AUTHOR=von Laszewski Gregor , Fleischer J. P. , Knuuti Robert , Fox Geoffrey C. , Kolessar Jake , Butler Thomas S. , Fox Judy TITLE=Opportunities for enhancing MLCommons efforts while leveraging insights from educational MLCommons earthquake benchmarks efforts JOURNAL=Frontiers in High Performance Computing VOLUME=1 YEAR=2023 URL=https://www.frontiersin.org/journals/high-performance-computing/articles/10.3389/fhpcp.2023.1233877 DOI=10.3389/fhpcp.2023.1233877 ISSN=2813-7337 ABSTRACT=
MLCommons is an effort to develop and improve the artificial intelligence (AI) ecosystem through benchmarks, public data sets, and research. It consists of members from start-ups, leading companies, academics, and non-profits from around the world. The goal is to make machine learning better for everyone. In order to increase participation by others, educational institutions provide valuable opportunities for engagement. In this article, we identify numerous insights obtained from different viewpoints as part of efforts to utilize high-performance computing (HPC) big data systems in existing education while developing and conducting science benchmarks for earthquake prediction. As this activity was conducted across multiple educational efforts, we project if and how it is possible to make such efforts available on a wider scale. This includes the integration of sophisticated benchmarks into courses and research activities at universities, exposing the students and researchers to topics that are otherwise typically not sufficiently covered in current course curricula as we witnessed from our practical experience across multiple organizations. As such, we have outlined the many lessons we learned throughout these efforts, culminating in the need for