
TYPE Original Research

PUBLISHED 25 August 2023

DOI 10.3389/fhpcp.2023.1151530

OPEN ACCESS

EDITED BY

Phillip G. Bradford,

University of Connecticut, Stamford,

United States

REVIEWED BY

Arnis Lektauers,

Riga Technical University, Latvia

Muhammad Zakarya,

Abdul Wali Khan University Mardan, Pakistan

*CORRESPONDENCE

Lucas Iacono

liacono@know-center.at

RECEIVED 26 January 2023

ACCEPTED 04 August 2023

PUBLISHED 25 August 2023

CITATION

Iacono L, Pacios D and Vázquez-Poletti JL

(2023) SNDVI: a new scalable serverless

framework to compute NDVI.

Front. High Perform. Comput. 1:1151530.

doi: 10.3389/fhpcp.2023.1151530

COPYRIGHT

© 2023 Iacono, Pacios and Vázquez-Poletti.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

SNDVI: a new scalable serverless
framework to compute NDVI

Lucas Iacono1*, David Pacios2 and Jose Luis Vázquez-Poletti2

1Know-Center, Human AI Interaction Area, Graz, Austria, 2Departamento de Arquitectura de

Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid,

Spain

Farmers and agronomists require crop health metrics to monitor plantations

and detect problems like diseases or droughts at an early stage. This enables

them to implement measures to address crop problems. The use of multispectral

images and cloud computing is conducive to obtaining such metrics. Drones and

satellites capture extensivemultispectral image datasets, while the cloud facilitates

the storage of these images and provides execution services for extracting crop

health metrics, such as the Normalized Di�erence Vegetation Index (NDVI). The

use of the Cloud to compute NDVI poses new research challenges, such as

determining which cloud technology o�ers the optimal balance of execution time

and monetary cost. In this article, we present Serverless NDVI (SNDVI), a new

framework based on serverless computing for NDVI computation. The objective

of SNDVI is to minimize the monetary costs and computing times associated

with using a Public Cloud while processing NDVI from large datasets. One of

SNDVI’s key contributions is to crop the dataset into subsegments to leverage

Lambda’s ability to run up to 1,000 NDVI computing functions in parallel on each

subsegment. We deployed SNDVI using Amazon Lambda and conducted two

experiments to analyze and validate its performance. Both experiments focused

on two key metrics: (i) execution time and (ii) monetary costs. The first experiment

involved executing SNDVI to extract NDVI from a multispectral dataset. The

objective was to evaluate the overall SNDVI functionality, assess its performance,

and verify the quality of SNDVI output. In the second experiment, we conducted

a benchmarking analysis comparing SNDVI with an EC2-based NDVI computing

architecture. Results from the first experiment demonstrated that the processing

times for the entire SNDVI execution ranged from 9 to 15 seconds, with a total

cost (including storage) of 4.19 USD. Results from the second experiment revealed

that the monetary costs of EC2 and Lambda were similar, but the computing

time for SNDVI was 411 times faster than the EC2 architecture. In conclusion, the

investigation reported in this paper demonstrates that SNDVI successfully achieves

its goals and that Serverless Computing presents a promising native serverless

alternative to traditional cloud services for NDVI computation.

KEYWORDS

serverless computing, NDVI, cloud computing, remote sensing, precision agriculture,

crops monitoring, Amazon Lambda

1. Introduction

Farmers have adopted technology as part of their daily farming activities. Thanks to

technology, farmers can improve the quality of their crops, increase their profits and provide

the necessary food for people. The use of remote sensing technologies to analyse andmonitor

crop quality at each phenological stage is increasingly widespread (Zhang et al., 2019).

Remote sensors such as multispectral cameras on drones or satellites obtain images

composed of different bands of the electromagnetic spectrum that crops emit or reflect.

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2023.1151530
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2023.1151530&domain=pdf&date_stamp=2023-08-25
mailto:liacono@know-center.at
https://doi.org/10.3389/fhpcp.2023.1151530
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2023.1151530/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

These electromagnetic bands permit the computation of a wide

range of crop health metrics like the Normalized Difference

Vegetation Index (NDVI). The NDVI is used to obtain information

about the quantity, quality and development of vegetation. This

metric is based on the measurement of the intensity of radiation

from certain bands of the electromagnetic spectrum that crops emit

or reflect (Carlson and Ripley, 1997).

Although there are different metrics that could be used to

determine crop health (SAVI, EVI, GLI, among others), in this

paper we focus on NDVI computation because it is the most widely

used vegetation index for retrieval of vegetation canopy biophysical

properties (Jiang et al., 2006). However, in future research, we will

apply the current methodology to compute other metrics.

The NDVI is calculated as follows:

NDVI =
(NIR− Red)

(NIR+ Red)
(1)

Where the variables Red and NIR represent the spectral

reflection measurements acquired in the red and near-infrared

regions, respectively. The NDVI is calculated as the ratio of the

difference between near-infrared light (NIR) and red light to the

sum of these two measures. The NDVI values range between -1 and

+1, representing the proportion of green leaf vegetation. Negative

NDVI values, approaching –1, correspond to water bodies, as water

reflects more in the visible and less in the NIR. On the other hand,

values close to +1 (typically around 0.8–0.9) correspond to dense

green leaves, as healthy vegetation absorbs more visible light (red)

and reflectsmore near-infrared light. Therefore, the NDVI provides

a measure of healthy green vegetation and its distribution.

In order to obtain the NDVI, there are algorithms that process

large image datasets (from Gigabytes up to Terabytes). This is

where Cloud and Serverless Computing play a fundamental role.

Cloud Computing provides solutions to the problem of large

image dataset processing due to its reliability, availability and

scalability. The Cloud offers access to computing infrastructure

composed of virtual machines under a pay-per-use price model.

Such infrastructure can be tuned according to the user’s needs

because the Cloud offers a wide range of hardware and

software configurations. Furthermore, the monetary costs of Cloud

resources may be lower compared to the traditional in-house

clusters (Zhai et al., 2011).

Moreover, it is worth mentioning that the cloud model’s

flexibility is a key advantage for scenarios with seasonal variations

like NDVI computation. Users can easily scale resources based

on demand, optimizing spending and making cloud computing a

cost-effective option for handling fluctuating workloads.

Originally, the Cloud Computing model provided three types

of services: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Given Cloud is a constantly

evolving technology, nowadays there are new services that increase

the original Cloud capabilities. One of these services is Function as

a Service (FaaS), also called Serverless Computing.

Serverless computing is a platform that hides server usage

from developers and runs on-demand codes automatically scaled

and billed only for the time the code is running (Castro et al.,

2019). Serverless applications are delivered to users through a set

of functions which are triggered by system-generated events and

user-generated events (Vazquez-Poletti and Llorente, 2018). The

functions have a short lifetime and are executed through containers

or virtual machines (Shahrad et al., 2019).

In this paper, we present Serverless NDVI (SNDVI), a serverless

application specifically designed for NDVI calculation. SNDVI’s

main goal is to reduce the monetary costs and execution times of

NDVI calculation. It also lay the foundations for the development

of new serverless applications that will enable obtaining other crop

metrics required by the agricultural ecosystem.

SNDVI was implemented by using Amazon Web Services

(AWS) (Amazon, 2023c) and validated through two experiments.

The first experiment consisted of the execution of SNDVI to

calculate NDVI from a dataset of multispectral images collected

with the Landsat 8 satellite (USGS, 2023). The results of experiment

1 showed that the entire architecture required between 9 and

15 seconds to extract the NDVI from the dataset when it

runs on Amazon Lambda. The total monetary cost of the

execution was about 4.19 (US Dollars), including S3 storage and

Lambda functions.

In the second experiment, we conducted a benchmarking

analysis comparing SNDVI with an EC2-based NDVI computing

architecture in order to compare the performance of SNDVI with

other architectures based on traditional cloud computing services.

The results show that SNDVI fulfills its original purpose and has

a good performance in terms of execution time and monetary

costs. Specifically, the processing costs (the ones that don’t include

S3 storage because S3 monetary costs are the same in Lambda

and EC2) were approximately the same in both cases: 0.06 US

Dollars in Lambda and 0.061 US Dollars in Amazon EC2. In the

comparison done in Experiment 2, the main difference between

EC2 and Lambdawas the execution time. The time required on EC2

was approximately 411 times greater than in Lambda.

Our native serverless solution has different contributions to

data processing:

• The ability to minimize computing times and processing

costs. In this article, we have demonstrated that serverless

computing lowers the cost and execution time of NDVI

calculation when compared to traditional cloud computing

services such as EC2.

• Workload distribution. SNDVI can distribute the workload

across a network of cloud-based servers, allowing for more

efficient use of computing resources and reducing the need for

costly infrastructure. This makes it an ideal solution for data

processing in industries such as agriculture, where there is a

vast amount of data generated from various sources, including

sensors, drones, and satellites.

• On-demand big data processing. With the ability to scale

up or down based on demand, SNDVI can help agriculture

companies process and analyse large amounts of data quickly

and cost-effectively. This can help to improve decision-

making and operational efficiency, leading to better crop yields

and reduced costs.

In brief, the development of new data processing infrastructure

in agriculture using the methodology presented in this paper has

a high potential for contributing to the agricultural industry. This

contribution is based on providing farmers with the tools they need

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

to make more informed decisions and maximize their yield while

minimizing costs.

This paper is organized as follows. Section 2 summarizes some

research works developed by the scientific community related to

the use of serverless computing for satellite and drone image

processing. In Section 3, we detail SNDVI, including its architecture

and main components. Then, Section 4 presents the experiments

performed to validate SNDVI and their results. Finally, Section

5 discusses the conclusions of this paper and our plan for

future research.

2. Related works

In recent years satellite constellations such as Landsat, Modis

(NASA, 2023) and Sentinel-2 (ESA, 2023) have generated petabytes

of data. As an example, we can mention that The Sentinel satellites

acquired about 24.87 petabytes of remote sensing data by the end of

2020 (Drusch et al., 2012). If we also consider drones that generate

higher-resolution images, we can state without hesitation that in

the upcoming years, the volume of information will be a challenge

for the development of applications capable of computing such

volumes of data.

Several authors have faced this challenge and developed

different solutions to provide answers to the demand for computing

large volumes of data in agriculture. While the use of Cloud

Computing is not a novelty in remote sensing data processing,

the use of Serverless Computing beyond querying sensor data

is. This is why, our native serverless approach involves the

application of serverless computing in the main phases of the

remote sensing data process (data query, metrics computation,

and results presentation). In this chapter, we analyse related works

about the use of serverless computing for satellite and drone

image processing.

In Wu et al. (2022), the authors validate the feasibility of

a framework based on serverless computing for remote data

processing. They deploy their architecture on the Alibaba Cloud

and test it by performing NDVI with Landsat 8 images. In the

experiment, each image is split into four parts of 256 * 256

pixels and then the NDVI is performed with each tile. After the

experiments, the authors state that the NDVI computation using

Serverless Computing has clear benefits depending on the hardware

used on the Instance hosting the functions, but if the memory

consumption is more than 4 GB, the computing time could not be

reduced. Also, they found that computing times vary from 700 to

400 ms depending on the current state of the infrastructure (cold

starting, already started or performance mode).

Yang et al. (2021) developed FAASRS, another framework based

on Serverless Computing for remote sensor data computation.

FAASRS is deployed using Amazon Lambda (Amazon, 2023a)

and Python. The framework developed by the authors breaks the

job by partitioning the image into small mosaics based on the

user’s algorithm. Then divides the task by splitting the image into

mosaics according to the geospatial region. Finally, FAASRS uses

each Lambda worker to perform the computation of each mosaic.

While the authors use serverless computing as a fundamental

component of their framework, the platform uses Amazon EC2

Virtual Machines to coordinate the execution of the Lambda

workers. Therefore, this platform is not completely serverless.

In Chu et al. (2020) the IBM research team presents a serverless

pipeline for ingesting, storing, and querying remote sensed satellite

data using IBM Cloud. The raw data is collected periodically

through ground stations and stored in object storage, which is not

suitable for efficient querying. Therefore, the data is transformed

into a queryable format, such as Parquet or cloud-optimized

GeoTIFF, using IBM Cloud Code Engine, which accommodates

elastic scaling and “spiky” activity. The transformed data is stored

in IBM Cloud Object Storage, and cloud functions can be invoked

to query raster imagery, given a region and time range. In general,

this approach provides a simple developer experience to manage

terabytes to petabytes of remote sensing data using an affordable

form of cloud storage and computing.

The use of Serverless Computing together with other Cloud

Computing services for remote data processing has also been

addressed by scientists working in land use and cover monitoring

(Ferreira et al., 2020). In their work, Ferreira et. al. evaluate the

use of AWS services in these applications. The authors found that

this platform contains several image datasets such as Landsat-8 and

Sentinel 2, which is a great advantage compared to other options in

the market. Among the different use cases discussed in the paper,

there is a web platform that supports deforestation detection by

allowing the visualization of remote sensing images stored in AWS

S3 (Amazon, 2023b) buckets through maps services and APIs for

Spatio Temporal Asset Catalogs deployed on Lambda functions.

The Terra-Byte platform developed by the Leibnitz Super

Computing Center and the DLR (German Aerospace Center) is an

HPC data analytic infrastructure designed to fill the requirements

of earth observation application processing (Eismann et al., 2020).

The core of the platform is an HPC storage space (about 30

PBytes) which stores earth observation data and serves different

applications. In this infrastructure, data query is one of the

main tasks to focus on. Also, Terra-Byte provides its computing

infrastructure through PaaS and FaaS capabilities developed on top

of Amazon Services.

Table 1 provides an overall view of the papers reviewed in

our paper and SNDVI. The Table details the used approach

(serverless computing, cloud computing or a combination of

both), the services provider and the application domain of each

previous work.

After reviewing the state of the art, we can observe that

the use of serverless computing has gained significant popularity

in recent years due to its ability to offer a more efficient and

cost-effective way of deploying and running cloud applications.

However, the development of data processing architectures fully

based on Serverless Computing for Image Processing is still

relatively new, and there is limited research on how to design,

implement, and validate such architectures.

The above-mentioned gap in knowledge raises a significant

problem for organizations (such as precision agriculture software

providers) looking to improve their data processing systems

through serverless computing. Therefore, our main research

problem consists in defining a data processing architecture fully

based on serverless computing and its performance validation.

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

TABLE 1 Previous works surveyed in this section.

Reference Technologies Provider Application
domain

Wu et al.

(2022)

Serverless Alibaba cloud NDVI

computation

Yang et al.

(2021)

Serverless and

cloud

Amazon NDVI

computation

Chu et al.

(2020)

Serverless and

cloud

IBM cloud Earth

observation data

query

Ferreira et al.

(2020)

Serverless and

cloud

Amazon Deforestation

analysis

Eismann et al.

(2020)

Serverless and

cloud

Amazon and

others

Earth

observation

applications

SNDVI Serverless Amazon NDVI

computation

3. SNDVI

In this Section, we discuss the architecture and the execution

path of SNDVI.

3.1. Serverless NVDI model

This paper presents a serverless distributed architecture

that utilizes two S3 buckets and two Lambda functions to

perform calculations of the NVDI. Figure 1, illustrates the overall

architecture of SNDVI. The architecture is designed to be

cost-effective and scalable, allowing for easy deployment and

maintenance. The two S3 buckets are used for data storage and

retrieval, while the two Lambda functions are responsible for

processing the NVDI calculations.

The design of this architecture allows for efficient and accurate

calculation of NVDI, making it a valuable tool for various industries

such as agriculture and remote sensing.

Our Serverless solution is a cost-effective alternative to running

NDVI computations compared with Amazon EC2 instances-based

platforms and hybrid platforms which combine EC2 and Lambda.

The cost difference between serverless (AWS Lambda) and EC2

instances is a crucial aspect to consider in the choice of architecture.

In our experiments, we found that the monetary cost of using

Lambda and EC2 was similar, while S3 costs are the same in both

cases (4.13 US Dollars). However, the significant difference lies in

the execution time. For instance, the time required to compute 1000

images on AWS Lambda was approximately 411 times faster than

on the EC2 architecture. This is due to Lambda’s ability to execute

up to 1000 functions in parallel, a capability not easily available

on EC2 without the use of more instances and specialized Python

parallelism techniques.

In contrast with other papers surveyed in the state of the art

(Yang et al., 2021; Wu et al., 2022) SNDVI eliminates the need

to manage the server infrastructure. With our serverless solution,

the cloud provider takes care of all the underlying infrastructure,

including scaling, security, and availability, which can significantly

reduce costs. While serverless computing may not be suitable for

all use cases, it can be the right option for applications that have

variable and unpredictable workloads and can benefit from the

flexibility and scalability of serverless architectures.

First of all, we are going to discuss the internal materials created

for the optimization of Lambda functions.

3.2. Custom layers for Lambda functions

In the context of AWS Lambda, a layer is a way to package

external dependencies, libraries or custom runtimes that the

function code requires to execute properly. However, there are

specific cases where it is not feasible to use Lambda layers due

to the large size of the libraries. One of these cases is SNDVI,

where a specific library that is required for the calculation of

the NVDI is the Python package called “GDAL” (Geospatial Data

Abstraction Library) (Warmerdam, 2008). This package provides

a set of tools and libraries that allow for the efficient handling of

large image datasets. GDAL can manipulate (read, write, crop, tile,

re-project, etc.) raster and vector geospatial data formats such as

satellite imagery.

In SNDVI, we did not use the standard Lambda layer to execute

GDAL due to its size. Instead, we followed a “black box” approach

by compiling GDAL together with the NDVI codes into a binary file

using PyInstaller. This binary is the SNDVI component that opens

the satellite multispectral image and calculates NDVI.

3.3. Custom binary compiled code

The “black box” approach used in SNDVI involves compiling

the code into a standalone binary and calling it from a

Lambda function using a script. This approach presents the

following advantages.

• Greater control over the execution environment. The binary

enables the creation of a self-contained package that is not

dependent on the underlying infrastructure or runtime. This

is useful for situations where the specific version of a library or

dependency is important.

• Improvement of the Lambda function performance. By

following the “black box” approach it is possible to reduce

the overhead associated with interpreting the code at runtime,

leading to faster execution times. This can be particularly

beneficial for computationally-intensive tasks such as image

processing or machine learning.

3.3.1. SNDVI binary functioning
First, our binary opens two input images from the multispectral

dataset (NIR and Red) using the “GDALOpen()” function.

Second, the binary retrieves the band of each image using

the GetRasterBand method. The code execution continues

accessing the number of rows, columns and the geo-transform

information from the image using the RasterYSize, RasterXSize,

and GetGeoTransform properties. Third, it sets the output as a

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

FIGURE 1

Architecture of SNDVI.

32-bit floating point (–1 to 1), and then it calculates the NDVI.

In SNDVI the GDAL default format (32-bit floating point) is

used to do the NDVI computation. Finally, the binary writes the

output image using the GDT_Float32 data type. This image is the

NDVI result.

3.3.2. SNDVI binary generation
The NDVI binary was generated using PyInstaller (Cortesi,

2022). This tool packs a Python application and all its dependencies

(e.g., GDAL and Numpy) into a single package. The user can

execute the packaged app without installing a Python interpreter

or any packages. Since the Lambda functions run on the Amazon

Linux operating system, the binary filemust be compatible with this

operating system. Table 2, details the main steps of the procedure

implemented to compile the NDVI binary file.

3.4. Execution path

The first step in the SNDVI execution starts at the local layer

and is the streaming of the satellite raw images to Amazon S3

using the Amazon Command Line (see Process 1 in Figure 1).

TABLE 2 Binary NDVI file generation procedure.

Step Details

1 Deploy of Amazon EC2 instance running Amazon Linux OS.

2 PyInstaller installation.

3 Installation of dependencies required by NDVI code (GDAL,

Numpy, etc.).

4 Creation of .py file with source code for NDVI calculation

software.

5 Test and debugging of NDVI python code.

6 Compilation of binary file using PyInstaller.

7 Downloading of binary file from EC2 instance to local storage

system.

8 Uploading of generated binary file to S3 bucket to be called

by the Lambda function.

When a new image arrives in the S3 bucket, there is a trigger (3)

that activates a Lambda function (3) called Cropping Function.

This function is responsible for cropping the image into smaller

fragments due to limitations in storage space. There are at least

two ways to accomplish this: (i) by using a version of OpenCV, a

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

popular computer vision library or (ii) through Pillow layers (Clark

et al., 2019), which is a powerful image manipulation library in

Python.

Once the image has been cropped, the fragments are then

deposited in the second S3 bucket (4), triggering (5) the next

Lambda function. This function called NDVI can then be used to

perform additional processing on the fragments, such as the NVDI

calculations or other image analysis tasks.

This function loads the compiled binary from S3 in Lambda and

also provides the binary with the image to be processed from the S3

input bucket. The binary is able to perform the NVDI calculations

thanks to the use of the previously mentioned layer of GDAL.

Once the calculations have been completed, the resulting image

is deposited (6) in a final S3 bucket ready for download (7) via

Amazon CLI.

Finally, when the NVDI calculations have been completed, edge

computing is used (8) to combine all the images together in a single

output file, which can be easily accessible and analyzed.

4. Methods and materials

4.1. Experiments

In this section, we detail the experiments performed to

evaluate SNDVI. In the first experiment, we analyzed the SNDVI

performance and validated the quality of the NDVI obtained after

SNDVI execution. In the second experiment, we conducted a

benchmark of SNDVI with another NDVI architecture based on

Amazon EC2. In both experiments, we used two performance

metrics: execution time and monetary cost. Such metrics have been

validated in previous works (Iacono et al., 2018).

4.1.1. Experiment one. Serverless performance
The first experiment was conducted within the AWS

environment, using Lambda functions running Amazon Linux

2018.03 and S3 for data storage and retrieval.

The objective of this experiment was to evaluate the

performance and cost of the architecture, as well as to identify

any limitations or bottlenecks in the system. To accomplish this,

we stored numerous images in the system and monitored the

processing times and costs.

The dataset used for the experiment corresponds to the

Operational Land Imager sensor (OLI) of the Landsat 8 satellite.

This satellite (USGS, 2023) is part of the Landsat Data Continuity

Mission (LDCM) which is a collaboration between NASA and

the United States Geological Survey (USGS). Landsat 8 images

have 15-meter panchromatic and 30-meter multi-spectral spatial

resolutions along a 185 km swath.

The dataset contains all the bands from the OLI sensor and

the corresponding metadata. The dataset size is about 1 Gbyte. In

this paper, we used the images from Bands 4 (Red) and 5 (Near-

infrared) from the OLI sensor. The data size of such bands is in total

190.1 MBytes.The images correspond to the Province of Mendoza,

Argentina. Mendoza is the main wine producer in Argentina and

one of the biggest players in the global market. Figure 2 shows a

polygon indicating the area of study. The area is determined with

the coordinates shown in Table 3.

The dataset [Earth Resources Observation and Science (EROS)

Center, 2013] was collected by the Satellite on the 10th of March

2021 at 14:27:23 Argentina local time (GMT-3).

The initial function in our architecture was responsible for

receiving and cropping the images. This function can crop

each image into 1000 segments, so it can be executed in

parallel 1,000 times. Each fragment followed its own parallel

execution path.

In order to evaluate performance, we measured the processing

times for the entire architecture, including the cropping and NVDI

calculation steps. Additionally, we monitored the monetary cost

associated with running the architecture in AWS to determine the

total monetary cost.

In this paper, we didn’t perform extra experiments regarding

SNDVI scalability. We consider that this is not necessary because

the underlying serverless technology used to develop SNDVI is

scalable by design. Instead of relying on dedicated servers, SNDVI

code runs in small units called “functions”, which are automatically

deployed as needed in response to demand. This means that the

ability of the application to scale horizontally is directly related

to the number of function instances that are activated to handle

the load.

The alignment of the SNDVI functions with AWS Lambda

operations is a key aspect of our architecture’s efficiency and

effectiveness. AWS Lambda is designed to run code in response

to events, making it an ideal platform for executing SNDVI

functions, which are event-driven and stateless by nature. Each

SNDVI function is triggered by an event, such as the arrival

of a new image, and runs independently of others, allowing for

high levels of parallelism and scalability. This alignment with

Lambda’s operational model not only simplifies the architecture

but also optimizes resource usage, as Lambda automatically scales

to match the rate of incoming events. Furthermore, the pay-

per-use pricing model of Lambda aligns with the sporadic and

unpredictable nature of SNDVI function invocations, leading to

cost-effectiveness.

4.1.2. Experiment two. Lambda and EC2
comparison

To validate the performance of Amazon Lambda over other

AWS services for NDVI computation in terms of execution time

and costs, we conducted a second experiment where we ran SNDVI

on an Amazon EC2 t2.medium instance running the Amazon

Linux OS version 18.3 (AMI 2018.03.0.20230404.0). In this case,

we executed SNDVI with the same dataset used in the experiment

carried out with pure Lambda services. In the EC2 version of

SNDVI, we added the cropping function of Lambda to the Local

layer. Also, we did some minor adaptations on the S3 layer, to

work with EC2 instead of Lambda. In other words, we set up a

file synchronization script on the EC2 instance that checks if a new

image arrives in S3. This script replaces the Lambda trigger used

on the SNDVI pure Lambda version. Also, we deployed the NDVI

computing function of the SNDVI Lambda version on the EC2

layer. For statistical reasons, the SNDVI EC2 version was executed

ten times.

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

FIGURE 2

Study area.

TABLE 3 Study area coordinates.

Corner Latitude Longitude

Upper Left –32.11601 –70.35679

Upper Right –32.11846 –67.89544

Lower Left –34.22611 –70.38971

Lower Right –34.22876 –67.86864

In this investigation, we have conducted tests using sequential

execution on Amazon EC2 instances, specifically focusing on

evaluating the capabilities of Amazon Lambda and EC2 at

equivalent price points. It is important to note that in order to

fully exploit the parallelization potential of EC2, larger and more

expensive instances would be required, which would ultimately

result in a higher overall cost for the system architecture. As

Lambda allows for the execution of up to 1,000 functions

concurrently, it provides a more cost-effective solution for parallel

processing when compared to EC2, which would require the use of

more instances and specialized Python parallelism techniques.

When considering the utilization of Python parallelism

techniques on EC2, it is essential to acknowledge the inherent

challenges and drawbacks associated with implementing

multithreading in Python. One challenge is the Global Interpreter

Lock (GIL), which limits the concurrent execution of threads

in a Python application, thus impeding the full utilization of

multiple CPU cores. To overcome this limitation, it is often

necessary to run compiled scripts embedded within the Python

code, employing additional tools such as Cython or Numba to

compile performance-critical sections of the code. This, however,

increases the complexity of the codebase and may introduce

further challenges in terms of code maintenance and debugging.

As a conclusion, the use of Amazon Lambda, with its inherent

parallelism capabilities, offers a more efficient and cost-effective

approach for processing large-scale NDVI computations compared

to Amazon EC2 instances.

4.2. Results

4.2.1. Experiment one. Results
The results have shown that the entire architecture has

generated processing times of between 9 and 15 seconds, with the

use of a compiled binary being the limiting factor.

During the experiments, we processed 1,000 images and found

that the worst-case scenario was a processing time of 15 seconds per

image. The limiting factor, in this case, was the use of the compiled

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

FIGURE 3

NDVI results comparison. (A) Output from SNDVI. NDVI calculation with SNDVI. (B) Output from QGIS. Baseline NDVI obtained with QGIS.

binary. Although the compiled binary improved performance, it

couldn’t be optimized any further.

The results of the cost analysis showed that for each parallel

execution of 1000 images (if we store all the data in the S3 bucket

for one month without deleting it) the total cost of services in AWS

would be about $4.19 (US Dollars).

This cost analysis demonstrated the cost-effectiveness of

our architecture. The use of the serverless architecture, along

with a compiled binary containing GDAL, is a cost-efficient

solution for performing NVDI calculations. It is important

to note that this cost was calculated with the assumption

of running all the processes for a month, and the cost

may change depending on how many processes are executed

and how often they are launched. However, this cost is low

compared to the cost of maintaining and scaling a traditional

cloud architecture.

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

TABLE 4 Lambda and EC2 comparison.

AWS
service

Average
time

[hours]

Max
time

[hours]

Min
time

[hours]

Cost
[US

dollars]

Lambda 0.00335 0.0042 0.0025 0.06

EC2 1.358 1.380 1.341 0.061

To ensure accurate and precise NDVI calculations in our

application, it is necessary to validate the results obtained by

SNDVI with a standard NDVI computation tool. We compared

the image generated by SNDVI with a baseline NDVI image

generated from the same Dataset using QGIS (QGIS Development

Team, 2023) Version 2.18.17 deployed on a Lenovo T480s Laptop

(Intel Core i7 running Ubuntu OS 18.04.6 LTS). QGIS is a free

and open-source cross-platform desktop geographic information

system (GIS) application that supports viewing, editing, printing,

and analysis of geospatial data. This application is widely used by

agriculture specialists and scientists. In our work, we used the raster

calculator of QGIS to do theNDVI computation and to generate the

baseline tiff image for comparison.

Although the comparison with QGIS validated the quality of

the NDVI computation obtained with SNDVI, a direct comparison

of their computational performance is not feasible due to their

differing nature. QGIS is a desktop application that runs locally,

whereas SNDVI runs on remote services, leading to different

execution conditions and monetary costs. Therefore, in this paper,

we only focus on comparing the performance of SNDVI on similar

cloud services.

Figure 3, illustrates the final result of SNDVI (see Figure 3A),

and QGIS (see Figure 3B).

As can be seen in Figure 3, the SNDVI result is the same as

the QGIS result, which indicates that the processing performed by

SNDVI does not change the final result.

4.2.2. Experiment two. Results
Table 4 shows a comparison of the results obtained on Amazon

EC2 with the Lambda results. Row 1 corresponds to the execution

of SNDVI on Lambda, and row 2 to the execution on EC2. Column

2 details the average time required to compute 1,000 images on each

platform. It should be noted that the startup time required to start

the instance on EC2, as well as the time required for data transfer

between the local machine and S3, and between S3 and EC2 (or

Lambda), have not been included in this time. Columns 3 and 4

present the maximum and minimum time required to compute

the 1,000 images. Finally, column 5 indicates the average costs of

executing SNDVI on both platforms.

As can be observed from Table 4, the processing costs were

approximately the same in both cases. The main difference between

EC2 and Lambda was the execution time. The time required for

the computation of 1,000 images on EC2 was approximately 411

times greater than in Lambda. This is because Lambda allows the

execution of up to 1,000 functions in parallel, which on EC2 is

not possible, as more instances and specific Python parallelism

techniques would need to be utilized. It can be concluded that

Lambda offered significantly lower execution times than the EC2

t2.medium instance with similar costs.

In our experiments, we have conducted tests using sequential

execution on Amazon EC2 instances, specifically focusing on

evaluating the capabilities of Amazon Lambda and EC2 at

equivalent price points. It is important to note that in order to

fully exploit the parallelization potential of EC2, larger and more

expensive instances would be required, which would ultimately

result in a higher overall cost for the system architecture.

As Lambda allows for the execution of up to 1000 functions

concurrently, it provides a more cost-effective solution for parallel

processing when compared to EC2, which would need the use of

more instances and specialized Python parallelism techniques.

5. Conclusions and future works

In this paper, we presented SNDVI, a new scalable native

serverless framework for NDVI calculation. SNDVI was fully

implemented within the AWS environment using Lambda

functions for processing and S3 buckets for storage.

To fully implement SNDVI in Lambda, we took a thoughtful

approach to leverage Lambda’s capabilities effectively. Here are the

steps we followed:

• Designing SNDVI components: We began by designing

the different components required for NDVI calculation,

taking into consideration how Lambda could be utilized. We

analyzed the existing NDVI Python code and made necessary

adaptations to ensure compatibility with Lambda.

• Handling dependencies: One challenge was incorporating

the required libraries, such as GDAL, into the Lambda

environment. To overcome this, we explored alternative

approaches, including a “black box” solution, which involved

packaging the necessary libraries along with the NDVI

computation software. This allowed us to utilize the required

dependencies seamlessly within the Lambda environment.

• Edge data processing: We also developed additional

components to enhance the SNDVI implementation. For

example, we designed software that could crop datasets on

the edge, optimizing data processing efficiency. Furthermore,

we utilized the Amazon CLI to facilitate smooth data uploads

to S3, as Lambda has direct integration with S3, enabling

seamless data transfer between the two services.

• Leveraging Lambda-S3 integration: We chose to use S3 as the

storage solution due to its direct integration with Lambda.

This integration allowed us to take advantage of the extensive

capabilities provided by both Lambda and S3, enabling

efficient data storage, retrieval, and processing.

In summary, our implementation involved adapting a standard

NDVI computation code based on GDAL to run effectively

in the Lambda environment, harnessing the benefits it offers.

We designed and developed the necessary components, such

as edge data processing and S3 integration, to fully leverage

Lambda’s capabilities. This approach allowed us to execute SNVDI

computations efficiently and utilize Lambda’s scalability and

serverless architecture to handle incoming data requests effectively.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

The design, implementation and validation of SNDVI allowed

us to make the following contributions to the development of

scalable cloud applications related to image processing:

• The combination of a serverless architecture, cloud storage

and a compiled binary (containing the GDAL library, Scipy,

and other packages) is an effective solution in terms of

monetary costs and computing times.

• SNDVI architecture can be adapted to process other types of

data such as time series.

• The binary compilation methodology can be followed by

researchers to compile and run binaries with other Python

packages (e.g., Pandas) to deploy their applications on

serverless computing.

• Our main contribution to the agrotech ecosystem is to enable

small andmedium farmers access to cutting-edge technologies

without prohibitive costs. This will enable them to have the

tools to monitor and improve the health of their crops in the

same way that large agricultural enterprises do.

We evaluated SNDVI performance through two experiments

by analysing the computing time and themonetary costs. In the first

experiment, we analyzed the overall functioning of our architecture,

its performance and the quality of the output generated by

SNDVI. The experiment was done by executing SNDVI with

a Satellite Multispectral Dataset. In the second experiment, we

conducted a benchmarking study between SNDVI and an EC2-

based architecture in order to compare the performance of

both approaches.

On the one hand, results from the first experiment

demonstrated that the processing times ranged from 9 to 15

seconds for the entire architecture. The compiled binary used

in the system was identified as the limiting factor, as further

optimization was beyond the scope of our study. The cost analysis

revealed that storing all the data in the S3 bucket for one month

without deletion would amount to approximately 4.19 USD in total

AWS service costs for the parallel execution of 1,000 images. Also,

the NDVI obtained after SNDVI execution was validated through

a comparison with the NDVI computed from the same dataset

using QGIS (a widely-used free and open-source desktop GIS

application). This comparison showed that the NDVI calculated

with our architecture is the same as the one calculated by QGIS.

On the other hand, the benchmark between SNDVI and the

architecture based on EC2 instances revealed that while monetary

costs are similar, there was a significant difference in execution

time. The time required to compute 1,000 images on SNDVI was

approximately 411 times faster than on the EC2 architecture. This is

due to Lambda’s ability to execute up to 1,000 functions in parallel,

a capability not easily available on EC2 without the use of more

instances and specialized Python parallelism techniques. Therefore,

Lambda offered significantly lower execution times with similar

costs to the EC2 platform.

For future works, we will continue comparing the performance

of serverless computing with other Amazon EC2 instances

(tX.large and other tX.medium) and combinations of them. Also,

we will analyse SNDVI performance on datasets larger than

the one used in this paper (e.g., composed of high-resolution

multispectral images acquired with Drones). Furthermore, we

will evaluate the workload balance on SNDVI by deploying

more NDVI computing functions and binaries on Lambda, to

enable more than 1,000 executions in parallel. In addition,

we will enhance SNDVI execution on EC2 by identifying

computationally intensive tasks and executing them independently.

Using Python’s multiprocessing or threading modules, we will

parallelize these tasks. Synchronization mechanisms like locks,

semaphores, or queues will be employed to ensure data integrity.

Monitoring and profiling tools will optimize performance,

resulting in a faster and improved SNDVI execution on

EC2.

Finally, we plan to extend this paper by adapting our framework

to other binaries and datasets like time series data processing, e.g.,

localized frost prediction in agriculture.

Data availability statement

The raw data supporting the conclusions of this article

will be made available by the authors, without undue

reservation.

Author contributions

Conceptualization: LI and JV-P. Methodology: JV-P. Software,

validation, and writing—original draft: LI and DP. Formal analysis

and investigation: LI, DP, and JV-P. Resources and data curation:

LI. Writing—review and editing: JV-P. All authors contributed to

the article and approved the submitted version.

Funding

DP and JV-P acknowledge support through the IN-TIME

(Grant Agreement 823934) and EYE (Grant Agreement

101007638) projects from the European Commission, the

EDGECLOUD (RTI2018-096465-B-I00) and EDGEDATA

(S2018/TCS-4499) projects. This research was partially funded

by Know-Center GmbH. Know-Center was funded by the

Austrian COMET Program–Competence Centers for Excellent

Technologies—under the auspices of the Austrian Federal Ministry

of Transport, Innovation and Technology, the Austrian Federal

Ministry of Economy, Family and Youth and the State of Styria.

COMET was managed by the Austrian Research Promotion

Agency FFG.

Conflict of interest

LI was employed by Know-Center.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

JV-P declared that they were an editorial board member of

Frontiers, at the time of submission. This had no impact on the peer

review process and the final decision.

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Iacono et al. 10.3389/fhpcp.2023.1151530

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amazon (2023a). Amazon Lambda. Available online at: https://aws.amazon.com/
lambda/ (accessed August 1, 2023).

Amazon (2023b). Amazon Simple Storage Service. Available online at: https://aws.
amazon.com/s3/ (accessed August 1, 2023).

Amazon (2023c). Amazon Web Services. Available online at: https://aws.amazon.
com/what-is-aws/ (accessed August 1, 2023).

Carlson, T. N., and Ripley, D. A. (1997). On the relation between NDVI,
fractional vegetation cover, and leaf area index. Rem. Sens. Environ. 62, 241–252.
doi: 10.1016/S0034-4257(97)00104-1

Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A. (2019). The rise of
serverless computing. Commun. ACM 62, 44–54. doi: 10.1145/3368454

Chu, L., Raghu, K. G., and Srivatsa, M. (2020). IBM Cloud for Serverless Remote
Sensing Data. Available online at: https://www.ibm.com/cloud/blog/ibm-cloud-for-
serverless-remote-sensing-data (accessed August 1, 2023).

Clark, J. A. (2019). Pillow (PIL Fork). Available online at: https://github.com/
python-pillow/Pillow (accessed August 1, 2023).

Cortesi, D. (2022). PyInstaller Manual. Available online at: https://pyinstaller.org/
(accessed August 1, 2023).

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al.
(2012). Sentinel-2: Esa’s optical high-resolution mission for gmes operational services.
Rem. Sens. Environ. 120:25–36. doi: 10.1016/j.rse.2011.11.026

Earth Resources Observation and Science (EROS) Center. (2013). Collection-2
Landsat 8-9 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-2
Science Products. U.S. Geological Survey. doi: 10.5066/P9OGBGM6

Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N.,
et al. (2020). A review of serverless use cases and their characteristics. arXiv preprint
arXiv:2008.11110.

ESA (2023). Copernicus Sentinel-2. Available online at: https://sentinel.esa.int/web/
sentinel/missions/sentinel-2 (accessed August 1, 2023).

Ferreira, K., Queiroz, G., Camara, G., Souza, R., Vinhas, L., Marujo, R., et al.
(2020). “Using remote sensing images and cloud services on aws to improve land
use and cover monitoring,” in 2020 IEEE Latin American GRSS ISPRS Remote
Sensing Conference (LAGIRS) (IEEE), 558–562. doi: 10.1109/LAGIRS48042.2020.
9165649

Iacono, L. E., Poletti, J. L. V., Garino, C. G., and Llorente, I. M. (2018). Performance
models for frost prediction in public cloud infrastructures. Comput. Inform. 37,
815–837. doi: 10.4149/cai_2018_4_815

Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., et al. (2006). Analysis of
ndvi and scaled difference vegetation index retrievals of vegetation fraction. Rem. Sens.
Environ. 101, 366–378. doi: 10.1016/j.rse.2006.01.003

NASA (2023). MODIS. Available online at: https://modis.gsfc.nasa.gov/ (accessed
August 1, 2023).

QGIS Development Team (2023). QGIS Geographic Information System. QGIS
Association.

Shahrad, M., Balkind, J., and Wentzlaff, D. (2019). “Architectural
implications of function-as-a-service computing,” in Proceedings of the 52nd
annual IEEE/ACM International Symposium on Microarchitecture, 1063–1075.
doi: 10.1145/3352460.3358296

USGS (2023). Landsat 8. Available online at: https://www.usgs.gov/landsat-
missions/landsat-8 (accessed August 1, 2023).

Vazquez-Poletti, J. L., and Llorente, I. M. (2018). Serverless computing: from planet
mars to the cloud. Comput. Sci. Eng. 20, 73–79. doi: 10.1109/MCSE.2018.2875315

Warmerdam, F. (2008). “The geospatial data abstraction library,” in
Open Source Approaches in Spatial Data Handling (Springer) 87–104.
doi: 10.1007/978-3-540-74831-1_5

Wu, J., Wu, M., Li, H., Li, L., and Li, L. (2022). A serverless-based, on-the-
fly computing framework for remote sensing image collection. Rem. Sens. 14, 1728.
doi: 10.3390/rs14071728

Yang, G., Liu, J., Qu, M., Wang, S., Ye, D., and Zhong, H. (2021). “Faasrs: Remote
sensing image processing system on serverless platform,” in 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC) (IEEE), 258–267.
doi: 10.1109/COMPSAC51774.2021.00044

Zhai, Y., Liu, M., Zhai, J., Ma, X., and Chen, W. (2011). “Cloud versus in-house
cluster: evaluating amazon cluster compute instances for running mpi applications,” in
State of the Practice Reports, 1–10. doi: 10.1145/2063348.2063363

Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., et al. (2019).
Monitoring plant diseases and pests through remote sensing technology: A review.
Comput. Electr. Agric. 165, 104943. doi: 10.1016/j.compag.2019.104943

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1151530
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/what-is-aws/
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1145/3368454
https://www.ibm.com/cloud/blog/ibm-cloud-for-serverless-remote-sensing-data
https://www.ibm.com/cloud/blog/ibm-cloud-for-serverless-remote-sensing-data
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://pyinstaller.org/
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.5066/P9OGBGM6
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://doi.org/10.1109/LAGIRS48042.2020.9165649
https://doi.org/10.4149/cai_2018_4_815
https://doi.org/10.1016/j.rse.2006.01.003
https://modis.gsfc.nasa.gov/
https://doi.org/10.1145/3352460.3358296
https://www.usgs.gov/landsat-missions/landsat-8
https://www.usgs.gov/landsat-missions/landsat-8
https://doi.org/10.1109/MCSE.2018.2875315
https://doi.org/10.1007/978-3-540-74831-1_5
https://doi.org/10.3390/rs14071728
https://doi.org/10.1109/COMPSAC51774.2021.00044
https://doi.org/10.1145/2063348.2063363
https://doi.org/10.1016/j.compag.2019.104943
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	SNDVI: a new scalable serverless framework to compute NDVI
	1. Introduction
	2. Related works
	3. SNDVI
	3.1. Serverless NVDI model
	3.2. Custom layers for Lambda functions
	3.3. Custom binary compiled code
	3.3.1. SNDVI binary functioning
	3.3.2. SNDVI binary generation

	3.4. Execution path

	4. Methods and materials
	4.1. Experiments
	4.1.1. Experiment one. Serverless performance
	4.1.2. Experiment two. Lambda and EC2 comparison

	4.2. Results
	4.2.1. Experiment one. Results
	4.2.2. Experiment two. Results

	5. Conclusions and future works
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

