMAC = |
∑

l

ol × sl × s′l × il × kl × kl − T |2,

L = LADV + γLMAC , (3)

where ol/il indicates output/input channels with feature size sl × s′
l

and kernel size kl × kl in the lth CONV layer. LMAC is l2-norm

between the current model’s Multiply-Accumulate Operations

(MACs) and target MACs T that is constrained by global CONV

sparsity (i.e., [50%, 90%, 99%]). LADV derives from in Equations 1

or 2, and γ controls the relative strength of two losses.

3.4 Pruned Layer Compression

After the model pruning, for the deployment of the pruned

model, the subsequent procedure involves converting the large

sparse models into compact dense models by compressing the

layers based on their sparsity masks, as formulated in the following:

al = bo×1×1×1
l

⊙ (wo×i×k×k
l

⊙ al−1)

= ({0}o0×1×1×1 ⊕ {1}o1×1×1×1)⊙ (wo×i×k×k
l

⊙ al−1)

= ({0}o0×1×1×1 · w
o0×i×k×k
l

⊙ al−1)

⊕ ({1}o1×1×1×1 · w
o1×i×k×k
l

⊙ al−1)

= w
o1×i×k×k
l

⊙ al−1,

where o0 and o1 refer to the number of 0 and 1 in the mask,

respectively, (o0 + o1 = o), and ⊕ implies the channel-wise

concatenated operation. With this procedure, the pruned channels

are effectively removed from the layers. Thus, the overhead

is efficiently reduced by avoiding the computations of pruned

channels.

3.5 Framework with D2BC mask layer

In the framework, we perform a per-layer width architecture

search to achieve both model sparsity and robustness. The

search space contains the width for each CONV layer in the

network, which is too large to be explored with a heuristic

method. Therefore, we propose the per-layer width search as

shown in Figure 1, where the models (i.e., VGG-16 and ResNet18)

are composed of D2BC mask layers, shown in Figure 2, and

pruning is determined automatically by the D2BC parameters. The

overall three-stage training is summarized in Figure 3, including

adversarial pretraining, adversarial neural architecture search by

pruning, and adversarial fine-tuning.

4 Experiments

4.1 Experimental setup

4.1.1 Data sets and models
To demonstrate the effectiveness and generality of the proposed

ANAS-P, we consider two networks: ResNet-18 (He et al., 2016) and

VGG-16 (Simonyan and Zisserman, 2015) on three standard data

sets in various scales, including CIFAR-10, CIFAR-100 (Krizhevsky

and Hinton, 2009), and TinyImageNet-200 (Deng et al., 2009).

4.1.2 Adversarial loss and pruning
In our experiments, we utilize two representative adversarial

training losses including TRADES (Zhang et al., 2019) and

MART (Wang et al., 2020) in three training stages, consisting
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FIGURE 1

Architecture of Depth-wise Di�erentiable Binary Convolutional (D2BC) indicator in the per-layer width search.

FIGURE 2

Schematic view of Depth-wise Di�erentiable Binary Convolutional (D2BC) mask in ResNet-18 and VGG-16. (A) The binary mask in ResNet-18 is

applied after the residual block, enabling the simultaneous removal of both channels from the convolutional (CONV) output and channels from the

identity path. (B) Instead, the binary layer in VGG-16 is immediately attached after each CONV layer in VGG-16.

of adversarial pretraining, adversarial pruning, and fine-tuning.

For the pretraining, pruning, and fine-tuning phases, either

Equations 1 or 2 is leveraged as the adversarial loss function

to learn robust representations, while Equation 3 is used as the

pruning loss for the adversarial pruning stage. Our ANAS-P

investigates different model sparsity ratios from small to large,

including [50%, 90%, 99%] to optimize the D2BC masks. Note that

all pruning approaches in this work only prune CONV layers.

4.1.3 Baselines
We compare ANAS-P with robust learning without sparsity,

such as TRADES (Zhang et al., 2019) and MART (Wang et al.,

2020; i.e., the dense adversarial training). Additionally, we take into

account the adversarial pruning baselines, including ADMM (Ye

et al., 2019) and HYDRA (Sehwag et al., 2020), which are consistent

with our empirical settings.

4.1.4 Evaluation metrics
We evaluate the performance of models using the following

metrics: clean accuracy, which represents the percentage of

correctly classified benign examples, and adversarial robust

accuracy, which denotes the percentage of correctly classified

adversarial examples perturbed by the corresponding adversarial

attacks. To assess the truly reliable adversarial robustness, we use

a PGD attack (Madry et al., 2018; PGD-50-10) with the standard

magnitude (ǫ = 8/255), 50 steps as well as 10 restarts at the step-

size α = 2/255 under l∞-norm. Moreover, Auto-PGD (A-PGD;

Croce and Hein, 2020b) with momentum parameter ρ = 0.75 and

AA (Croce and Hein, 2020b) are introduced to evaluate diverse

aspects of model robustness.

4.1.5 Training details
The entire training consists of three stages: adversarial

pretraining with 100 epochs, adversarial pruning via the D2BC

mask with 20 epochs, and adversarial fine-tuning with 40 epochs.

For the adversarial pretraining phase, we follow the same setting

as TRADES (Zhang et al., 2019) and MART (Wang et al., 2020).

Afterward, the model is initialized with the parameters of the

pretrained backbone obtained in the first phase, and the coefficient

γ in the overall training loss in Equation 3 is set to 0.01. SGD

optimizers are utilized for both ANAS-P and dense adversarial

training, with momentum set to 0.9, and weight decay of 2× 10−4

and 3.5× 10−3 in TRADES (Zhang et al., 2019) and MART (Wang

et al., 2020), respectively. The learning rate is initialized as 1× 10−4

and reduced by half at the 10 and 15 epochs during the searching

phase and at the 30 and 35 epochs during adversarial fine-tuning.
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FIGURE 3

The training pipeline overview, which includes three stages: (1) adversarial pretraining, (2) adversarial neural architecture search by the Depth-wise

Di�erentiable Binary Convolutional pruning mask, and (3) adversarial fine-tuning.

TABLE 1 Comparisons with dense adversarial training methods and robustness-ware pruning approaches with compression ratio [50%,90%,99%] on

CIFAR-10 trained with VGG-16, ResNet-18.

CIFAR-10

Model Sparsity Method

Adversarial loss

TRADES MART

Clean PGD APGD AA Clean PGD APGD AA

VGG-16

0% Dense 78.26 43.91 43.67 41.23 77.38 50.04 49.28 44.36

50%

ADMM 76.31 41.20 40.32 38.80 75.60 41.87 41.12 37.31

HYDRA 79.37 41.58 40.93 39.36 78.57 42.54 41.79 38.28

ANAS-P 77.91 42.47 42.19 39.41 78.26 45.60 44.91 40.42

90%

ADMM 73.05 39.25 38.97 35.05 71.96 40.08 42.09 36.25

HYDRA 77.53 42.42 41.89 39.63 76.78 44.06 43.80 38.09

ANAS-P 77.91 42.50 42.26 39.42 78.17 45.69 44.88 40.37

99%

ADMM 48.17 20.02 19.70 15.16 41.38 21.24 20.09 18.45

HYDRA 67.64 37.73 37.26 33.64 57.76 39.15 38.75 30.84

ANAS-P 77.67 42.35 42.10 39.34 76.79 43.97 45.01 41.58

ResNet-18

0% Dense 82.62 51.21 51.00 48.45 81.50 52.91 52.42 47.40

50%

ADMM 78.11 45.42 45.29 41.90 73.68 47.31 46.66 40.69

HYDRA 80.04 47.58 47.21 44.99 81.78 43.30 42.95 40.06

ANAS-P 82.42 51.53 51.44 48.82 82.72 50.93 49.86 45.21

90%

ADMM 74.34 43.23 43.11 39.99 72.53 43.71 43.32 39.03

HYDRA 79.48 47.87 47.02 44.70 79.11 45.27 44.85 40.19

ANAS-P 82.31 51.49 51.32 48.67 82.65 50.20 49.92 45.87

99%

ADMM 55.85 29.32 29.00 25.32 56.90 37.06 36.61 30.17

HYDRA 73.48 47.87 46.94 44.70 69.50 45.01 44.52 39.96

ANAS-P 81.24 50.89 50.32 48.23 81.69 49.64 49.30 44.86

The accuracy in bold presents the best performance among three sparse pruning techniques. Note that sparsity is only confined on convolutional layers.

TRADES, TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization; MART, Misclassification Aware adveRsarial Training; PGD, Projected Gradient Descent; AA, AutoAttack;

ADMM, alternating direction method of multipliers; ANAS-P, Adversarial Neural Architecture Search by Pruning.

4.2 Experimental results

4.2.1 CIFAR-10/100
We consider both dense adversarial training (Zhang et al., 2019;

Wang et al., 2020) and adversarial pruning baselines (Ye et al.,

2019; Sehwag et al., 2020) to investigate how sparsity influences

the model’s clean accuracy and adversarial robust accuracy. For

a fair comparison, all model configurations are identical and the

compression is dedicated to CONV layers. As shown in Table 1, we

report the performance of the VGG-16 or ResNet-18 model trained

with TRADES (Zhang et al., 2019) or MART (Wang et al., 2020) on

CIFAR-10 at three pruning ratios.

As observed, from low to high sparsity levels, all three

adversarial pruning methods witness the degradation in benign

accuracy and adversarial robust accuracy compared with two dense

robust learning strategies. With respect to the VGG-16 model,

the proposed ANAS-P outperforms ADMM and HYDRA under

two adversarial objectives (TRADES and MART) in terms of the

adversarial robust accuracy under three different adversarial attacks

(PGD, A-PGD, and AA). Specifically, we find that ADMM and
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TABLE 2 Comparisions on CIFAR-100 with sparsity [50%,90%,99%].

CIFAR-100

Model Sparsity Method

Adversarial loss

TRADES MART

Clean PGD APGD AA Clean PGD APGD AA

VGG-16

0% Dense 50.98 22.73 22.45 19.56 47.58 22.71 22.27 18.39

50%

ADMM 42.70 19.02 18.84 15.39 40.06 19.93 19.61 15.95

HYDRA 50.38 22.06 21.90 19.43 50.22 21.50 21.08 18.97

ANAS-P 47.42 22.74 22.54 18.71 48.09 21.92 20.29 16.90

90%

ADMM 40.41 17.30 17.21 11.66 39.09 17.05 16.87 12.54

HYDRA 49.18 21.85 21.56 18.58 47.70 21.14 20.83 18.19

ANAS-P 47.20 22.34 22.04 18.61 46.09 20.92 20.33 16.42

99%

ADMM 29.37 10.21 9.75 5.84 27.49 9.81 9.36 4.98

HYDRA 36.29 16.57 16.29 12.82 36.25 17.21 16.91 13.10

ANAS-P 46.45 21.68 21.58 17.67 45.22 19.89 19.25 17.32

ResNet-18

0% Dense 55.94 27.54 27.33 23.56 54.93 30.52 30.21 25.27

50%

ADMM 52.02 23.50 23.32 18.75 45.76 25.35 25.02 19.86

HYDRA 51.33 24.70 24.43 21.03 52.60 23.20 22.61 21.74

ANAS-P 63.48 35.21 35.07 31.13 55.61 29.52 29.21 24.07

90%

ADMM 46.82 18.60 18.48 14.15 42.79 24.05 23.71 19.10

HYDRA 52.16 24.65 24.23 20.75 52.61 25.39 25.01 21.33

ANAS-P 61.37 31.20 31.01 28.09 52.54 27.46 27.23 23.96

99%

ADMM 31.66 12.62 12.37 9.42 27.21 15.87 15.47 12.00

HYDRA 44.95 20.27 19.96 15.87 45.13 20.29 19.99 16.17

ANAS-P 60.49 30.21 29.96 26.16 50.31 25.52 25.04 21.79

The descriptions provided in this table follow those in Table 1.

TRADES, TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization; MART, Misclassification Aware adveRsarial Training; PGD, Projected Gradient Descent; AA, AutoAttack;

ADMM, alternating direction method of multipliers; ANAS-P, Adversarial Neural Architecture Search by Pruning.

TABLE 3 Comparisons on CIFAR-100 by ResNet-18 and VGG-16 under TRADES with compression ratio 90%.

CIFAR-100

Model Sparsity Method

Adversarial loss

TRADES

Clean PGD APGD AA

ResNet-18
0% Dense 53.61± 0.87 26.14± 0.29 25.95± 0.25 21.08± 0.42

90% ANAS-P 54.92± 0.91 26.30± 0.36 26.12± 0.31 22.26± 0.40

VGG-16
0% Dense 50.87± 0.93 21.17± 0.41 20.84± 0.65 18.78± 0.79

90% ANAS-P 46.52± 0.99 19.98± 0.47 19.69± 0.59 17.61± 0.67

We apply fivefold cross-validation to run the experiments by five times.

TRADES, TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization; PGD, Projected Gradient Descent; APGD; AA, AutoAttack; ANAS-P, Adversarial Neural Architecture Search

by Pruning.

HYDRA suffer from a significant clean and robust accuracy drop

at 99% sparsity, for example, from 78.26% to 48.17% for ADMM

and to 67.64% for HYDRA on clean accuracy or from 41.23 to

15.16% for ADMM and to 33.64% for HYDRA on AA, when

adversarial loss is TRADES. In contrast, ANAS-P only decreases

the clean accuracy by 0.75% and the robust accuracy under

AA by 4.58%. A similar smaller performance loss is observed

on MART as well. Nevertheless, the performance of the sparse

ResNet-18 models is superior to compressed VGG-16 in benign

and adversarial accuracy. What is more, the ResNet-18 model

pruned with TRADES at 50 and 90% sparsity ratios achieves higher

robust accuracy under attacks of PGD, APGD and AA than dense
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TABLE 4 Comparisons on CIFAR-100 by ResNet-18 and VGG-16 under MART with compression ratio 90%.

CIFAR-100

Model Sparsity Method

Adversarial loss

MART

Clean PGD APGD AA

ResNet-18
0% Dense 52.23± 0.68 26.76± 0.43 26.35± 0.27 23.14± 0.33

90% ANAS-P 50.43± 0.75 25.61± 0.52 26.07± 0.34 20.74± 0.39

VGG-16
0% Dense 42.78± 0.89 18.73± 0.83 18.42± 0.96 16.13± 0.55

90% ANAS-P 40.65± 0.93 17.27± 0.90 16.91± 0.88 14.86± 0.61

We apply fivefold cross-validation to run the experiments by five times.

MART, Misclassification Aware adveRsarial Training; PGD, Projected Gradient Descent; AA, AutoAttack; ADMM, alternating direction method of multipliers; ANAS-P, Adversarial Neural

Architecture Search by Pruning.

TABLE 5 Comparisions on Tiny-ImageNet with sparsity [50%,90%].

Tiny-ImageNet

Model Sparsity Method

Adversarial loss

TRADES

Clean PGD APGD AA

VGG-16

0% Dense 41.21 14.46 14.21 12.15

50%

ADMM 32.08 12.06 11.91 8.95

HYDRA 37.72 13.59 13.14 9.98

ANAS-P 37.96 16.03 15.28 9.04

90%

ADMM 25.37 6.71 6.63 4.52

HYDRA 35.68 11.54 11.02 8.31

ANAS-P 36.83 15.14 14.85 8.74

ResNet-18

0% Dense 43.07 17.81 17.70 14.34

50%

ADMM 42.73 15.98 15.79 10.79

HYDRA 42.77 16.35 16.02 10.98

ANAS-P 42.91 17.54 17.36 14.21

90%

ADMM 39.68 14.04 13.91 8.64

HYDRA 40.46 15.11 14.85 9.92

ANAS-P 41.13 17.40 17.28 14.10

The descriptions provided in this table are the same as those in Table 1.

TRADES, TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization; PGD, Projected Gradient Descent; AA, AutoAttack; ADMM, alternating direction method of multipliers;

ANAS-P, Adversarial Neural Architecture Search by Pruning.

baselines, where the improvements are 0.86% atmost. Our ANAS-P

is the leading method (especially at high sparsity levels), with better

robustness compared with adversarial pruning baselines.

The evaluations are further extended to CIFAR-100 in Table 2.

For the pruned VGG-16 model with high sparsity levels (such as

99% sparsity ratio), robustness evaluated under three adversarial

attacks is superior to that achieved by ADMM and HYDRA. For

example, VGG-16 pruned with MART at 99% sparsity decreases

the PGD accuracy slightly by only 12.42% with the proposed

ANAS-P, while ADMM and HYDRA result in a significant

degradation of 56.80% (from 22.71 to 9.81%) and 24.22% (from

22.71 to 17.21%), respectively. Besides, for the ResNet-18 model,

the experiments demonstrate our superior performance compared

with two pruning baselines across all three sparsity levels in terms

of both clean and robust accuracy for different adversarial training

objectives (TRADES and MART). In particular, when the ResNet-

18 model is pruned with TRADES, the clean and robust accuracy is

even higher than those of the dense training, where the clean and

PGD accuracy improvements are as high as 13.48% (from 55.94

to 63.48%) and 27.85% (from 27.54 to 35.21%) for 50% sparsity,

respectively. Moreover, the ResNet-18model trained withMART at

99% sparsity achieves a remarkable 17.54% (from 45.13 to 50.31%)

increase in clean accuracy and a significant 34.66% (from 19.99 to

25.04%) improvement in APGD in comparison to HYDRA.

To avoid coincidence in a single division of the data and prove

our method on different data, we further adopt K-fold cross-

validation including the following steps: (a) Shuffle the original

training data set randomly, (b) split the shuffled data set into K
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TABLE 6 Ablation studies on ANAS-P with di�erent masking thresholds.

CIFAR-10

Model thres Sparsity

Adversarial loss

TRADES

Clean PGD AA

ResNet-18

0.2 82.25 51.52 48.66

0.5 90% 82.31 51.49 48.67

0.8 82.30 51.47 48.65

The evaluations are on CIFAR-10 by ResNet-18 with compression ratio 90% under TRADES.

TRADES, TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization; PGD,

Projected Gradient Descent; AA, AutoAttack; ANAS-P, Adversarial Neural Architecture

Search by Pruning.

TABLE 7 Ablation studies on ANAS-P with di�erent masking thresholds.

CIFAR-100

Model thres Sparsity

Adversarial loss

MART

Clean PGD AA

VGG-16

0.2 46.12 20.93 16.44

0.5 90% 46.09 20.92 16.42

0.8 46.04 20.89 16.38

CIFAR-100 is validated by VGG-16 with compression ratio 90% under MART.

MART, Misclassification Aware adveRsarial Training; PGD, Projected Gradient Descent; AA,

AutoAttack; ANAS-P, Adversarial Neural Architecture Search by Pruning.

groups, and (c) for each group, we use this group as the test set

and the rest K - 1 groups as the training set to train and test (learn

and test) following our proposed method. Note that we repeat the

learn-and-test K times as there are K groups in total. Here we

set K equal to 5 and report the mean and the standard deviation

of the results. We do not set K to a large value (such as 100)

since adversarial training is computationally expensive in typical.

As presented in Tables 3, 4, the standard deviation of our method is

small, demonstrating our robustness for different data subsets.

4.2.2 Tiny-ImageNet
To strengthen our evaluation, we extend our experiments on

Tiny-ImageNet with the larger image size in Table 5. The VGG-

16 and ResNet-18 models are pruned under TRADES at the

sparsity of 50 and 90%. ANAS-P, which yields the highest PGD-

based robustness among the three pruning methods, advances

the PGD and APGD robustness of VGG-16 by 10.86 and 7.53%

for 50% sparsity, respectively, as well as 4.70 and 4.50% for 90%

sparsity, respectively. Despite a slight impairment in benign and

robust accuracy, the sparse ResNet-18 model pruned by ANAS-

P remains superior to the network compressed via two other

baselines, ADMM and HYDRA. At a CONV pruning ratio of 90%,

ANAS-P merely encounters a 4.50% performance drop in clean

accuracy and a 2.37% decrease in AA adversarial robust accuracy.

On all three data sets, ResNet-18 shows better clean and

robust accuracy than VGG-16 regardless of the sparsity level. The

potential impact factor is the architecture difference, with ResNet-

18 consisting of residual blocks via the identity mapping, while

VGG-16 is built on the stacked convolutional layers. When the

dense network layers go deeper, the residual design helps solve the

vanishing gradient problem and improves the representation ability

of networks. The benefits of the residual layout generalize to the

sparse and robust models.

4.3 Ablation study

4.3.1 Masking threshold
We conduct ablation studies on ANAS-P with three masking

thresholds ([0.2, 0.5, 0.8]). The tests are on CIFAR-10 and CIFAR-

100 by ResNet-18 and VGG-16 in Tables 6, 7. The differences

between the three binarization thresholds in terms of both standard

accuracy and robustness are marginal. We choose the medium

value 0.5 as the final masking threshold.

4.3.2 Adversarial attack strength
Figure 4 illustrates our PGD evaluations with varying attack

strengths for the trained sparse models at the sparsity of 99%,

in comparison to HYDRA. The robustness is measured with

three PGD attack intensities ([4/255, 8/255, 16/255]) for VGG-16

trained on CIFAR-10 with TRADES and for ResNet-18 trained

on CIFAR-100 with MART. The results indicate that ANAS-P

outperforms HYDRA across different PGD attack intensities.

4.3.3 Pruning loss penalty intensity
Figure 5 investigates how the parameter γ in Equation 3

impacts both standard and robust accuracy (AA evaluation). We

consider VGG-16 trained on CIFAR-100, with the TRADES and

MART loss under 90% sparsity. The observation is that with the

increase of γ , the penalty imposed by LMAC is dominated over

LADV , leading to the deterioration of the model’s clean accuracy

and robustness. Therefore, we set the default value of γ to 0.01 in

the experiments for optimal performance.

5 Discussion and conclusion

5.1 Discussion

Research on adversarial robustness in sparse models is

crucial for the widespread real-world applications of DNNs.

Our work makes a significant contribution to trustworthy

and efficient artificial intelligence by pruning models while

maintaining adversarial robustness. By advancing the

understanding of adversarially robust sparse models, our

proposed techniques can be applied to the deployment of sparse

robust models in resource-constrained environments, such as

mobile devices.

5.2 Conclusion

This article proposes ANAS-P, a robustness-aware neural

architecture search framework by channel pruning to achieve
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FIGURE 4

HYDRA and ANAS-P prune ResNet-18 and VGG-16 at the sparsity of 99%, which are evaluated by PGD with three attack strengths

([4/255, 8/255, 16/255]). (A) VGG-16 is trained on CIFAR-10 by TRADES. (B) ResNet-18 is on CIFAR-100 by MART. ANAS-P, Adversarial Neural

Architecture Search by Pruning; PGD, Projected Gradient Descent.

FIGURE 5

E�ects of pruning loss coe�cient magnitudes on 90% sparse VGG-16 evaluated under AA attack with di�erent pruning regularization magnitudes on

CIFAR-100. (A) VGG-16 by TRADES. (B) VGG-16 by MART. TRADES, TRadeo�-inspired Adversarial DEfense via Surrogate-loss minimization; MART,

Misclassification Aware adveRsarial Training; AA, AutoAttack.

sparsity and adversarial robustness. The D2BC mask is

utilized for conducting a layer-width search per CONV

layer. Extensive experiments conducted in two adversarial

training settings demonstrate the effectiveness of our

adversarial pruning approach in searching CONV-sparse and

robust models.
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