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The fast and the capacious:
memory-e�cient multi-GPU
accelerated explicit state space
exploration with GPUexplore 3.0

Anton Wijs* and Muhammad Osama

Parallel Software Development, Software Engineering and Technology, Department of Mathematics

and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands

The GPU acceleration of explicit state space exploration, for explicit-state model

checking, has been the subject of previous research, but to date, the tools have

been limited in their applicability and in their practical use. Considering this

research, to our knowledge, we are the first to use a novel tree database for GPUs.

This novel tree database allows high-performant, memory-e�cient storage of

states in the form of binary trees. Besides the tree compression this enables,

we also propose two new hashing schemes, compact-cuckoo and compact

multiple-functions. These schemes enable the use of Cleary compression to

compactly store tree roots. Besides an in-depth discussion of the tree database

algorithms, the input language and workflow of our tool, called GPUexplore

3.0, are presented. Finally, we explain how the algorithms can be extended

to exploit multiple GPUs that reside on the same machine. Experiments show

single-GPU processing speeds of up to 144 million states per second compared

to 20 million states achieved by 32-core LTSmin. In the multi-GPU setting,

workload and storage distributions are optimal, and, frequently, performance

is even positively impacted when the number of GPUs is increased. Overall, a

logarithmic acceleration up to 1.9× was achieved with four GPUs, compared to

what was achieved with one and two GPUs. We believe that a linear speedup can

be easily accomplished with faster P2P communications between the GPUs.

KEYWORDS

explicit state space exploration, finite-state machines, reachability analysis, graphics

processing units, multi-GPU systems

1 Introduction

Major advances in computation increasingly need to be obtained via parallel software
as Moore’s Law comes to an end (Leiserson et al., 2020). In the last decade, GPUs have
been successfully applied to accelerate various computations relevant for model checking,
such as probability computations for probabilistic model checking (Bošnački et al., 2011;
Wijs and Bošnački, 2012; Khan et al., 2021), counter-example construction (Wu et al.,
2014), state space decomposition (Wijs et al., 2016a), parameter synthesis for stochastic
systems (Češka et al., 2016), and SAT solving (Youness et al., 2015, 2020; Osama et al.,
2018, 2021, 2023; Osama and Wijs, 2019a,b, 2021; Prevot et al., 2021; Osama, 2022).
VOXLOGICA-GPU applies model checking to analyse (medical) images (Bussi et al., 2021).
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FIGURE 1

Handling variables in GPUEXPLORE 2.0.

Model checking (Baier and Katoen, 2008; Clarke et al., 2018)
is a technique to exhaustively check whether a formal description
of a soft- and/or hardware system adheres to a specification; the
latter is typically given in the form of a number of temporal logic
formulae. One commonly used approach is explicit-state model
checking, in which a model checking tool, or model checker,
explores all the system states that are reachable from a defined
initial state of the system. Discovering the set of reachable states
is called (explicit) state space exploration. Property checking, i.e.,
checking whether a system adheres to temporal logic formulae, can
be performed either during state space exploration, or afterwards,
once all reachable states have been identified. The current article
focusses on state space exploration as an essential step for model
checking and presents the tool GPUEXPLORE 3.0, which performs
state space exploration entirely on one or more GPUs. The
techniques proposed here can be extended to checking temporal
logic formulae.

The first version of GPUEXPLORE was the first tool that
performed the entire exploration on a GPU (Wijs and Bošnački,
2014, 2016). It was later further optimized and extended to support
Linear-Time Temporal Logic (LTL) model checking (Neele et al.,
2016; Wijs, 2016; Wijs et al., 2016b). In the resulting second version
of the tool, each individual process in a concurrent system is
encoded as a labeled transition system (LTS) (Lang, 2006) that
is stored in memory as a sparse matrix (Saad, 2003). However,
this does not allow efficient encodings of concurrent systems with
variables. For example, consider a system with two 32-bit integer
variables x and y and one process in which y is assigned the value
of x at some point. Allowing for all possible values, GPUEXPLORE

2.0 requires that the LTS describing this process contains at least
232 states, just to distinguish all possible values assigned to y (see
Figure 1). Thus, as variables are introduced, the matrices grow
rapidly.

Furthermore, in general, GPU state space exploration tools are
not user-friendly. Providing input is tedious, requiring manually
setting up low-level descriptions of models (Wijs et al., 2016b;
DeFrancisco et al., 2020) or using a chain of other tools (Wijs
et al., 2016b; Wei et al., 2019). For GPUEXPLORE 3.0, we wanted to
change that and directly support a richer modeling language. The
tool altogether avoids storing the input model in memory. To make
this possible and high-performance, we developed a code generator
that produces GPU code specific for exploring the state space of
a given input model. Conceptually, this mechanism is similar to
how SPIN transforms PROMELA models to pan code (Holzmann,

1997). GPUEXPLORE 3.0 is the first GPU tool to apply such a
code generator. Furthermore, in this study, we propose how to
perform memory-efficient complete state space exploration on a

GPU for concurrent finite-state machines (FSMs) with data. To
make this possible, we are the first to investigate the storage of
binary trees in GPU hash tables to form a tree database, propose
new algorithms to find and store trees in a fine-grained parallel

fashion, experiment with a number of GPU-specific configurations,
and propose two novel hashing techniques called compact-cuckoo
hashing and compact multiple-functions hashing, which enable the

use of Cleary compression (Cleary, 1984; Darragh et al., 1993) on
GPUs. To achieve the desired result of the new algorithms, we
have to tackle the following challenges: (1) CPU-based algorithms
are recursive, but GPUs are not suitable for recursion, and (2)

accessing GPU global memory, in which the hash tables reside, is
slow. This research marks an important step to pioneer practical
GPU accelerated model checking as it can be extended to checking

functional properties of models with data and paves the way to
investigate the use of binary decision diagrams (Lee, 1959) for
symbolic model checking.

Contributions

The current article combines and extends the following

contributions published previously by Wijs and Osama
(2023a,b):

1. The overall workflow of GPUEXPLORE 3.0 is presented.
2. The new hashing schemes and technical details of Cleary

compression are discussed.
3. The GPU tree database is explained.
4. Experimental results are presented and discussed, comparing

GPUEXPLORE 3.0 with the CPU tools SPIN and LTSMIN, on the
one hand, and the GPU tools GRAPPLE and GPUEXPLORE 2.0,
on the other hand.

Compared to these two earlier articles, the following new

contributions are introduced:

1. The new hashing schemes are presented in a separate section,
putting more emphasis on the novelty of that contribution and
explaining it in greater detail.

2. The technical details of the tree database are explained in much
more detail. Two algorithms are presented for the first time,
one for the fetching of state trees and one that links the other
algorithms together.

3. A newmethod is proposed to employmultiple GPUs, all residing
on the same machine, for complete state space exploration. In
such a setting, peer-to-peer communication allows the threads
of each GPU to directly access the memory of other GPUs,
and this method is the first multi-GPU state space exploration
procedure in the literature. To achieve multi-GPU state space
exploration, we have to tackle a number of challenges: (1) a good
load balancing algorithm needs to be obtained such that each
GPU roughly has the same amount of exploration work and
the number of states to store, and (2) since states are stored as
binary trees, a mechanism must be designed that assigns every
constructed binary tree in its entirety to a particular GPU.

4. The impact of scaling up the number of GPUs on which
GPUEXPLORE runs on its performance is experimentally
assessed, as well as the load balancing that the method achieves.
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The structure of the article is as follows. In Section 2, we discuss
related work on GPU hash tables. Section 3 presents background
information on GPU programming, memory, and multi-GPU
communications. In Section 4, our new hashing schemes are
presented. Section 5 describes the input modeling language and
how a model written in that language is used as input for
GPUEXPLORE. Section 6 addresses the challenges when designing a
GPU tree table and presents our new algorithms for handling state
trees, both when using a single GPU and when usingmultiple GPUs
on the same machine. Experimental results are given in Section 7.
Finally, in Section 8, conclusion and our future work plans are
discussed.

2 Related work

In the earliest research on GPU explicit state space exploration,
GPUs performed part of the computation, specifically successor
generation (Edelkamp and Sulewski, 2010a,b) and property
checking, once the state space has been generated (Barnat et al.,
2012). This was promising, but the data copying between main
and GPU memory and the computations on the CPU was
detrimental for performance. As mentioned in Section 1, the
first tool that performed the entire exploration on a GPU was
GPUEXPLORE (Wijs and Bošnački, 2014, 2016; Neele et al., 2016;
Wijs, 2016; Wijs et al., 2016b). A similar exploration engine was
later proposed by Wu et al. (2015). An approach that applied a
GPU to explore the state space of PROMELAmodels, i.e., the models
for the SPIN model checker (Holzmann, 1997), was presented
by Bartocci et al. (2014). This approach was later adapted to the
swarm checker GRAPPLE by DeFrancisco et al. (2020), which can
efficiently explore very large state spaces, but at the cost of losing
completeness. Finally, the model checker PARAMOC for pushdown
systems was presented by Wei et al. (2018, 2019).

The above techniques demonstrate the potential for GPU
acceleration of state space exploration and explicit-state model
checking, being able to accelerate those procedures tens to hundreds
of times, but they all have serious practical limitations. Several
procedures limit the size of state vectors to 64 bits (Bartocci et al.,
2014; Wu et al., 2015) or the size of transition encodings to
64 bits (Wei et al., 2018, 2019). GRAPPLE uses bitstate hashing,
which rules out the ability to detect that all reachable states have
been explored, which is crucial to prove the absence of undesired
behavior. PARAMOC verifies push-down systems but does not
support concurrency and abstracts away data. GPUEXPLORE 2.0
does not efficiently support models with variables (Wijs and
Bošnački, 2014; Wijs et al., 2016b). When adding variables, the
amount of memory needed grows rapidly due to the growing input
model and inefficient state storage.

Since in explicit state space exploration, states are typically
stored in a hash table (Cormen et al., 2009), we next discuss research
on hash tables for the GPU. A GPU hash table is often implemented
as an array, where the elements represent the hash table buckets.
A recent survey of GPU hash tables by Lessley (2019) identifies
that when using integer data items and unordered insertions and
queries, cuckoo hashing (Pagh and Rodler, 2001) is (currently) the
best option compared to techniques such as chaining (Ashkiani
et al., 2018) or robin hood hashing (García et al., 2011), and the

cuckoo hashing of Alcantara et al. (2012) is particularly effective.
In cuckoo hashing, collisions, i.e., situations where a data item e is
hashed to an already occupied bucket, are resolved by evicting the
encountered item e′, storing e, and moving e′ to another bucket. A
fixed number of m hash functions is used to have multiple storage
options for each item. Item lookup and storage is therefore limited
tommemory accesses but can lead to chains of evictions. Alcantara
et al. (2012) demonstrated that, with four hash functions, a hash
table needs ∼1.25N buckets to store N items1. Recent research
by Awad et al. (2023) has demonstrated that using larger buckets,
spanning multiple elements, that still fit in the GPU cache line is
beneficial for performance and increases the average load factor,
i.e., how much the hash table can be filled until an item cannot be
inserted, to 99%.

Besides buckets, we also consider cuckoo hashing as used
by Alcantara et al. (2012) and Awad et al. (2023); however, we
are the first to investigate the storage of binary trees and the use
of Cleary compression to store more data in less space. Libraries
offering GPU hash tables, such as the one of Jünger et al. (2020),
do not offer these capabilities. Furthermore, we are the first to
investigate the impact of using larger buckets for binary tree storage
embedded in a state space exploration engine.

The model checker GPUEXPLORE (Wijs and Bošnački, 2014;
Wijs et al., 2016b; Cassee and Wijs, 2017) uses multiple hash
functions to store a state. State evictions are never performed as
each state is stored in a sequence of integers, making it impossible
to store states atomically. This can lead to storing duplicate states,
which tends to be worsened when states are evicted, making cuckoo
hashing impractical (Wijs and Bošnački, 2016). Besides compact
state storage, a second benefit of using trees with each tree node
being stored in a single integer is that it allows arbitrarily large states
to be stored atomically, i.e., a state is stored the moment the root of
its tree is stored.

Because we store trees, with the individual nodes referencing
each other, we do not consider alternative storage approaches, such
as using a list that is repeatedly sorted, even though Alcantara
et al. (2012) identified that using radix-sort (Merrill and Grimshaw,
2011) is competitive to hashing.

Although we are the first to propose a multi-GPU explicit
state space exploration method, its design has been inspired by
previous research on distributed model checking. In that setting,
a cluster of machines is used to explore a state space, with the
workers running on the different machines communicating with
each other over a network. While communication is different from
the single machine, multi-GPU setting, the approach to assign an
owner, i.e., worker, to each state by using a hash function is used
in both settings. Dill (1996) presented a distributed exploration
algorithm for the MURφ verifier. An approach for the distributed
verification of stochastic models was proposed by Ciardo et al.
(1998). Based on this approach, Behrmann et al. (2000) presented
an algorithm for the timed model checker UPPAAL. A distributed
state space exploration algorithm for the SPIN model checker was
implemented by Lerda and Sista (1999). Garavel et al. (2001)

1 This refers to the single-level version of their cuckoo hashing (Alcantara

et al., 2012), which we consider in this research. Their two-level version is

more complex and less e�cient.
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presented a method to generate LTSs in a distributed way with the
CADP toolbox. The DIVINE model checker was equipped with a
distributed algorithm by Barnat et al. (2006). Finally, a collection
of case studies in which the distributed state space exploration
capabilities of the µCRL toolset were demonstrated were discussed
by Blom et al. (2007).

3 GPU architecture

3.1 GPU programming

CUDA2 is a programming interface that enables general
purpose programming for a GPU. It has been developed and
continually maintained by NVIDIA since 2007. In this study, we
use CUDA with C++. Therefore, we use CUDA terminology when
we refer to thread and memory hierarchies.

The left part of Figure 2 gives an overview of a GPU
architecture. For now, ignore the bold-faced words and the
pseudo-code. A GPU consists of a finite number of streaming

multiprocessors (SM), each containing hundreds of cores. For
instance, the Titan RTX and Tesla V100, which we used for this
study, have 72 and 80 SMs together containing 4,608 and 5,120
cores, respectively. A programmer can implement functions named
kernels to be executed by a predefined number of GPU threads.
Parallelism is achieved by having these threads work on different
parts of the data.

When a kernel is launched, threads are grouped into blocks,
usually of a size equal to a power of two, often 512 or 1,024. All the
blocks together form a grid. Each block is executed by one SM, but
an SM can interleave the execution of many blocks. When a block is
executed, the threads inside are scheduled for execution in smaller
groups of 32 threads called warps. A warp has a single program
counter, i.e., the threads in a warp run in lock-step through the
program. This concept is referred to as single instruction multiple

threads (SIMT): each thread executes the same instructions but
on different data. The threads in a warp may also follow diverging

program paths, leading to a reduction in performance. For instance,
if the threads of a warp encounter an if C then P1 else P2

construct, and for some, but not all, C holds, all threads will step
through the instructions of both P1 and P2, but each thread only
executes the relevant instructions.

GPU threads can use atomic instructions to manipulate data
atomically, such as a compare-and-swap on 32- and 64-bit integers:
ATOMICCAS(addr, compare, val) automically checks whether
at address addr, the value compare is stored. If so, it is updated
to val, otherwise no update is done. The actual value read at addr
is returned.

Finally, the threads in a warp can communicate very rapidly
with each other by means of intra-warp instructions. There are
various instructions, such as SHUFFLE to distribute register data
among the threads and BALLOT to distribute the results of
evaluating a predicate. Since the availability of CUDA 9.0, threads
can be partitioned into cooperative groups. If these groups have a
size that completely divides the warp size, i.e., it is a power of two

2 https://developer.nvidia.com/cuda-zone

smaller than or equal to 32, then the threads in a group can use
intra-warp instructions among themselves.

3.2 GPU memory

There are various types of memory on a GPU. The global

memory is the largest of the various types of memory—24 GB in
the case of the Titan RTX and 16 or 32 GB in the case of the Tesla
V100, the two types of GPUs used for this study. The globalmemory
can be used to copy data between the host (CPU-side) and the
device (GPU-side). It can be accessed by all GPU threads and has
a high bandwidth as well as a high latency. Having many threads
executing a kernel helps to hide this latency; the cores can rapidly
switch contexts to interleave the execution of multiple threads, and
whenever a thread is waiting for the result of a memory access,
the core uses that time to execute another thread. Another way to
improve memory access times is by ensuring that the accesses of a
warp are coalesced: if the threads in a warp try to fetch a consecutive
block of memory in size not larger than the cache line size, then the
time needed to access that block is the same as the time needed to
access an individual memory address.

Other types of memory are shared memory and registers. Shared
memory is fast on-chip memory with a low latency that can be used
as block-local memory; the threads of a block can share data with
each other via this memory. In GPUs such as the Titan RTX and
the Tesla V100, each block can use up to 64 KB and 96 KB of shared
memory, respectively. Register memory is the fastest and is used
to store thread-local data. It is very small, though, and allocating
too much memory for thread-local variables may result in data
spilling over into global memory, which can dramatically limit the
performance.

3.3 Peer-to-peer communication

In this study, we use a multi-GPU setup within a single node
provided by the Amazon Web Services (AWS) computing cloud.
Before the introduction of NVLink (NVIDIA Link) in 2014, GPU
developers used to offload data transfer on the main PCI-express
bus. However, the latter only offers very limited speed of up to 32
GB/s. With NVLink version 2.0, the Tesla V100 GPU can achieve
peer-to-peer communication of up to 150GB/s in one direction and
300 GB/s in both directions, which makes NVLink a viable option
for accelerating state space exploration on multiple GPUs, as our
experimental results in Section 7 demonstrate.

4 Compact-cuckoo and
compact-multiple-functions hashing

As memory is a relatively scarce resource on a GPU, in explicit
state space exploration, states should be stored in memory as
compactly as possible, meaning that (1) the used hash table should
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FIGURE 2

State space exploration on a GPU architecture.

FIGURE 3

An example of a state represented by a binary tree.

be able to reach a high load factor, and (2) we are interested in
techniques to store individual data elements, i.e., states, compactly.

Before we discuss GPUEXPLORE and the actual state space
exploration in detail, in the current section, we focus on our first
contribution, which addresses the hash table. It is important to
note that states are stored in binary trees, thereby applying tree

compression (Blom et al., 2008). An example of such a tree is given
in Figure 3. In general, the leaves of the tree contain the actual
state information, while the non-leaves contain references to their
siblings. The state information is therefore stored in chunks that
are equal in size to that of the tree nodes (in GPUEXPLORE, the
node size is 64 bits, as nodes are stored in 64-bit integers). This
means that, sometimes, system variables are cut in two. In the
example of Figure 3, the value of the 32-bit integer variable x2
is split into one 20-bit entry and one 12-bit entry. More details
about tree compression are presented in Section 6. The current
section addresses several hashing techniques to store the trees in a
hash table and our reasoning behind selecting some of them while
disregarding others.

In Section 2, we argued that cuckoo hashing is very effective on
a GPU. Figure 4A demonstrates what happens with cuckoo hashing
when collisions occur. When an element, in this case d, needs to be
inserted, the first hash function h0 is used to find a bucket. As this
bucket is already occupied by another element, b, b is evicted and
the hash function next in line for b is used to find a new bucket

for b. In the figure, the hash functions that were used to store the
elements are displayed in gray. In practice, one can identify the hash
function previously used to store an element that is being evicted
by applying each hash function on the element until the current
address is obtained. In the example, b is then hashed to the bucket
occupied by element a. Using function h3, a is finally hashed to
an empty bucket, thereby ending the eviction chain. Since eviction
chains can be infinite in length, due to cyclic evictions, in practice,
one has to set an upper bound on their length.

As cuckoo hashing frequently moves elements, it is not suitable
for a hash table that stores binary trees. In such a table, the
stored non-leaves contain references to their direct siblings. If
those siblings were to be moved, the references used by their
parents would become incorrect, and updating those would be too
time-consuming.

However, one can instead use two hash tables, one for tree roots,
the root table, and one for the other nodes, the internal table, as
done by Laarman (2019). The roots are then not referred to by other
nodes, and hence, cuckoo hashing can be applied on the root table.

In fact, when using two hash tables, we can be even
more memory efficient. Laarman (2019) has shown that Cleary
tables (Cleary, 1984; Darragh et al., 1993) can be very effective for
storing state spaces. In Cleary hashing, each data element of K bits
is split, possibly after its bits have been scrambled, into an address
A and a remainder R. The remainder R is subsequently stored at
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FIGURE 4

Collision handling with cuckoo hashing (A) and using multiple hash functions (B).

address A in the hash table. To retrieve the original data element
from the table, A and R need to be combined again. Note that any
applied bit scrambling must be invertible to retrieve the original
K bits. In other words, Cleary hashing achieves its compression by
using the address where an element must be stored to encode part
of the element itself.

To handle collisions in Cleary tables, order-preserving

bidirectional linear probing (Amble and Knuth, 1974) is used,
which involves scanning the table in two directions to find an
empty bucket for a given element, starting at the one to which the
element was hashed. The stored remainders are moved to preserve
their order. An elaborate scheme is used that, for each stored
remainder, allows finding the address at which it was supposed to
be stored, even if it is not physically located there. It is crucial that
this address can be retrieved, otherwise decompression would not
be possible.

The frequentmoving of remaindersmakes Cleary hashing, such
as cuckoo hashing, unsuitable for storing entire trees, but as with
cuckoo hashing, it can be used to store the roots of the trees. In this
setting, for roots of size 2k, with k being the number of bits needed
for a node reference, each root r is hashed (bit scrambled) with a
hash function h to a 2k bit sequence, from which w < 2k bits are
taken to be used as an index of a root table with exactly 2w buckets,
and at this position, the remaining 2k − w bits (the remainder)
are stored. To enable decompression, h must be invertible; given
a remainder and an address, h−1 can be applied to obtain r.

In a multi-threaded CPU context, this approach scales
well (Laarman, 2019), but the parallel approach by van der Vegt
and Laarman (2011) and Laarman (2019) divides a Cleary table
into regions, and sometimes, a region must be locked by a thread
to safely reorder remainders. Unfortunately, the use of any form of
locking, including fine-grained locking implemented with atomic
operations, is detrimental for GPU performance. Furthermore, the
absence of coherent caches in GPUs means that expensive global
memory accesses may be needed when a thread repeatedly checks
the status of an acquired lock.

As an elegant alternative, we propose two hashing schemes
compact-cuckoo hashing and compact-multiple-functions hashing

that combine Cleary compression with cuckoo hashing and with
using a sequence of hash functions, respectively.

Multiple-functions hashing uses multiple hash functions, such
as cuckoo hashing, but does not perform evictions. Figure 4 shows
how multiple-functions hashing works. When a data element d is
to be stored, first, hash function h0 is used. If a collision occurs
with an element b, the next hash function h1 is used to find an
alternative bucket for d. Storage fails if all possible buckets for d are
full. This form of hashing resembles multiple-choice hashing (Azar
et al., 1999), but there is an important difference: in multiple-choice
hashing, all possible locations for an element are inspected, and one
option is chosen. In cases where each bucket can store multiple
elements, this choice is typically made with the goal of balancing
the load in the buckets. In multiple-functions hashing, the first
available option is selected. The reason that we consider multiple-
functions hashing as opposed to multiple-choice hashing is due to
the requirements that hashing should be performed massively in
parallel and that, in state space exploration, states should never
be stored multiple times, i.e., there should not be any redundancy
in the hash table. Allowing choice in selecting a storage location
for an element potentially leads to multiple threads simultaneously
selecting different locations for the same element. The fact that,
in state space exploration, a state (and the nodes in the tree
representing it) tends to be encountered and therefore searched in
the hash table, not once, but many times during exploration, makes
redundant storage when allowing choice very likely.

Both cuckoo hashing and multiple-functions hashing can be
combined with the compression approach of Cleary hashing in an
elegant way, leading to hashing schemes with collision resolution
mechanisms that are both simpler and more amenable to massive
parallel hashing than the mechanism used in Cleary hashing. For
both new schemes, we use m hash functions that are invertible and
capable of scrambling the bits of a root to a 2k bit sequence (as in
Cleary hashing). When we apply a function hi (0 ≤ i < m) on
a root r, we get a 2k bit sequence, of which we use w bits for an
address d and store at d the remainder r′ consisting of 2k − w bits,
together with ⌈log2(m)⌉ + 1 bookkeeping bits. The ⌈log2(m)⌉ bits
are needed to store the ID of the used hash function (i), and the
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final bit is needed to indicate that the root is new (unexplored). It
is possible to retrieve r by applying h−1i on d and r′. In compact-
cuckoo hashing, when a collision occurs, the encountered root is
evicted, decompressed, and stored again using the hash function
next in line for that root. In compact-multiple-functions hashing,
instead of evicting the encountered root, an attempt ismade to store
a remainder of the new root with the hash function next in line. We
refer to the application of Cleary compression to roots, either using
compact-cuckoo hashing or compact-multiple-functions hashing,
as root compression.

For the construction of invertible bit-scrambling functions,
a number of possible arithmetic operations can be applied. For
instance, a right xorshift, i.e., bitwise xor (∧) combined with a
bitwise right shift (≫), is invertible. Consider the operation

y = x ∧ (x≫ a),

with a a constant smaller than the number of bits of x. The
following sequence of operations retrieves the value of x from y:

x = y ∧ (y≫ 20 · a),

x = x ∧ (x≫ 21 · a),

x = x ∧ (x≫ 22 · a),

...

The sequence continues until 2i · a exceeds the number of bits
of x.

A second type of invertible operation that we applied in our
functions is multiplication with a (large) odd number z, which
can be inverted by multiplying with the modular multiplicative
inverse z−1 of z, i.e., z · z−1 mod m = 1 if we are working
with numbers in the range [0,m〉. An approach based on Newton’s
method can be used to find modular multiplicative inverses
(Dumas, 2014).

In Section 2, we mentioned the use of buckets in a GPU
hash table that can contain multiple elements. When a hash
table is divided into buckets, each bucket having space for 1 <

n ≤ 32 elements that still fit in the GPU cache line, then
cooperative groups of n threads each can be created, and the
threads in a group can work together for the fetching and updating
of buckets. When an element is hashed to a bucket, the group
fetches the n consecutive positions of that bucket and collectively
inspects those positions for the presence of that element. In case
the element is to be stored, an empty position is collectively
identified, and the element is stored by one thread of the group
at that position. If the bucket is full, another bucket must be
selected according to the hashing scheme. The use of larger
buckets results in more coalesced memory accesses and reduces
thread divergence. However, it also means that fewer tasks can be
performed in parallel.

In Section 6.5, an algorithm is discussed in which
a cooperative group of threads performs a find-or-put
operation for a given tree node. In such an operation,
it is checked whether the node is already stored in
the hash table, and if it is not, it is then inserted into
the table.

5 From an SLCO model to
GPUexplore code

5.1 The simple language of
communicating objects

Figure 5 presents the workflow of GPUEXPLORE 3.0. It accepts
models written in the Simple Language of Communicating Objects

(SLCO) (de Putter et al., 2018). An SLCO model consists of a
finite number of finite state machines (FSMs) that concurrently
execute transitions. The FSMs can communicate via globally shared
variables, and each FSM can have its own local variables. Variables
can be of type Bool, Byte, and (32-bit) Integer, and there is
support for arrays of these types. We use (system) states s, s′, . . . to
refer to entire states of the system, and FSM states σ , σ ′, . . . to refer
to the states of an individual FSM. A system state is essentially a
vector containing all the information that together defines a state of
the system, i.e., the current states of the FMSs and the values of the
variables.

Each FSM in an SLCO model has a finite number of states and
transitions. An FSM transition tr = σ

st
−→ σ ′ indicates that the FSM

can change state from σ to σ ′ if and only if the associated statement
st is enabled. A statement is either an assignment, an expression, or
a composite. Each can refer to the variables in the scope of the FSM.
An assignment is always enabled and assigns a value to a variable;
an expression is a predicate that acts as a guard: it is enabled if and
only if the expression evaluates to true. Finally, a composite is a
finite sequence of statements st0; . . . ; stn, with st0 being either an
expression or an assignment and st1, . . . , stn being assignments. A
composite is enabled if and only if its first statement is enabled. A

transition tr = σ
st
−→ σ ′ can be fired if st is enabled, which results

in the FSM atomically moving from state σ to state σ ′, and any
assignments of st being executed in the specified order. When tr is
fired while the system is in a state s, then after firing, the system is
in state s′, which is equal to s, apart from the fact that σ has been
replaced by σ ′, and the effect of st has been taken into account. We
call s′ a successor of s.

The formal semantics of SLCO defines that each transition
is executed atomically, i.e., it cannot be interrupted by the
execution of other transitions. The FSMs execute concurrently
using an interleaving semantics. Finally, the FSMs may have non-
deterministic behavior, i.e., at any point of execution, an FSM may
have several enabled transitions.

On the left-hand side of Figure 6, an example SLCO FSM is
shown. The FSM is taken from a translation of the adding.1
model from the BEEM benchmark suite (Pelánek, 2007). It has
three process states, with Q being the initial state. The transition
statements refer to two of the three variables in the model, c and
x1.

5.2 From SLCO to GPUexplore

Given an input model, a code generator, implemented in
PYTHON using TEXTX (Dejanović et al., 2017) and JINJA23,

3 https://palletsprojects.com/p/jinja/
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FIGURE 5

The workflow of GPUEXPLORE 3.0.

FIGURE 6

The SLCO model M and its generated code are shown on the left and the right, respectively.

produces model-specific code written in NVIDIA’s CUDA
C++ (see Figure 5). This code entails next-state computation
functions, i.e., functions that, given a system state s, produce
the successor system states that can be reached from s by
executing a transition. In the model-specific code, one next-
state computation function is produced for each FSM in the
model, allowing for the successor states of a single state to
be constructed in parallel, with the functions executed by
different threads.

Given a system state and an FSM, a GPU thread generates
successors by executing the corresponding next-state computation
function. This function contains a big switch statement to
consider the execution of transitions based on the current state of
the FSM. On the right-hand side of Figure 6, part of the generated
next-state computation function is shown for the FSM on the left.

In this example, if the current state of this FSM, fetched from the
system state and stored in the variable current_state, is Q
(encoded as 0), then the thread will retrieve the value of c and store
it in the variable buf8_0, located in thread-local register memory.
If this value is smaller than 20, the target FSM state is set to 1 (R),
and the register variable buf32_0, associated with x1, is assigned
the value of buf8_0, i.e., c. Next, the thread will construct the new
successor state by combining the original state with the new values
and store the new state.

This parallel construction of successors does not influence
the correctness of the exploration: together, the threads end up
exploring all possible execution paths of the input SLCO model.
System states are stored as binary trees. The model-specific code
involves the handling of those trees, the structure and size of which
depend on the input model.
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FIGURE 7

An example of storing state vectors as binary trees.

Combined with GPUEXPLORE’s generic code, which
implements the control flow and the hash tables and their
methods, the code is compiled using NVIDIA’s NVCC compiler.
The resulting executable is suitable for CUDA-compatible GPUs
with at least compute capability 7.0. Figure 2 presents how the
different components of the state space exploration engine map
onto a GPU. In the global memory, a large hash table (we call
it G) is maintained to store the states visited until then. At the
start, the initial state of the input model is stored in G. Each state
in G has a Boolean flag new, indicating whether the state has
already been explored, i.e., whether or not its successors have
been constructed.

On the right-hand side of Figure 2, the state space exploration
algorithm is explained from the perspective of a thread block.
While the block can find unexplored states in G, it selects
some of those for exploration. In fact, every block has a work

tile residing in its shared memory, of a fixed size, which the
block tries to fill with unexplored states at the start of each
exploration iteration. Such an iteration is initiated on the host
side by launching the exploration kernel. States are marked as
explored, i.e., not new, when added by threads to their tile.
Next, every block processes its tile. For this, each thread in
the block is assigned to a particular state/FSM combination.
Each thread accesses its designated state in the tile and analyses
the possibilities for its designated FSM to change state, as
explained earlier.

The generated successors are stored in a block-local state cache,
which is a hash table in the shared memory. This avoids repeated
accessing of global memory, and local duplicate detection filters
out any duplicate successors generated at the block level. Once
the tile has been processed, the threads in the block together scan
the cache once more and store the new states in G if they are
not already present. When states require no more than 32 or 64
bits in total, including the new flag, they can simply be stored
atomically in G using compare-and-swap. However, sufficiently
large systems have states consisting of more than 64 bits. In this
study, we therefore focus on working with these larger states and
consider storing them as binary trees. In Section 6, we present
new algorithms to efficiently process and store state binary trees
on GPUs.

6 GPU state space exploration with a
tree database

6.1 CPU tree storage

The number of data variables in a model and their types can
have a drastic effect on the size of the states of that model. For
instance, each 32-bit integer variable in a model requires 32 bits
in each state. As the amount of global memory on a GPU is limited,
we need to consider techniques to store states in a memory-efficient
way. One technique that has proven itself for CPU-based model
checkers is tree compression (Blom et al., 2008), in which system
states are stored as binary trees. A single hash table can be used
to store all tree nodes (Laarman et al., 2011). Compression is
achieved by having the trees share common subtrees. Its success
relies on the observation that states and their successors tend to be
different in only a few data elements. In Laarman et al. (2011), it
is experimentally assessed that tree compression compresses better
than any other compression technique identified by the authors for
explicit state space exploration. They observe that the technique
works well for a multi-threaded exploration engine. Moreover, they
propose an incremental variant that has a considerably improved
runtime performance as it reduces the number of required memory
accesses to a number logarithmic in the length of the state vector.

Figure 7 shows an example of applying tree compression to
store four state vectors. The black circles should be ignored
currently. Each letter represents a part of the state vector that is
k bits in length. We assume that, in k bits, a pointer to a node can
also be stored and that each node therefore consists of 2k bits. The
vector <A,B,C,D,E> is stored by having a root node with a left
leaf sibling <A,B> and the right sibling being a non-leaf that has
both a left leaf sibling <C,D> and the element E. In total, storing
this tree requires 8k bits. To store the vector <A′,B,C′,D,E>, we
cannot reuse any of these nodes, as<A′,B> and<C′,D> have not
been stored yet. This means that all pointers have to be updated
as well and, therefore, a new root and a new non-leaf containing
E are needed. Again, 8k bits are needed. For <A,B′,C,D,E′>, we
have to store a new node <A,B′>, a new root, and a new non-
leaf storing E′, but the latter can point to the already existing node
<C,D>. Hence, only 6k bits are needed to store this vector. Finally,

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1285349
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Wijs and Osama 10.3389/fhpcp.2024.1285349

1 procedure FINDORPUT-CPU(node_t* G, node_t node):

2 if HAS-LEFT-SIBLING(node)

and IS-UPDATED(LEFT-SIBLING(node)) then

3 node.left ← FINDORPUT-CPU(G, LEFT-SIBLING(node))

4 end

5 if HAS-RIGHT-SIBLING(node)

and IS-UPDATED(RIGHT-SIBLING(node)) then

6 node.right ← FINDORPUT-CPU(G, RIGHT-SIBLING(node))

7 end

8 addr ← STORE(G, node)

9 return addr

10 end

Algorithm 1. Tree-based find-or-put, CPU version.

for <A′,B,C,D,E′>, we only need to store a new root node, as all
other nodes already exist, resulting in only needing 2k bits. It has
been demonstrated that, as more and more state vectors are stored,
eventually new vectors tend to require 2k bits each (Laarman et al.,
2011; Laarman, 2019).

To emphasize that GPU tree compression has to be
implemented vastly differently from the typical CPU approach,
we first explain the latter and the incremental approach (Laarman
et al., 2011). Checking for the presence of a tree and storing it, if
not yet present, is typically done by means of recursion (outlined
by Algorithm 1). For now, ignore the red underlined text. The
STORE function returns the address of the given node in G, if
present; otherwise, it stores the node and returns its address, and
the FINDORPUT-CPU function first recursively checks whether the
siblings of the node are stored, and if not, stores them, after which
the node itself is stored. A node has pointers left and right to
addresses of G, and there are functions to check for the existence of
and retrieve the siblings of a node.

In the incremental approach, when creating a successor s′ of a
state s, the tree for s, say T(s), is used as the basis for the tree T(s′).
When T(s′) is created, each node inside it is first initialized to the
corresponding node in T(s), and the leaves are updated for the new
tree. This “updated" status propagates up: when a non-leaf has an
updated sibling, its corresponding G pointer must be updated when
T(s′) is stored in G, but for any non-updated sibling, the non-leaf
can keep its G pointer. When incorporating the red underlined text
in Algorithm 1, the incremental version of the function is obtained.
With this version, tree storage often results in fewer calls to STORE,
i.e., fewer memory accesses.

There are two main challenges when considering GPU
incremental tree storage: (1) recursion is detrimental to
performance, as call stacks are stored in global memory (and
with thousands of threads, a lot of memory would be needed for
call stacks), and (2) the nodes of a tree tend to be spread all over
the hash table, potentially leading to many random accesses. To
address these challenges, we propose a procedure in which threads
in a block store sets of trees together in parallel.

6.2 GPU tree generation

When states are represented by trees, the tile of each thread
block cannot store entire states, but it can store G indices of roots
of trees. To speed up successor generation and avoid repeated

uncoalesced global memory accessing, the trees of those roots are
retrieved and stored in the shared memory (state cache) by the
thread block. Once this has been done, successor generation can
commence. Section 6.3 describes how state trees are retrieved from
global memory. First, we explain how new trees are generated.

Figure 8 shows an example of the state cache evolving over
time as a thread generates the successor s′ =<A,B′,C,D,E′> of
s =<A,B,C,D,E>, with the trees as shown in Figure 7. Each
square represents a k-bit cache entry. In addition to the two entries
needed to store a node, we also use one (gray) entry to store two
cache pointers or indices and assume that k bits suffice to store two
pointers (in practice, we use k = 32, which is enough, given the
small size of the state cache). Hence, every pair of white squares
followed by a gray square constitutes one cache slot. Initially
(shown at the top of Figure 8), the tile has a cache pointer to the root
of s, of which we know that it contains the G addresses a0 and a1 to
refer to its siblings. In turn, this root points, via its cache pointers,
to the locally stored copies of its siblings. The non-leaf one contains
the global address a2. A leaf has no cache pointers, denoted by “–
." When creating s′, first, the designated thread constructs the leaf
<A,B′>, by executing the appropriate generated CUDA function
(see Section 5.1), and stores it in the cache. In Figure 8, this new
leaf is colored black to indicate that it is marked as new. Next, the
thread creates a copy of <a2,E>, together with its cache pointers,
and updates it to<a2,E′>. Finally, it creates a new root, with cache
pointers pointing to the newly inserted nodes. This root still has
global address gaps to be filled in (the “?" marks), since it is still
unknown where the new nodes will be stored in G.

The reason that we store global addresses in the cache is not
to access the nodes they point to but to achieve incremental tree
storage: in the example, as the global address a2 is stored in
the cache, there is no need to find <C,D> in G when the new
tree is stored; instead, we can directly construct <a2,E′>. This
contributes to limiting the number of required global memory
accesses.

Note that there is no recursion. Given a model, the code
generator determines the structure of all state trees, and based on
this, the code to fetch all the nodes of a tree and to construct new
trees is generated. As we do not consider the dynamic creation and
destruction of FSMs, all states have the same tree structure.

6.3 GPU tree fetching

Before successors can be generated, the trees of the roots
referred to in the tile must be fetched from G. Algorithm 2 presents
how this can be done in a cooperative group synchronous way to
maximize parallelism. This particular code has been generated for
trees with a structure as in Figure 7. The FETCH function is executed
by cooperative groups of size n = 2i for i ∈ [0, 5]. This size is
predetermined to be the smallest value that is still at least as large
as the number of leaves in a tree; hence, n = 2 in the example. The
function is set up in such a way that each thread eventually stores
one leaf in its leaf variable and possibly one non-leaf node in its
node variable. In general, the leaves of a tree are numbered from
left to right starting with 0, and the non-leaves are numbered from
the root downwards and left to right starting with 0. In Figure 7, the
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FIGURE 8

Successor generation: deriving <A,B′,C,D,E′> from <A,B,C,D,E>.

black circles define the numbering for the nodes, which is used to
assign threads.

Besides the cooperative group, a pointer to G is given, as well
as the G index of a tree root (rootref). At line 2 (l.2), local node
variables (64-bit integers) are declared, and two byte variables, the
second of which (gid) is set to the index of the thread in its group,
between 0 and n − 1. At l.3, variables to store indices are declared;
depending on the size of G, these are either 32- or 64-bit integers.

At l.4, the group leader (with gid = 0) reads the designated
root from G and stores it in the local variable node. This content
is copied into node1 for communication with the other threads at
l.5. At l.6, each thread t retrieves the ID of its thread parent t′ with
respect to the node t has to retrieve at tree level 1. The function
GET-PARENT-THREAD provides this ID, which in the example is 0
for both threads in the group, as the root is stored by thread 0. For
any other thread, if fetch would be called with n > 2, the ID
is set to the default 2, which is larger than the number of threads
needed. After synchronization (l.7), a shuffle instruction (SHUFFLE)
is performed, by which each thread obtains the value of the node1
variable of its parent thread, and stores it in node2. If target
= 2, nothing is actually retrieved, and l.10–13 are not executed.
Otherwise, the G address of the left or right sibling of node2 is
retrieved at l.10; if the given predicate gid = 1 is false, the left
pointer is retrieved, otherwise the right pointer is retrieved.

The sibling node is fetched and stored in leaf at l.11 and
stored in the cache at l.12 if gid = 0, i.e., if the node is actually
a leaf. Otherwise, the node is stored in node (l.13). At l.18–23,
this procedure is repeated once more, this time only for thread
1, which still needs to retrieve the left sibling of its non-leaf (see
Figure 7). After this, all nodes have been fetched, and the non-
leaves can be stored in the cache, which requires collecting the
necessary cache indices to point from each non-leaf to its siblings.
These indices are stored in a 32-bit integer cache_pointers.
At l.25–27, the threads obtain the cache index of the left sibling
of their node stored in node, using the function GET-LEFT-
SIBLING-THREAD to obtain the ID of the thread storing the left
sibling. At l.28, this index is stored in cache_pointers. At
that moment, the non-leaf of thread 1 can be stored in the
cache (l.29). At l.31–34, the index of the right sibling of the
root is obtained and stored in cache_pointers of thread 0.
At l.35, the root is stored. Finally, the cache index of this root
is sent to the other thread in the group and returned by all
threads (l.37).

The cooperative group synchronous approach uses multiple
threads to fetch a single tree. As nodes are essentially distributed
randomly over G, using many threads helps to hide the latency of
fetching. In addition, the use of the combined register memory of
the group allows handling larger trees efficiently.

6.4 GPU tree storage at block level

Once a block has finished generating the successors of the
states referred to by its tile, the state cache contents must be
synchronized with G. Algorithm 3 presents how this is done. The
FINDORPUT-MANY function is executed by all threads in the block
simultaneously. It consists of an outer while-loop (l.5–36) that
is executed as long as there is work to be done. The code uses
a cooperative group called bg, which is created to coincide with
the size of a hash table bucket (bucketsize). Bucket sizes are
typically a power of two, and not larger than 32.When buckets have
size one, these groups consist of only a single thread each. At l.4, the
offset of each thread is determined, i.e., its ID inside its group,
ranging from 0 to the size of the group.

Every thread that still has work to do (l.5) enters the for-loop
of l.7–34, in which the contents of the state cache is scanned. The
parallel scanning works as follows: every thread first considers the
node at position tid − offset of the cache, with tid being the
thread’s block-local ID. This node is assigned to the thread with bg
ID 0. If that index is still within the cache limits, all threads of bg
have tomove along, regardless of whether they have a node to check
or not. At the next iteration of the for-loop, the thread jumps over
BLOCK_SIZE nodes as long as the index is within the cache limits.

The main goal of this loop is to check which nodes are ready
for synchronization with G. Initially, this is the case for all nodes
without global address gaps (see Section 6.2). Each thread first
checks whether its own index is still within the cache limits (l.9).
If so, the node p is retrieved from the cache at l.10. If it is a new
leaf, ready is set to true to indicate that the active thread is ready
for storage (l.11). If the node is a new non-leaf (l.12), it is checked
whether the node still has global address gaps. If it has a gap for the
left sibling (l.13), this left sibling is inspected via the cache pointer
to this sibling [retrieved with the function LEFT-CADDR (l.14)]. The
function SET-LEFT-GADDR checks whether the cache pointers of
that sibling have been replaced by a global memory address and,
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1 device function FETCH(thread_block_tile <n> treegroup node_t* G, index_t rootref):
2 node_t node, leaf, node1, node2; byte target, gid ←

treegroup.THREAD-RANK()
3 index_t addr, cache_addr, cache_addr_sibling,

cache_pointers
4 if gid = 0 then node ← G [rootref]
5 node1 ← node
6 target ← (gid ≤ 1 ? GET-PARENT-THREAD(gid,1) : 2)
7 treegroup.SYNC()
8 node2 ← treegroup.SHUFFLE(node1, target) // get node from

parent thread
9 if target 6= 2 then // if node has been obtained
10 addr ← GET-POINTER(node2, gid = 1) // get G pointer to the

sibling of interest
11 leaf ← G [addr]
12 if gid = 0 then cache_addr ← STORE-IN-CACHE(leaf, addr)
13 else node ← leaf

14 end

15 node1 ← node
16 target ← (gid = 1 ? GET-PARENT-THREAD(gid,1) : 2)
17 treegroup.SYNC()
18 node2 ← treegroup.SHUFFLE (node1, target) // get node from

parent thread
19 if target 6= 2 then // if node has been obtained
20 addr ← GET-POINTER (node2, false) // get G pointer to the left

sibling
21 leaf ← G [addr]
22 cache_addr ← STORE-IN-CACHE(leaf, addr)

23 end

24 cache_pointers ← 0 // we start propagating cache pointers
25 target ← (gid ≤ 1 ? GET-LEFT-SIBLING-THREAD(gid) : 2)

// get ID of left sibling thread
26 treegroup.SYNC()
27 cache_addr_sibling ← treegroup.SHUFFLE (cache_addr,

target)
28 if target 6= 2 then cache_pointers ←

SET-LEFT-CACHE-POINTER(cache_pointers,
cache_addr_sibling)

29 if gid = 1 then cache_addr ← STORE-IN-CACHE(node,
cache_pointers)

30 treegroup.SYNC()
31 target ← (gid = 0 ? GET-RIGHT-SIBLING-THREAD(gid) : 2)

// get ID of right sibling thread
32 treegroup.SYNC()
33 cache_addr_sibling ← treegroup.SHUFFLE(cache_addr,

target)
34 if target 6= 2 then cache_pointers ←

SET-RIGHT-CACHE-POINTER(cache_pointers,
cache_addr_sibling)

35 if gid = 0 then cache_addr ← STORE-IN-CACHE(node,
cache_pointers)

36 treegroup.SYNC()
37 return treegroup.SHUFFLE(cache_addr, 0) // return cache pointer to

root
38 end

Algorithm 2. Cooperative group synchronous fetching of state

trees.

if so, uses that address to fill the gap. The same is done for the right
sibling at l.16–18. If, after these operations, the node p contains no
gaps (l.19), ready is set to true. If the node still contains a gap,
another loop iteration is required, hence work_to_do is set to
true (l.20).

At l.23, the threads in the group perform a ballot, resulting
in a bit sequence indicating for which threads ready is true. As
long as this is the case for at least one thread, the while-loop
at l.24–33 is executed. The function FIND-FIRST-SET identifies the
least significant bit set to 1 in ballot_result (l.25), and the
SHUFFLE instruction results in all threads in bg retrieving the node
of the corresponding bg thread. This node is subsequently stored
by bg, by calling FINDORPUT-SINGLE (l.26; explained in Section
6.5). Finally, the thread owning the node (l.27) resets its ready
flag (l.28), and if the hash table is considered full, then it reports this
globally (l.29). Otherwise, it records the global address of the stored
node (l.30). After that, ballot_result is updated (l.32). Once
the for-loop is exited, the bg threads determine whether they still
have more work to do (l.35).

1 device function FINDORPUT-MANY(node_t* G, node_t* cache):

2 node_t p, q; index_t addr; bool work_to_do ← true; bool

ready; byte ballot_result

3 auto bg ← TILED-PARTITION〈bucketsize〉(THIS-THREAD-BLOCK())

4 byte offset ← bg.THREAD-RANK()

5 while work_to_do do

6 work_to_do ← false

7 for i← tid − offset; i < CACHE_SIZE; i← i + BLOCK_SIZE

do

8 ready ← false

9 if i + offset < CACHE_SIZE then

10 p ← cache[i + offset]

11 if IS-NEW-LEAF(p) then ready ← true

12 else if IS-NEW-NONLEAF(p) then

13 if LEFT-GAP(p) then

14 cache[i + offset] ← SET-LEFT-GADDR(p,

cache[LEFT-CADDR(p)])

15 end

16 if RIGHT-GAP(p) then

17 cache[i + offset] ← SET-RIGHT-GADDR(p,

cache[RIGHT-CADDR(p)])

18 end

19 if ¬(LEFT-OR-RIGHT-GAP(p)) then ready ← true

20 else work_to_do ← true

21 end

22 end

23 ballot_result ← bg.BALLOT(ready)

24 while ballot_result do

25 lane ← FIND-FIRST-SET(ballot_result) - 1; q ←

bg.SHUFFLE(p, lane)

26 addr ← FINDORPUT-SINGLE(bg, G, q)

27 if offset = lane then

28 ready ← false

29 if addr = FULL then signal hash table full

30 else SET-GADDR(cache[i], addr)

31 end

32 ballot_result ← bg.BALLOT(ready)

33 end

34 end

35 work_to_do ← bg.BALLOT(work_to_do)

36 end

37 end

Algorithm 3. Tree-based find-or-put-many at the thread block

level.

6.5 Single node storage at bucket group
level

In this section, we address how individual nodes are stored by
a cooperative group bg. GPUEXPLORE allows configuration of its
hash tables in the following ways (see Section 4): the default hashing
scheme is multiple-functions hashing. Root compression can be
turned on or off. If it is turned on, instead of one single hash table,
a root table and an internal table is used. When root compression
is used, cuckoo hashing can be turned on. Finally, buckets can be
used of size 1 and of size 8 (for the root table) and 16 (for the
internal table and when root compression is off). These different
configuration options are experimentally compared in Section 7.1.

Algorithm 4 presents one version of the FINDORPUT-SINGLE

function to which a call in (Algorithm 3) is redirected when a
root is provided and cuckoo hashing is applied. Here, G is a root
table, as explained in Section 4. In FINDORPUT-SINGLE, a second
function FOP-CUCKOO-ROOT (l.9–28) is called repeatedly as long
as nodes are evicted or until the pre-configured MAX_EVICT has
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1 device function index_t FINDORPUT-SINGLE(tile_t bg, node_t* G, node_t p):

2 node_t q; index_t addr

3 (q, addr) ← FOP-CUCKOO-ROOT(bg, G, p)

4 for i← 0; q 6= p and i < MAX_EVICT; i← i + 1 do

5 p ← q; (q, addr) ← FOP-CUCKOO-ROOT(bg, G, q)

6 end

7 return (i = MAX_EVICT? FULL; addr)

8 end

9 device function (node_t, index_t) FOP-CUCKOO-ROOT(tile_t bg, node_t* G, node_t p):

10 comprnode_t cp, cq; node_t q

11 hs← GET-HASH-START(p); byte offset ← bg.THREAD-RANK()

12 for i← 0; i < NUM_HASH_FUNCTIONS; i← i + 1 do

13 (addr, cp) ← ADDR-COMPR-ROOT(p, h(hs+i) mod NUM_HASH_FUNCTIONS)

14 (cq, pos) ← HT-FIND(bg, offset, G, addr, cp)

15 if cq = cp then return (p, addr + pos)

16 if cq = EMPTY then

17 hs ← h(hs+i) mod NUM_HASH_FUNCTIONS

18 break

19 end

20 end

21 if i = NUM_HASH_FUNCTIONS then (addr, cp) ←

ADDR-COMPR-ROOT(p, hs)

22 (cq, pos) = HT-INSERT-CUCKOO(bg, offset, G, addr, cp)

23 if cq 6= EMPTY and cq 6= cp then

24 q ← GET-DECOMPR-ROOT(cq, addr)

25 return (q, addr + pos)

26 end

27 return (p, addr + pos)

28 end

Algorithm 4. Single node find-or-put, at bucket group level.

been reached, which prevents infinite eviction sequences (l.4). The
function FOP-CUCKOO-ROOT returns the address where the given
node was found or stored, and the node is either the node that had
to be inserted or the one that was already present.

In the FOP-CUCKOO-ROOT function, lines highlighted in
purple are specific for root compression, i.e., Cleary compression
applied to roots (see Section 4), while the green highlighted lines
concern cuckoo hashing, thereby addressing node eviction. The ID
of the first hash function to be used for nodep, encoded inp itself, is
stored in hs (l.11), and each thread determines its bg offset. Next,
the thread iterates over the hash functions, starting with function
hs (l.12–20). The G address and node remainder cp are computed
at l.13. If the node is new, the remainder is marked as new. If root
compression is not used, we have p = cp. Then, the function HT-
FIND is called to check for the presence of the remainder in the
bucket starting at addr (l.14). If HT-FIND returns the remainder,
then it was already present (l.15), and this can be returned. Note
that the returned address is (addr + pos), i.e., the offset at which
the remainder can be found inside the bucket is added to addr.
Alternatively, if EMPTY is returned, the node is not present and the
bucket is not yet full. In this case, a bucket has been found where the
node can be stored. The used hash function is stored in hs (l.17)
and the for-loop is exited (l.18).

At l.21, if a suitable bucket for insertion has not been found, the
initial hash function hs is selected again. At l.22, the function HT-
INSERT-CUCKOO is called to insert cp. This function is presented
in Algorithm 5. Finally, if a value other than the original remainder
cp or EMPTY is returned, another (remainder of a) node has been
evicted, which is decompressed and returned at l.24–25. Otherwise,
p is returned with its address (l.27).

1 device function (comprnode_t, index_t) HT-INSERT-CUCKOO(tile_t bg, byte offset,

node_t* G, index_t addr, comprnode_t cp):

2 comprnode_t cq ← G [addr + offset]; byte ballot_result ←

bg.BALLOT(cq = cp)

3 if ballot_result then return (cp,

FIND-FIRST-SET(ballot_result) - 1)

4 while ballot_result ← bg.BALLOT(cq = EMPTY) do

5 if offset = FIND-FIRST-SET(ballot_result) - 1 then

6 cq ← ATOMICCAS(G [addr + offset], EMPTY, cp)

7 end

8 cq ← bg.SHUFFLE(cq, FIND-FIRST-SET(ballot_result) - 1)

9 if cq = EMPTY or cq = cp then return (cq,

FIND-FIRST-SET(ballot_result) - 1)

10 cq ← G [addr + offset]

11 end

12 byte i← GET-EVICTION-POS(cp)

13 if offset = i then cq ← ATOMICEXCH(G [addr + offset], cp)

14 cq ← bg.SHUFFLE(cq, i)

15 return (cq, i)

16 end

Algorithm 5. Single node insertion, at bucket group level.

A version of FINDORPUT-SINGLE in which multiple-functions
hashing is used instead of cuckoo hashing is very similar to
Algorithm 4. Essentially, it can be obtained by having FOP-
CUCKOO-ROOT return that the bucket is full at l.24–25 instead of
executing the green highlighted lines.

Finally, we present HT-INSERT-CUCKOO in Algorithm 5. The
function HT-FIND is not presented, but it is almost equal to l.2–
3 of Algorithm 5. At l.2, each thread in bg reads its part of the
bucket G[addr + offset], and checks if it contains cp, the
remainder of p. If it is found anywhere in the bucket, the remainder
with its position is returned (l.3). In the while-loop at l.4–11,
it attempts to insert cp in an empty position. In every iteration,
an empty position is selected (l.5) and the corresponding thread
tries to atomically insert cp (l.6). At l.8, the outcome is shared
among the threads. If it is either EMPTY or the remainder itself,
it can be returned (l.9). Otherwise, the bucket is read again (l.10). If
insertion does not succeed, l.12 is reached, where a hash function
is used by GET-EVICTION-POS to hash cp to a bucket position.
The corresponding thread exchanges cp with the node stored at
that position (l.13). After the evicted node has been shared with the
other threads (l.14), it is returned together with its position (l.15).

6.6 Putting it all together

In this section, we assemble the new algorithms we presented
in the previous sections and show how they fit together in the state
space exploration procedure. Algorithm 6 outlines the steps that
are executed from the initialization of resources until the end of
exploration, after which the number of reachable states is reported.
It is assumed that root compression is applied, meaning that both a
root table and an internal table are used.

The algorithm takes as input n number of GPUs and allocates
n root tables of size ROOT_TABLE_SIZE (l.2). The use of more
than one GPU is discussed in Section 6.7. At the moment, assume
that n = 1. The ROOT_TABLE_SIZE is always a power of 2 and
must be chosen in such a way that all required data structures fit in
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Input : n

Output : reachable

1 procedure GPUEXPLORE(n):

2 G[n][ROOT_TABLE_SIZE]← ∅

3 I[n][INTERNAL_TABLE_SIZE]← ∅

4 worktiles[n][GRID_SIZE× MAX_OPEN_NODES]← ∅

5 progress[n]← ∅

6 error[n]← ∅

7 SET-GPU-CONTEXT(0)

8 (〈G,I〉 [n],worktiles[0])← STORE-INITIAL-STATE()

9 ENABLE-PEER-ACCESS(n)

10 search← 1

11 while search = 1 do

12 foreach gpuid : 0→ n do

13 SET-GPU-CONTEXT(gpuid )

14 EXPLORE(〈G,I〉 [gpuid], worktiles[gpuid], progress[gpuid],

error[gpuid])

15 end

16 search← SYNC-AND-MERGE(progress, error)

17 end

18 reachable← 0

19 foreach gpuid : 0→ n do

20 SET-GPU-CONTEXT(gpuid )

21 reachable← reachable+ COUNT-STATES(G[gpuid])

22 end

23 kernel EXPLORE

(〈G,I〉 [gpuid], worktiles[gpuid], progress[gpuid], error[gpuid]):

24 sh_worktile← ∅; cache← ∅; i← 0

25 SYNCTHREADS()

26 while i < NR_ITERS do

27 cache← PREPARE-CACHE(cache,sh_worktile)

28 SYNCTHREADS()

29 sh_worktile←

FILL-WORKTILE(worktiles[gpuid][bid],G[gpuid])

30 SYNCTHREADS() // see Section 6.3

31 sh_worktile,cache←

FETCH(GET-TREEGROUP(tid),G[gpuid], GET-ROOTREF(tid))

32 SYNCTHREADS() // see Section 6.2

33 cache← GENERATE-SUCCESSORS(sh_worktile, cache)

34 SYNCTHREADS() // see Section 6.4

35 (error[gpuid], 〈G,I〉 [gpuid],sh_worktile)←

FINDORPUT-MANY(G[gpuid],cache)

36 SYNCTHREADS()

37 i← i+ 1

38 if sh_worktile 6= ∅ ∧ i = NR_ITERS then

39 if tid = 0 then progress[gpuid]← 1

40 worktiles[gpuid][bid]← sh_worktile

41 end

42 end

43 end

44 end

Algorithm 6. GPUexplore main exploration procedure.

the global memory. For example, if a GPU has 16 GB of memory,
then a root table consisting of 231 32-bit integers (or 8 GB in total)
can be allocated. In addition, the internal table must be allocatable
in addition to the worktiles array and the progress and
error variables (l.3–6). The internal table is configured to have
a fixed INTERNAL_TABLE_SIZE for 229 64-bit integers (or 4
GB in total). The worktiles array has a predefined size of the
number of thread blocks (GRID_SIZE) times the maximum work
tile size (MAX_OPEN_NODES). Its purpose is to store the current
contents of a work tile at the end of an exploration round, which
consists of an execution of the EXPLORE kernel (l.38) and fetching
the current work tile at the beginning of a round (l.27). This array
resides in global memory and is needed since shared memory is
wiped automatically once a kernel has terminated. The progress

and error variables are used to keep track of whether a next
exploration round is needed and whether an error has occurred in
the current round, respectively.

At l.7, the current GPU context is set to GPU 0. Doing this will
instruct the compiler to run the next GPU operations and memory
allocations on the designated GPU. The initial state is stored by
the routine STORE-INITIAL-STATE. When this is done, the tree of
the initial state is stored in the hash tables, and a reference to the
root of this tree has been added to the work tile of the thread
block that stored the initial state. In general, when a thread block
stores a new state in the hash tables, it immediately adds a reference
to the root of that state to its own work tile, unless that tile is
already completely filled with references. This process is called work
claiming and prevents the block from having to scan the global
memory for new exploration work at the start of every exploration
round. This scanning is time-consuming as it involves many global
memory accesses. At l.9, we enable bi-directional peer access for
the n GPUs to allow all threads to access data freely of every GPU
during the kernel execution. This can be ignored at the moment but
is relevant in Section 6.7.

At l.10–17, the actual exploration of the state space is
performed. The search flag at l.10 is used to ensure that the
search continues as long as there are pending states to explore on
the GPU. This is done iteratively inside the while loop at l.11–17.
The while loop is executed on the host, and inside it, the GPU
kernel EXPLORE is called repeatedly, i.e., exploration rounds are
launched. Since for now, we consider the use of a single GPU, the
loop at l.12–15 involves one iteration only. Inside it, the EXPLORE

kernel is launched [SET-GPU-CONTEXT(gpuid ) at l.13 selects
the appropriate GPU]. The EXPLORE kernel is given at l.23–43.
Once an exploration round has finished, the GPU is synchronized
with the host using the SYNC-AND-MERGE function at l.16. This
function checks if another exploration round is needed andwhether
an error has occurred (for instance, because the hash tables are
considered full and node storage has failed). In general, for nGPUs,
the search flag is updated as follows:

(∀ i.(0 ≤ i < n).error[i] = 0)

∧ (∃ j.(0 ≤ j < n).progress[j] = 1)⇔ search = 1.

For a single GPU, this means that search is set to 1 if and
only if error = 0 and progress = 1. Once the exploration has
terminated, the number of reachable states, which coincides with
the number of roots stored in G, is counted at l.18–22.

At l.23–43, the EXPLORE kernel is described. First of all, at
l.24, (block-local) shared-memory arrays for the work tile and
state cache are created and initialized. In addition, a variable i

is set to 0. This variable is used to keep track of the number of
iterations performed inside a single EXPLORE kernel execution.
The total number of iterations per kernel execution can be
predefined by setting the NR_ITERS constant (l.26). The benefit
of performing more than one iteration per kernel execution is that
the cache contents after one iteration can be reused by the next.
In particular, this means that any states claimed for exploration
in one iteration do not need to be fetched from the global hash
tables at the start of the next iteration, since they already reside
in the cache.

At l.25, the threads in the same block are synchronized
to ensure that the initialization is finished before any thread
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commences. Next, the cache is prepared for the next iteration,
which means that any state trees that are no longer needed,
i.e., that are not referenced by the work tile, are removed.
After that, the work tile is filled with root references using
the FILL-WORKTILE function (l.29). This function retrieves root
references from the global memory copy of sh_worktile,
i.e., worktiles[gpuid][bid], with bid being the ID of the
thread block stored at the end of the previous EXPLORE call
and supplemented with any root references obtained by scanning
G[gpuid] if needed. At l.31, the root references in sh_worktile
are used to fetch the corresponding trees and store these in the
cache. The work tile is updated to consist of references to the roots
in the cache instead of the root table.

At l.33, the function GENERATE-SUCCESSORS is called to
construct the successor states of all the states referenced by
sh_worktile. After the successors have been successfully stored
in cache, the function FINDORPUT-MANY is called at l.35 to
check whether those states exist in the global hash tables, and
if they do not, they are stored. At this point, if either G or I

is reported full for GPU gpuid, the corresponding error flag
error[gpuid] is raised. Work claiming can also be performed
while sh_worktile is executed: while the tile is not filled with
new references, references to states that did not yet exist in the
global hash tables can be added.

Finally, i is incremented (l.37) and if this means that the final
iteration of this kernel execution has been performed while there
are root references in the work tile (l.38), then the progress
variable is set to 1 by thread 0, and the shared memory work tile
is copied to global memory for use in the next execution of the
EXPLORE kernel.

6.7 Multi-GPU state space exploration

Until now, we have considered the situation that a state space
is explored on a single GPU, even though in Section 6.6, we already
hinted at how multiple GPUs can be used. In Figure 9, we show
an extended version of the GPUEXPLORE workflow to utilize the
available GPUs residing on the same machine. In that setting, the
combined global memory of all involved GPUs can be used, and
the GPUs work together in exploring the state space.

As noted in Section 3.3 and Figure 9, the GPUs in amachine can
be connected via NVLink bridges, in which case fast peer-to-peer
communication is possible. For GPUEXPLORE, this means that the
threads of a GPU can access the global memory of all other GPUs.
While this simplifies communication between GPUs, there is still
a need for a mechanism that distributes the exploration work over
the GPUs.

One option would be to use NVIDIA’s unified memory, by
which the global memories of multiple GPUs can be treated as
virtually one address space. This would completely hide the fact that
the memory is physically distributed over multiple GPUs. While
this is appealing, it also has a drawback for those configurations
in which we use a root table and an internal table. In practice, the
internal table can be kept relatively small, meaning that it can be
expected that this table physically resides in the memory of a single
GPU. As a consequence, with unified memory, each time a state

tree is retrieved, which happens at high frequency, the memory of
that GPU will be accessed. While NVLink is fast, accessing the local
global memory is still faster.

For this reason, we opt for a more balanced approach, in which
each GPUmaintains its own separate hash table(s). This means that
when a root table and an internal table are to be used, each GPU
has its own root and internal table. A consequence of this is that the
exploration algorithm needs to explicitly determine for each state
on which GPU it should be stored. This can be done using a hash
function, as is done in distributed model checking (see Section 2):
For a given set of GPU IDs I, a function hown : S → I, with S the
set of states, is used. Each time a state s is constructed, hown(s) is
the GPU that “owns" s, meaning that s should be stored in the hash
table(s) of hown(s). This makes sure that every state is only stored
once in the memory of a single GPU, and it is clear where to search
for a given state.

Since multiple internal tables are used when root compression
is applied, the state storage procedure is altered to ensure that, for
each root stored in the root table of a GPU i, all non-root nodes
belonging to the same state tree are stored in the internal table
of GPU i. The drawback of this is that non-root nodes may be
stored multiple times in different internal tables, i.e., less sharing is
achieved, but the important benefit is that trees stored in the hash
tables of GPU i can be retrieved by the threads of GPU i without
requiring any inter-GPU communication.

This requirement to store all the nodes of a tree in the memory
of one particular GPU raises one question: How do we identify
the owner of a new tree? This is not trivial. Recall that once all
nodes for a new tree have been constructed and stored in the cache
of a thread group, FINDORPUT-MANY is called (see Algorithm 3),
in which the threads in the group scan the cache and search
the encountered nodes in G. At this point, the threads do not
distinguish trees. Since trees are stored bottom up, i.e., the leaves
are stored first, it must be known, when processing those leaves
in FINDORPUT-MANY, to which GPU they belong. In multi-GPU
mode, the owner ID is therefore stored in the cache in combination
with the cache pointers when a node is constructed, i.e., in terms
of Figure 8 inside the gray cells. Since the nodes of a new state
tree are constructed bottom up and left to right, the first leaf
(counting from the left) is used to identify the owner, in other
words; this node is hashed using hown. As this node always contains
the current FSM states of (some of) the FSMs in the input SLCO
model, this node is relatively often updated, which helps in hashing
the states to different owners, thereby stimulating a balanced
work distribution.

We refrain from showing any of the previous algorithms
updated for the multi-GPU setting. The only important changes are
that owner IDs are stored when new nodes are added to the cache,
thereby identifying for each node the GPU it owns. What remains
important to note is that even when the threads of one GPU store
a new state tree in the memory of another GPU, those threads
can still claim that new state for exploration later. Therefore, work
distribution across GPUs is flexible in the same way that work
distribution among blocks of the sameGPU is flexible: if a block still
has not accumulated enough work for the next exploration round,
it is free to claim its newly generated states for itself. However, the
root references in the work tile of a block are assumed to point
to states in the global memory of the same GPU. Hence, work
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FIGURE 9

The multi-GPU workflow of GPUEXPLORE 3.0.

FIGURE 10

Speed obtained by di�erent GPU configurations.

claiming can only be done when the current exploration iteration
is not the last one of the current EXPLORE kernel call. If it is not the
last iteration, the entire state tree already resides in the cache, and
therefore, no root reference needs to be used to retrieve the tree, i.e.,
FETCH does not need to process that tree.

7 Experimental evaluation

We implemented a code generator in PYTHON, using
TEXTX (Dejanović et al., 2017) and JINJA2,4 that accepts an SLCO
model and produces CUDA C++ code to explore its state space.
The code is compiled with CUDA 12 targeting compute capability
7.0 on the Tesla V100 and 7.5 on the Titan RTX. To evaluate
the runtime and memory performance of GPUEXPLORE 3.0, we
conducted two different sets of experiments:

4 https://palletsprojects.com/p/jinja/

1. Various combinations of hashing techniques are tested on a
single GPU and compared to state-of-the-art CPU tools.

2. Based on the results with the experiments, we run the best
hashing technique on a setup of one, two, and four GPUs.

7.1 Hashing experiments

For this set of experiments, we used a machine running LINUX

MINT 20 with a 4-core INTEL CORE i7-7700 3.6 GHz, 32GB RAM
and a Titan RTXGPUwith 24GB of global memory, 64KB of shared
memory, and 4,607 cores running at 2.1 GHz.

The goal of the experiments is to assess how fast GPU
next-state computation using the tree database is with respect
to: (1) the various options we have for hashing, (2) state-of-
the-art CPU tools, and (3) other GPU tools. For state-of-the-
art CPU tools, we compare with 1- and 4-core configurations
for the depth-first search (DFS) of SPIN 6.5.1 (Holzmann
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TABLE 1 Millions of states per second for various reachability tools and configurations.

Model States CPU tools GPUEXPLORE 3.0 Hashing schemes

SPIN LTSMIN Bits CR BU CMP CMP+ BU CMP+ cu CMP CMP+ cu SU

1
core

4
cores

1 core 4 cores + i1 + i1 + i1 + i1 + i30 + i30

adding.20+ 84,709,120 1.128 3.223 1.211 3.938 100 1.96 49.597 56.793 48.879 36.934 74.026 47.694 61×

adding.50+ 529,767,730 O.M. O.M. 1.354 5.356 100 1.96 48.403 103.872 77.243 49.625 131.444 57.968 97×

anderson.6 18,206,917 0.623 1.362 0.516 1.309 122 1.82 14.814 16.035 13.647 11.265 34.111 17.649 62×

anderson.7 538,699,029 O.M. O.M. T. O.M. 141 2.75 9.309 21.192 14.244 10.426 22.326 10.435 41×

at.5 31,999,440 0.646 1.495 0.653 1.880 85 1.86 19.894 29.158 23.633 18.204 38.457 21.375 59×

at.6 160,589,600 0.454 0.869 0.695 2.387 85 1.90 17.901 38.275 27.275 19.498 38.418 20.359 55×

at.7 819,243,816 O.M. O.M. 0.666 2.372 97 1.98 12.415 23.629 17.381 13.194 22.329 13.378 34×

at.8+ 3,739,953,204 O.M. O.M. T. O.M. 97 1.97 O.M. O.M. O.M. 11.698 O.M. 11.854 13×

bakery.5 7,866,401 1.400 2.570 0.410 0.904 140 2.51 11.504 7.838 7.585 6.407 19.362 12.782 47×

bakery.7 29,047,471 1.228 2.592 0.580 1.618 140 2.49 13.236 9.361 9.021 7.698 29.783 17.456 51×

bakery.8 841,696,300 0.760 1.269 0.690 2.436 140 2.40 O.M. 29.410 23.957 17.116 32.778 18.215 48×

elevator2.3 7,667,712 0.554 1.099 0.463 0.985 189 3.96 4.890 3.259 3.185 2.817 6.261 4.827 14×

elevator2.4 91,226,112 0.263 0.561 0.623 1.945 213 3.97 3.025 3.746 2.907 3.087 3.267 2.703 5×

elevator2.5+ 1,016,070,144 O.M. O.M. 0.473 1.630 317 5.95 O.M. 1.871 1.545 1.520 1.839 1.491 4×

frogs.4 17,443,219 1.044 2.228 0.553 1.423 219 3.49 8.423 10.253 8.686 7.767 11.549 8.168 21×

frogs.5 182,772,126 0.531 1.048 0.751 2.630 251 3.84 6.766 9.573 8.214 6.898 9.846 6.943 13×

lamport.6 8,717,688 1.277 1.375 0.490 1.096 96 1.91 11.813 5.126 5.225 4.697 27.966 19.335 57×

lamport.7 38,717,846 1.001 1.822 0.672 1.979 116 1.98 18.176 23.205 18.915 16.170 34.321 20.641 51×

lamport.8 62,669,317 0.917 1.776 0.698 2.194 116 1.98 17.717 25.947 21.015 17.132 35.387 20.864 50×

loyd.2 362,880 1.278 0.758 0.255 0.497 90 1.05 7.339 4.204 4.220 3.723 3.243 3.930 13×

loyd.3 239,500,800 O.M. O.M. 0.650 2.338 114 1.96 18.268 44.073 28.970 26.556 48.328 28.248 74×

mcs.5 60,556,519 0.706 0.615 0.453 1.489 148 2.97 14.504 24.498 19.537 14.710 29.635 15.912 65×

mcs.6 332,544 1.240 0.244 0.181 0.331 156 2.75 6.037 3.003 3.097 2.751 3.446 3.131 19×

peterson.5 131,064,750 0.711 1.617 0.727 2.435 140 2.98 16.034 31.975 21.394 17.813 32.331 16.681 42×

peterson.6 174,495,861 0.852 0.756 0.720 2.451 140 2.98 15.503 32.725 22.975 17.198 34.902 17.030 45×

peterson.7 142,471,098 0.683 1.496 0.652 2.269 175 2.63 13.077 25.667 18.603 13.868 26.183 13.120 37×

(Continued)
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and Bošnački, 2007) and the (explicit-state) breadth-first search
(BFS) of LTSMIN 3.0.2 (Laarman, 2014; Kant et al., 2015).
We only enabled state compression and basic reachability
(without property checking) to favor fast exploration of large
state spaces.

In our implementation, we use 32 invertible hash functions.
Root compression (CMP) can be turned on or off. When selected,
we have a root table with 232 elements, 32 bits each and an internal
hash table with 229 elements, 64 bits each. This enables the storage
of 58-bit roots (two pointers to the internal hash table) in 58 −
32+⌈log2(32)⌉+ 1 = 32 bits. When using buckets with more than
one element (CMP+BU), we have root buckets of size 8 and internal
buckets of size 16. The internal buckets make full use of the cache
line, but the root buckets do not. Making the latter larger means
that too many bits for root addressing are lost for root compression
to work (the remainders will be too large).

Root compression allows turning cuckoo hashing on
(CMP(+BU)+CU) or off (CMP(+BU)). When it is off, compact-
multiple-functions hashing is performed, meaning that hashing
fails as soon as all possible 32 buckets for a node are occupied.

In the configuration BU, neither root compression nor cuckoo
hashing is applied. We use one table with 230 64-bit elements
and buckets of size 16. For reasons related to storing global
addresses in the state cache, we cannot make the table larger.
The 32 hash functions are used without allowing evictions, i.e.,
multiple-functions hashing is applied.

Finally, multiple iterations can be run per kernel launch, as
explained in Section 6.6. Shared memory is wiped when a kernel
execution terminates, but the state cache content can be reused
from one iteration to the next when a kernel executes multiple
iterations by which trees already in the cache do not need to be
fetched again from the tree database. We identified 30 iterations to
be effective in general (i30) and experimented with a single iteration
per kernel launch (i1).

For benchmarks, we used models from the BEEM benchmark
set (Pelánek, 2007) of concurrent systems, translated to SLCO and
PROMELA (for SPIN). We scaled some of them up to have larger
state spaces. Those are marked in the tables with “+.” Timeout is set
to 3,600 s for all benchmarks.

Figure 10 compares the speeds of the different GPU
configurations in millions of states per second, averaged over
five runs. For each configuration, we sorted the data to observe
the overall trend. The higher the speed the better. The CMP + i30
mode (without cuckoo hashing or larger buckets) is the fastest for
the majority of models. However, it fails to complete exploration
for at.8, the largest state space with 3.7 billion states, due to
running out of memory. If cuckoo hashing is enabled with root
compression, all state spaces are successfully explored, which
confirms that higher load factors can be achieved (Awad et al.,
2023).

However, cuckoo hashing negatively impacts performance,
which contradicts the findings of Awad et al. (2023). Although it
is difficult to pinpoint the cause for this, it is clear that this is
caused by our hashing being done in addition to the exploration
tasks, while in articles on GPU hash tables (Alcantara et al., 2012;
Awad et al., 2023), hashing is analyzed in isolation, i.e., the GPU
threads only perform insertions or lookups and are not burdened
with additional tasks, such as successor generation, that require
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TABLE 2 Millions of states per second for various GPU tools.

Tool anderson.6 anderson.7 lamport.8 peterson.5 peterson.6 peterson.7 szymanski.5

GRAPPLE 2.138 14.299 n/a 10.941 9.074 8.967 n/a

GPUEXPLORE 2.0 15.863 O.M. 33.063 16.874 16.705 13.581 26.454

GPUEXPLORE 3.0 (CMP+ i30) 34.111 22.326 35.387 32.331 34.902 26.183 18.357

Pink cells: out of memory (O.M.). The bold values indicate the best GPU times.

additional register variables and instruction steps. With the extra
variables and operations needed for exploration, hashing should be
lightweight, and cuckoo hashing introduces handling evictions. The
more complex code is compiled to a less performant program even
when evictions do not occur.

The same can be concluded for larger buckets. Awad et al.
(2023) and Alcantara et al. (2012) conclude that larger buckets
are beneficial for performance, but for GPUEXPLORE, sacrificing
parallelism to achieve more coalesced memory accesses has a
negative impact, probably also due to the threads performing much
more than only hash tables insertions.

Table 1 compares GPU performance with SPIN and LTSMIN.
From the results of Figure 10, we selected a set of configurations

demonstrating the impact of the various options. For each model,
BITS and CR gives the state vector length in bits and the
compression ratio, defined as (number of roots × number of
leaves per tree)/(number of nodes). With the compression ratio,
we measure how effective the node sharing is compared to if we
had stored each state individually without sharing. In addition, the

speed in millions of states per second is given. Regarding out of
memory, we are aware that SPIN has other, slower, compression
options, but we only considered the fastest to favor the CPU
speeds. Times are restricted to exploration: code generation and
compilation always take a few seconds. The best GPU results are
highlighted in bold. To compute the speedup (SU), the result of
CMP + i30, the overall best configuration, has been divided by the
1-core LTSMIN result. All GPU experiments have been done with
512 threads per block and 3,240 blocks (45 blocks per SM). We
identified this configuration as being effective for anderson.6,
and used it for all models.

While LTSMIN tends to achieve near-linear speedups
(compare 1- and 4-core LTSMIN), the speed of GPUEXPLORE

3.0 heavily depends on the model. For some models, as the
state spaces of instances become larger, the speed increases,
and for others, it decreases. The exact cause for this is hard
to identify, and we plan to work on further optimisations.
For instance, the branching factor, i.e., average number of
successors of a state, plays a role here, as large branching
factors favor parallel computation (many threads will become
active quickly).

Finally, Table 2 compares GPUEXPLORE 3.0 with
GPUEXPLORE 2.0 and GRAPPLE. A comparison with PARAMOC
was not possible as it targets very different types of (sequential)
models. The models we selected are those available for at least two
of the tools we considered. Unfortunately, GRAPPLE does not (yet)
support reading PROMELA models. Instead, a number of models
are encoded directly into its source code, and we were limited to
checking only those models. It can be observed that, in the majority
of cases, our tool achieves the highest speeds, which is surprising,

as the trees we use tend to lead to more global memory accesses,
but it is also encouraging to further pursue this direction.

7.2 Multi-GPU experiments

To set up a multi-GPU environment for the experiments, we
used an elastic compute cloud (EC2) node running AMAZON

LINUX 2 with 4 TESLA V100 GPUs. Each GPU has 16 GB
of global memory, 96 KB of shared memory, and 5,120 cores
operating at 1.5 GHz clock speed. Multi-core CPU experiments
were performed on a different non-GPU node running UBUNTU

22.04 with an Intel Xeon Platinum 8375C having 32 cores operating
at 2.9 GHz.

The goal of the experiments is to assess how far a multi-
GPU setting can improve the runtime of state space exploration
while balancing memory use and the workload, especially for
extremely large models that cannot be processed on a single
GPU. To this end, we extended our benchmarks with the
following new models: peg_solitaire.6, blocks.4,
leader_filters.6, anderson.10+, anderson.11+,
bakery.9+, and lamport.9+. The + symbol implies the
associated models are scaled up. For all multi-GPU experiments,
we chose the best performing configuration for the first set of
benchmarks (CMP + i30). However, we changed the root table size
to 231 to make it fit the V100’s global memory of 16GB. The number
of invertible hash functions and the size of the non-root table
remain the same as in Table 1. Finally, we compare GPUEXPLORE

with a 32-core configuration of LTSMIN.
Table 3 shows the speed of GPUEXPLORE (CMP + i30) in

millions of states per seconds for different numbers of GPUs and
compares it with 32-core LTSMIN. For seven models, exploration
failed on a single GPU as it ran out of memory, while the four
GPUs setup was capable of fully exploring the state space of all
models. Furthermore, a logarithmic acceleration up to 1.9× was
achieved with four GPUs compared to one and two GPUs. We
believe that a linear speedup can be easily accomplished with
faster P2P communications between the GPUs. Compared to 32-
core LTSMIN, GPUEXPLORE with four GPUs achieved speedups of
up to 35.6×; see the bakery.5 model. With regard to memory
footprint, LTSMIN consumes ∼30 GB of memory for the largest
model, at.8+, whilst GPUEXPLORE only uses ∼22 GB of the
pre-allocated hash tables on four GPUs.

Table 4 gives a glance over the workload distribution among
multiple GPUs. We conclude that, with n GPUs, each GPU tends
to explore 1/nth of the reachable states. This is optimal in terms of
load balancing. For many models, GPUEXPLORE ideally distributes
states over two and four GPUs, with 50 and 25% of the work being
done by each GPU, respectively.
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TABLE 3 Millions of states per second for multi-GPU GPUexplore 3.0 (cmp+ i30) and 32-core LTSmin.

Model States

LTSMIN GPUEXPLORE 3.0 (CMP+ i30)

32 Cores 1 GPU 2 GPUs 4 GPUs
Speedup of 4 GPUs

32 Cores 1 GPU 2 GPUs

adding.20+ 84,709,120 5.719 103.133 113.844 84.250 14.7× 0.8× 0.7×

adding.50+ 529,767,730 19.976 144.019 133.355 93.672 4.7× 0.7× 0.7×

anderson.8 832,270,168 7.829 22.239 31.583 33.733 4.3× 1.5× 1.1×

anderson.10+ 2,035,746,654 8.086 O.M. 22.094 30.999 3.8× — 1.4×

anderson.11+ 3,153,816,853 8.279 O.M. O.M. 28.989 3.5× — —

at.5 31,999,440 2.641 44.216 68.771 50.793 19.2× 1.1× 0.7×

at.6 160,589,600 7.78 46.191 75.249 49.557 6.4× 1.1× 0.7×

at.7 819,243,816 12.013 27.676 41.673 42.821 3.6× 1.5× 1.03×

at.8+ 3,739,953,204 12.037 O.M. O.M. 34.626 2.9× — —

bakery.5 7,866,401 1.084 25.588 32.999 38.638 35.6× 1.5× 1.2×

bakery.7 29,047,471 2.179 37.374 48.959 48.263 22.1× 1.3× 1×

bakery.8 841,696,300 13.093 O.M. 58.100 54.910 4.2× — 0.9×

bakery.9+ 2,677,494,505 14.385 O.M. O.M. 49.753 3.5× — —

elevator2.3 7,667,712 1.123 14.862 7.769 11.054 9.8× 0.7× 1.4×

elevator2.4 91,226,112 4.825 12.254 5.858 8.142 1.7× 0.7× 1.4×

elevator2.5+ 1,016,070,144 8.489 5.429 2.430 3.074 0.4× 0.6× 1.3×

frogs.4 17,443,219 1.717 24.281 28.216 34.719 20.2× 1.4× 1.2×

frogs.5 182,772,126 8.724 23.480 23.814 34.812 4× 1.5× 1.5×

lamport.6 8,717,688 1.253 38.542 43.699 39.304 31.4× 1.02× 0.9×

lamport.7 38,717,846 3.001 37.921 45.684 48.58 16.2× 1.3× 1.1×

lamport.8 62,669,317 4.309 38.227 46.029 48.072 11.2× 1.3× 1.04×

lamport.9+ 1,436,848,880 12.113 O.M. 25.906 40.075 3.3× — 1.5×

loyd.3 239,500,800 8.558 119.006 100.979 55.98 6.5× 0.5× 0.6×

mcs.5 60,556,519 3.287 33.219 32.683 42.516 12.9× 1.3× 1.3×

peterson.5 131,064,750 6.867 41.237 47.091 48.430 7.1× 1.2× 1.03×

peterson.6 174,495,861 7.942 43.886 49.391 47.004 5.9× 1.1× 0.9×

peterson.7 142,471,098 6.367 33.046 33.075 46.774 7.3× 1.4× 1.4×

phils.6 14,348,906 1.126 8.799 11.158 16.983 15.1× 1.9× 1.5×

phils.7 71,934,773 2.556 7.271 7.976 13.351 5.2× 1.8× 1.7×

phils.8 43,046,720 1.999 10.667 8.983 11.009 5.5× 1.03× 1.2×

peg_solitaire.6 2,383,981,575 4.315 O.M. O.M. 1.194 0.3× — —

szymanski.5 79,518,740 4.178 20.950 19.645 30.078 7.2× 1.4× 1.5×

blocks.4 104,906,622 5.108 10.666 10.762 17.799 3.5× 1.7× 1.7×

leader_filters.6 220,913,716 9.271 32.179 29.359 34.342 3.7× 1.1× 1.2×

Pink cells: out of memory (O.M.). The bold values indicate values higher than 1.0×.

8 Conclusion and future work

In this study, we presented GPUEXPLORE 3.0, which is
equipped with a novel GPU tree database. We discussed new
algorithms to fetch, generate, and store state trees. This database
enables memory-efficient explicit state space exploration for

FSMs with data. The new hashing schemes compact-cuckoo and
compact-multiple-functions hashing make it possible to use, for
the first time, Cleary compression on GPUs. Experiments show
processing speeds of up to 144 million states per second.

Furthermore, we extended our implementation to using
multiple GPUs, when available, on a single machine. Experiments
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TABLE 4 Percentage of reachable states discovered over multiple GPUs.

Model States
1 GPU 2 GPUs 4 GPUs

GPU 0 GPU 0 GPU 1 GPU 0 GPU 1 GPU 2 GPU 3

adding.20+ 84,709,120 100 50 50 25 25 25 25

adding.50+ 529,767,730 100 50 50 25 25 25 25

anderson.8 832,270,168 100 50 50 25 24 25 26

anderson.10+ 2,035,746,654 O.M. 50 50 24 26 25 25

anderson.11+ 3,153,816,853 O.M. O.M. 24 25 26 25

at.5 31,999,440 100 50 50 25 25 25 25

at.6 160,589,600 100 50 50 25 25 25 25

at.7 819,243,816 100 50 50 25 25 25 25

at.8+ 3,739,953,204 O.M. O.M. 25 25 25 25

bakery.5 7,866,401 100 51 49 26 24 25 26

bakery.7 29,047,471 100 49 51 27 22 26 25

bakery.8 841,696,300 O.M. 51 49 23 24 28 25

bakery.9+ 1,918,830,470 O.M. O.M. 28 24 25 23

elevator2.3 7,667,712 100 44 56 24 23 27 27

elevator2.4 91,226,112 100 49 51 23 24 24 29

elevator2.5+ 1,016,070,144 100 53 47 30 22 23 25

frogs.4 17,443,219 100 58 42 20 25 26 29

frogs.5 182,772,126 100 43 57 22 23 24 31

lamport.6 8,717,688 100 50 50 25 25 25 25

lamport.7 38,717,846 100 50 50 25 25 25 25

lamport.8 62,669,317 100 50 50 25 25 25 25

lamport.9+ 1,436,848,880 O.M. 50 50 25 25 25 25

loyd.3 239,500,800 100 50 50 25 25 25 25

mcs.5 60,556,519 100 50 50 25 25 25 25

peterson.5 131,064,750 100 50 50 25 25 25 25

peterson.6 174,495,861 100 50 50 25 25 25 25

peterson.7 142,471,098 100 50 50 25 25 25 25

phils.6 14,348,906 100 50 50 25 25 25 25

phils.7 71,934,773 100 50 50 25 25 25 25

phils.8 43,046,720 100 50 50 25 25 25 25

peg_solitaire.6 2,383,981,575 O.M. O.M. 30 25 26 19

szymanski.5 79,518,740 100 49 51 25 25 25 25

blocks.4 104,906,622 100 50 50 25 25 25 25

leader_filters.6 220,913,716 100 50 50 25 25 25 25

Pink cells: out of memory (O.M.).

show that the work and storage distributions are optimal and
that the use of four GPUs can improve the performance of
GPUEXPLORE up to two times faster than a single GPU with
communication overhead taken into account.

In the last decade, new GPUs have been increasingly effective
for state space exploration (Cassee et al., 2017), and in the

future, they are expected to be more capable of handling
thread divergence, which still heavily occurs when accessing
the hash tables. Therefore, we are optimistic about further
improvements. For the future, we plan to focus on further
optimising GPUEXPLORE and adding support for the verification
of temporal logic formulae.
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Neele, T., Wijs, A., Bošnački, D., and van de Pol, J. (2016). “Partial order reduction
for GPUmodel checking,” in ATVA, Volume 9938 of LNCS (Cham: Springer), 357–374.
doi: 10.1007/978-3-319-46520-3_23

Osama, M. (2022). GPU Enabled Automated Reasoning [PhD thesis]. Eindhoven:
Eindhoven University of Technology. ISBN: 978-90-386-5445-4.

Osama, M., Gaber, L., Hussein, A. I., and Mahmoud, H. (2018). An efficient SAT-
based test generation algorithm with GPU accelerator. J. Electron. Test. 34, 511–527.
doi: 10.1007/s10836-018-5747-4

Osama, M., and Wijs, A. (2019a). “Parallel SAT simplification on GPU
architectures,” in TACAS, Volume 11427 of LNCS (Cham: Springer), 21–40.
doi: 10.1007/978-3-030-17462-0_2

Osama, M., and Wijs, A. (2019b). “SIGmA: GPU accelerated simplification of SAT
formulas," IFM, Volume 11918 of LNCS, eds W. Ahrendt, and S. Tapia Tarifa (Cham:
Springer), 514–522. doi: 10.1007/978-3-030-34968-4_29

Osama, M., and Wijs, A. (2021). “GPU acceleration of bounded model checking
with ParaFROST,” in CAV, Part II, Volume 12760 of LNCS, eds A. Silva, and K. R. M.
Leino (Cham: Springer), 447–460. doi: 10.1007/978-3-030-81688-9_21

Osama, M., Wijs, A., and Biere, A. (2021). “SAT solving with GPU accelerated
inprocessing,” in TACAS, volume 12651 of LNCS, eds J. F. Groote, and K. G. Larsen
(Cham: Springer), 133–151. doi: 10.1007/978-3-030-72016-2_8

Osama, M., Wijs, A., and Biere, A. (2023). Certified SAT solving
with GPU accelerated inprocessing. Form Methods Syst Des. 133–151.
doi: 10.1007/s10703-023-00432-z

Pagh, R., and Rodler, F. F. (2001). “Cuckoo hashing,” in ESA, Volume 2161 of LNCS,
ed. F. M. auf der Heide (Berlin: Springer), 121–133. doi: 10.1007/3-540-44676-1_10

Pelánek, R. (2007). “BEEM: benchmarks for explicit model checkers,” in SPIN 2007,
Volume 4595 of LNCS (Berlin: Springer), 263–267.

Prevot, N., Soos, M., and Meel, K. (2021). “Leveraging GPUs for effective clause
sharing in parallel SAT solving,” in SAT, Volume 12831 of LNCS, eds C. M. Li, and F.
Manyà (Cham: Springer), 471–487. doi: 10.1007/978-3-030-80223-3_32

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia,
PA: SIAM. doi: 10.1137/1.9780898718003

van der Vegt, S., and Laarman, A. (2011). “A parallel compact hash table,” in
MEMICS, Volume 7119 of LNCS, eds Z. Kotásek, J. Bouda, I. Černá, L. Sekanina, T.
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Wijs, A., and Bošnački, D. (2016). Many-core on-the-fly model checking of safety
properties using GPUs. STTT 18, 169–185. doi: 10.1007/s10009-015-0379-9
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