
TYPE Original Research

PUBLISHED 04 September 2023

DOI 10.3389/fhpcp.2023.1127883

OPEN ACCESS

EDITED BY

Fred Douglis,

Peraton Labs, United States

REVIEWED BY

Scott Klasky,

Oak Ridge National Laboratory (DOE),

United States

Steve Chapin,

Center for Applied Scientific Computing,

United States

*CORRESPONDENCE

Somali Chaterji

schaterji@purdue.edu

RECEIVED 20 December 2022

ACCEPTED 16 August 2023

PUBLISHED 04 September 2023

CITATION

Shankar K, Mahgoub A, Zhou Z, Priyam U and

Chaterji S (2023) Asgard: Are NoSQL databases

suitable for ephemeral data in serverless

workloads?

Front. High Perform. Comput. 1:1127883.

doi: 10.3389/fhpcp.2023.1127883

COPYRIGHT

© 2023 Shankar, Mahgoub, Zhou, Priyam and

Chaterji. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Asgard: Are NoSQL databases
suitable for ephemeral data in
serverless workloads?

Karthick Shankar1, Ashraf Mahgoub2, Zihan Zhou3,

Utkarsh Priyam3 and Somali Chaterji3,4*

1Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, United States, 2Department

of Computer Science, Purdue University, West Lafayette, IN, United States, 3Elmore Family School of

Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 4Department

of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States

Serverless computing platforms are becoming increasingly popular for data

analytics applications due to their low management overhead and granular

billing strategies. Such analytics frameworks use a Directed Acyclic Graph

(DAG) structure, in which serverless functions, which are fine-grained tasks,

are represented as nodes and data-dependencies between the functions are

represented as edges. Passing intermediate (ephemeral) data from one function to

another has been receiving attention of late, with works proposing various storage

systems andmethods of optimization for them. The state-of-practicemethod is to

pass the ephemeral data through remote storage, either disk-based (e.g., Amazon

S3), which is slow, or memory-based (e.g., ElastiCache Redis), which is expensive.

Despite the potential of some prominent NoSQL databases, like Apache Cassandra

and ScyllaDB,which utilize bothmemory and disk, prevailing opinions suggest they

are ill-suited for ephemeral data, being tailoredmore for long-term storage. In our

study, titled Asgard, we rigorously examine this assumption. Using Amazon Web

Services (AWS) as a testbed with two popular serverless applications, we explore

scenarios like fanout and varying workloads, gauging the performance benefits

of configuring NoSQL databases in a DAG-aware way. Surprisingly, we found

that, per end-to-end latency normalized by $ cost, Apache Cassandra’s default

setup surpassed Redis by up to 326% and S3 by up to 189%. When optimized

with Asgard, Cassandra outdid its own default configuration by up to 47%. This

underscores specific instances where NoSQL databases can outshine the current

state-of-practice.

KEYWORDS

serverless computing, DAGs, NoSQL databases, AWS Lambda, Video Analytics, Apache

Cassandra, Redis

1. Introduction

Serverless computing (or Function-as-a-Service, FaaS) provides a platform for
developers to rapidly prototype their ideas without having to consider administrative tasks
like resource provisioning, scalability etc. The cloud provider takes care of these factors on
behalf of the users using container-based virtualization, while providing the end user with
a simpler interface to be able to focus on the application logic. Besides this, today’s popular
commercial frameworks like AWS Lambda, Azure Functions, or Google Cloud Functions
offer attractive features like per-millisecond billing, elasticity, and automatic scalability based
on function inputs (Jonas et al., 2019; Amazon, 2021a; Google, 2021; Microsoft, 2021).

Due to these features, serverless frameworks lend themselves to chained analytics
pipelines such as machine learning (Carreira et al., 2018; Rausch et al., 2019), Video
Analytics (Fouladi et al., 2017; Ao et al., 2018), or IoT processing (Shankar et al.,
2020). These pipelines often make use of Directed Acyclic Graphs (DAGs) to lay out
the functions of the application in different stages (Daw et al., 2020; Bhasi et al., 2021;

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2023.1127883
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2023.1127883&domain=pdf&date_stamp=2023-09-04
mailto:schaterji@purdue.edu
https://doi.org/10.3389/fhpcp.2023.1127883
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2023.1127883/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

Mahgoub et al., 2021, 2022a,b; Zhang et al., 2021). In such
cases, data has to be passed between the various functions in a
DAG. Today, FaaS platforms rely on asynchronous communication
mechanisms, where data between dependent functions is often
passed over the network via remote storage like S3 (Amazon, 2021c)
or distributed key-value stores like (Redis, 2021). This intermediate
data passed between functions of the DAG is typically short-lived,
and hence known as “ephemeral data”, and thus, does not require
long-term storage. It also does not require reliable storage since this
intermediate data can be re-generated by simply re-executing the
DAG.

Column-oriented NoSQL databases like Cassandra (2021)
or ScyllaDB (2021) are designed to provide a scalable and
cost-optimized storage (in $), but they require effective and
workload-aware online configuration to sustain the best
performance (Klimovic et al., 2018b; Mahgoub et al., 2019).
Hence, to date, no study has advocated for the use of NoSQL
databases for ephemeral data in serverless workloads. How to
handle ephemeral data in serverless DAGs is not just an academic
question, but rather it has an important bearing on whether such
a platform can support latency-critical applications. For example,
Pu et al. (2019) show that running the CloudSort benchmark
with 100TB of data on AWS Lambda with S3 remote storage, can
be up to 500× slower than running on a cluster of VMs, with
most of the additional latency consumed in intermediate data
passing (shuffling). Our own experiment with a machine learning
application (Figure 3) that has a simple linear workflow shows that
intermediate data passing with remote storage takes over 75% of
the execution time.

The overarching question that we pose, and partially answer, is:

Can NoSQL databases be used for ephemeral data
in serverless DAGs? Can the already developed and well
optimized NoSQL databases along with their automated tuning
solutions be used in serverless environments?

We find that for latency-critical applications, we can achieve a
better performance per $ (Perf/$) cost1 with NoSQL databases than
with the state-of-practice, either disk-based (as S3) or memory-
based (as Elasticache Redis), for serverless ephemeral data. This
is possible as NoSQL databases, such as Cassandra, already
leverage both memory and disk storage media to deliver optimized
performance, and the proportions of these are easily configurable
to meet the workload requirements, as shown in Mahgoub et al.
(2019); Tran et al. (2008); Gilad et al. (2020); Duan et al. (2009);
Curino et al. (2010). Thus, if the databases are tuned to the
right configuration, based on the workload characteristics, we can
achieve a better operating point in terms of latency and cost.

Optimizing NoSQL databases for static workloads has been
explored in prior works like OtterTune (Van Aken et al., 2017),
Rafiki (Mahgoub et al., 2017), BestConfig (Zhu et al., 2017),
OptimusCloud (Mahgoub et al., 2020), and (Sullivan et al., 2004).
Other prior works took a step further to reconfigure databases in
response to changing workloads in ScyllaDB (Scylla, 2018) and
SOPHIA (Mahgoub et al., 2019). If NoSQL databases can indeed be

1 Here, performance is defined as the inverse of end-to-end execution time

(i.e., E2E latency) while cost is the raw $ value of the services on AWS as of

November 2022.

configured for use here, this would serve as an additional option to
the state-of-the-practice remote storage with Amazon S3 (Amazon,
2021c) or state-of-the-art with Pocket (Klimovic et al., 2018b) or
local VM storage with SAND (Akkus et al., 2018). Such NoSQL
optimization techniques can be employed in a serverless setting
for ephemeral data. This has the potential to improve matters if
the databases were tuned in a DAG-aware manner, such as the
degree and type of fanout (e.g., scatter or broadcast) and the volume
of intermediate data. Furthermore, a fanout in the DAG with a
high degree of parallelism can take advantage of the high read
throughput provided by replicated NoSQL databases.

To optimize the data store for serverless functions, we
introduce Asgard2 that deploys the popular NoSQL database,
Cassandra, for ephemeral data storage and compares with the
current states-of-practice (S3 and ElastiCache Redis). We also
compare Cassandra with static and dynamic reconfiguration
[following the guidance of SOPHIA (Mahgoub et al., 2019)] on
the overall Perf/$3. We call the former Asgard Lite and the latter
simply Asgard because Asgard can work for dynamic workloads,
as is more commonplace in the real world, but comes with more
engineering overhead. We find that Cassandra with its default
configuration has up to 3.06X better Perf/$ than S3; while optimized
Cassandra, such as using Asgard on top, has up to 1.47X better
Perf/$ than Cassandra with the default configuration. Thus, based
on our evaluation, Cassandra, when properly tuned to the workload
characteristics, is able to deliver higher Perf/$ than S3 or Redis,
while it delivers E2E latency within 10% of Redis at most. We
also discuss the effects of VM placement and dynamic workloads
on performance per $ cost. Cassandra with Asgard on a dynamic
workload achieves a better performance per $ cost, even withminor
changes in the workload characteristics over time.

2. Preliminaries

In this section, we layout the necessary background
information for the rest of the paper. We start by summarizing the
main features of NoSQL databases and what features they ought
to provide for our use case. Next, we summarize the concept of
serverless computing and how its performance (i.e., end-to-end
latency) relies heavily on the response time of the ephemeral data
storage coupled with it. Finally, we state the key features that
NoSQL databases provide and from which serverless computing
can benefit such as fast scalability and geo-distributed replication.

2.1. NoSQL databases and Cassandra

NoSQL databases is a form of databases that provide
considerable durability and performance gains that significantly

2 Asgard is the abode of Gods with special abilities including enhanced

senses, such as, detecting that a change is impending.

3 We simplified the full functionality of SOPHIA and adapted it to the

serverless context. This included understanding the nature of ephemeral data

between serverless DAGs and optimizing based on that, e.g., there are bursty

writes and reads and little data reuse. Our contribution is not a configuration

engine for Cassandra, but rather to answer the “overarching question” posed

above.

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

FIGURE 1

Workflow of Asgard. First, a topology analyzer inspects the DAG definitions and extracts the read-write ratios for every stage in the DAG. Second,

Asgard’s dynamic configuration engine uses the read-write ratio for every DAG stage (weighted by the invocation frequency of every DAG) and

identifies the optimized configurations for the ephemeral data storage cluster. Finally, the DAG executes in the execution engine (AWS Lambda) and

all ephemeral data read and write operations are performed by Asgard’s optimized Cassandra cluster.

exceeds the limits of traditional relational databases. This is
achieved through relaxation of one or more of the ACID—
atomicity, consistency, isolation and durability—properties. The
main advantages of NoSQL databases are scalability and durability,
which is delivered through replication. Unsurprisingly, replication
further improves data read throughput due to two reasons (1) the
ability to place different replicas into different geographic locations,
moving data physically closer to distributed readers. (2) Handling
network fluctuations that can significantly reduce the throughput
(or increase the latency) of one replica, but unlikely to impact all
replicas at the same time. Consequently, NoSQL datastores can be
a great fit for storing serverless ephemeral data due to their ability
to horizontally scale much faster than the current state-of-practice,
better handling bursty workloads.

Cassandra, an Apache Foundation4 project, is one of the
leading NoSQL and distributed DBMS driving many of today’s
modern business applications, including such popular users as
Twitter, Netflix, and Cisco WebEx. Cassandra is highly durable
and scalable. It also delivers very fast scaling due to its concept of
virtual nodes (vnodes), a data distribution scheme. With vnodes, the
amount of data that needs to be re-organized across the cluster, in
case of adding or removing nodes, is minimized. This is achieved
by dividing the data key range into many smaller ranges (a.k.a.,
tokens) and each node gets an equal, and randomly selected, share
of the tokens. When the number of tokens ≫ the number of
nodes in the cluster, it can be shown that key redistribution time
is reduced significantly compared to classic hashing (Röger and
Mayer, 2019). Accordingly, Cassandra can be scaled in and out
much faster than distributed databases that do not support this
feature, including S3 and Redis.

Cassandra overview: key features This section describes the
key features of Cassandra that become prime focus areas for
performance optimization.

4 http://cassandra.apache.org

2.1.1. Write workflow
Write (or update) requests are handled efficiently in Cassandra

using some key in-memory data structures and efficiently arranged
secondary storage data structures. When a write request arrives,
it is appended to Cassandra’s CommitLog, a disk-based file where
uncommitted queries are saved for recovery/replay. The commitlog
is replayed in case of a fault to revert the node’s state back to its
state before the fault. After the query is saved into the commitlog,
the result of the query is processed into to an in-memory data
structure called the Memtable. Then an acknowledgment is sent
back to the client. A Memtable functions as a write-back cache
of data rows that can be looked up by key, i.e., unlike a write-
through cache, writes are batched up in the Memtable until it is
full, when it is flushed (the trigger and manner of flushing are
controlled by a set of configuration parameters, such as the ones
that can be optimized to tune the performance of Cassandra). Each
flush operation transfers these contents to the secondary storage
representation, called SSTables. SSTables are immutable and every
flush task produces a new SSTable. The frequency of performing
this flush task needs to be tuned to minimize the number of created
SStables.

Another feature of Cassandra is its Scheme Flexibility, which
allows users to alter their tables schemes without the need for
defining new tables and migrating data. This feature implies that
the data for a given key value may be spread over multiple
SSTables. Consequently, if a read request for a row arrives, all
SSTables (in addition to the Memtable) have to be queried for
portions of that row, and then the partial results combined. This
prolongs execution time, especially because SSTables are resident in
secondary storage. Since SSTables are immutable by design, instead
of overwriting existing rows with inserts or updates, Cassandra
writes new timestamped versions of the inserted or updated data in
new SSTables. Over time, Cassandra may write many versions of a
row in different SSTables and each version may have a unique set of
columns stored with a different timestamp, which are periodically

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
http://cassandra.apache.org
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

merged, discarding old data in a process called compaction to keep
the read operation efficient. A number of optimization techniques
are introduced to reduce the possible number of SSTables searches
for a read request. Such optimization techniques include: key index
caching, Bloom filtering, and compaction.

2.1.2. Compaction
Cassandra provides two compaction strategies, which can

be configured on the table level (Cassandra, 2022). The first
(and the default) compaction strategy is called “Size-Tiered
Compaction”, which triggers a new compaction process whenever
a number of similar sized SSTables have been created, and “Leveled
Compaction”, which divides the SSTables into hierarchical levels.
Size-tiered compaction: This compaction strategy activates
whenever a set number of SSTables exist on the disk. Cassandra uses
a default number of four similarly sized SSTables as the compaction
trigger.

While this strategy works well to compact a write-intensive
workload, it makes reads slower because the merge-by-size process
does not group data by rows.
Leveled compaction: The second compaction strategy divides the
SSTables into hierarchical levels, say L0, L1, and so on, where L0
is the one where flushes go first. Each level contains a number of
equal-sized SSTables that are guaranteed to be non-overlapping,
and each level contains 10X the number of keys at the previous
level. Compaction is triggered each time a MEMTable flush
occurs, which requires more processing and disk I/O operations
to guarantee that the SSTables in each level are non-overlapping.
Moreover, flushing and compaction at any one level may cause the
maximum number of SSTables allowed at that level (say Li) to be
reached, leading to a spillover to Level L(i+1).

Qualitatively it is known DataStax (2022) that size-tiered
compaction is a better fit for write-heavy workloads, where
searching many SSTables for a read request is not a frequent
operation. In contrast, leveled compaction serves as a better fit
for read-heavy workloads, where the overhead of guaranteeing
the non-overlapping property pays off for frequent read requests.
However, determining the appropriate strategy, together with the
parameters such as size of each SSTable, and conditioning this on
the exact workload characteristics (not pure reads or pure writes,
but mixes, and their distribution such as Gaussian or Zipfian)
requires adaptive configuration tuning such as the one used in our
past work (Mahgoub et al., 2019).

2.2. Adaptive configuration tuning

Cassandra is highly tunable, with more than 25 configuration
parameters that can alter its performance from write-optimized to
read-optimized, or to achieve a balanced performance between the
two. For example, in our prior work (Mahgoub et al., 2017), we
identified the following key parameters for Cassandra:

1. Compaction method (CM): Categorical value between Size-
Tiered (preferred for write-heavy) or Leveled (preferred for
read-heavy).

2. Concurrent writes (CW): This parameter gives the number of
independent threads that will perform writes concurrently. The
recommended value is 8× number of CPU cores.

3. file_cache_size_in_mb (FCZ): This parameter controls how
much memory is allocated for the buffer in memory that will
hold the data read in from SSTables on disk. The recommended
value for this parameter is the minimum between 1/4 of the heap
size and 512 MB.

4. Memory table cleanup threshold (MT): This parameter is used to
calculate the threshold upon reaching which the MEMTable will
be flushed to form an SSTable on secondary storage. Thus, this
controls the flushing frequency, and consequently the SSTables
creation frequency. The recommended setting for this is based
on a complex criteria of memory capacity and IO bandwidth
and even then, it depends on the intensity of writes in the
application. It is recommended to set this value low enough
to keep disks saturated during write-heavy workloads (0.11 for
HDD, 0.33 for SSD).

5. Concurrent compactors (CC): This determines the number of
concurrent compaction processes allowed to run simultaneously
on a server. The recommended setting is for the smaller of
number of disks or number of cores, with a minimum of 2 and
a maximum of 8 per CPU core. Simultaneous compactions help
preserve read performance in a mixed read-write workload by
limiting the number of small SSTables that accumulate during a
single long-running compaction.

Accordingly, we can adjust Cassandra’s performance, such as
using the impactful parameters shown above, using our prior
knowledge of the serverless DAG topology to deliver the maximum
throughput and minimum response time. In the serverless context,
if the DAG has a broadcast fanout stage of size k, then we know
that the output of the previous stage will be written once (a single
writer), and then read by k parallel functions (multiple readers).
Hence Asgard (Figure 1) tunes Cassandra for high read throughput
and low read latency. On the other hand, when the DAG has a fan-
in stage, we have multiple writing functions and a single reader.
Accordingly, we tune Cassandra for maximum write throughput
and minimum write latency. Finally, since Cassandra has already
been studied in prior works (Mahgoub et al., 2019, 2020) and its
performance is shown to be superior, given workload variability,
Cassandra, especially with this configuration tuning knobs, will
be a great fit for our use case of serverless DAGs. Note that the
DAG topology is defined by the user before its actual execution.
This allows us to anticipate the read/write pattern for the DAG
early enough to properly configure Cassandra at runtime. This,
in addition, to our ability to tune the topology of the DAGs
themselves, will result in a large optimization space of tuning
DAG topologies on the one hand, such as using a combination of
bundling and fusion of DAG stages, as in Mahgoub et al. (2022b),
and tuning the data store on the other hand, as proposed here.

2.3. Serverless computing

In serverless computing, the cloud provider performs all the
administrative tasks pertaining to the physical resources on behalf
of the user. These tasks include scaling, maintenance, and physical

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

FIGURE 2

DAG overview for Video Analytics application.

scheduling (i.e., deciding which physical machine will host a
particular serverless function). This model has the clear advantage
of its ease-of-use, as customers do not need to worry about
allocating too many or too few resources for their applications.
Additionally, the cloud provider performs the physical resource
allocation in a way that is hidden from the user. Accordingly,
serverless computing has a pay-as-you-go, fine-grained pricing
model where customers are only charged for the exact resource
usage of their applications, typically in terms of number of cores,
memory capacity, and fine-granular execution time (e.g., 100 ms
increments).

From the cloud provider perspective, serverless computing
is very beneficial since it delegates the resource allocation and
mapping to physical machines tasks to the cloud provider.
Moreover, serverless functions are usually transient with a small
memory footprint (e.g., AWS Lambda’s memory size starts from
128 MB). Accordingly, the cloud provider can better schedule
the serverless functions dynamically across different physical
machines to maximize utilization. Further, since the functions
are stateless, i.e., cannot store any data locally for subsequent
invocations to use, migrating functions across physical machines at
runtime is seamless. However, scheduling functions that have data
dependencies among them—such as for functions in a DAG—on
different physical machines has negative implications on the data
passing time. This is because the functions have to communicate
through a remote storage, causing data to be transferred over the
network twice, which can significantly increase the DAG’s end-
to-end latency (Mahgoub et al., 2021). Accordingly, it is essential
to minimize the ephemeral data transfer latency to minimize the
DAG’s end-to-end latency without increasing the execution cost
(in $). Notice that the data upload and download operations are
performed by the sending and receiving functions. Hence, an
increase in the data passing time will also increase the functions’
runtime and $ cost.

2.4. Desired features of datastores for
serverless systems

Passing ephemeral data between two stages of a serverless DAG
is challenging since direct point to point communication between

two individual running functions is difficult since communication
parameters like IP addresses are not exposed to the users (Mahgoub
et al., 2021). As such, the most common method is to use an
external remote storage as noted above. One of the common
choices, Amazon S3, offers ease of use and fault tolerance at the
cost of high latency transfers. As noted in Klimovic et al. (2018b),
fault tolerance is not as highly desired in serverless contexts for
ephemeral data as compared to traditional storage systems since
serverless functions are designed to be idempotent. Lower latency
and higher bandwidths are preferred due to the high volume of
invocations.

2.5. NoSQL key features for serverless
computing

NoSQL databases provide key features that are very useful
for serverless computing in general, and for serverless DAGs in
particular. First, Serverless workloads are bursty in nature (Shahrad
et al., 2020). Accordingly, the ephemeral data storage should be
able to quickly scale up and down to adapt to these bursts.
As discussed in Section 2.1, Cassandra’s adaption of vnodes and
consistent hashing serves this purpose adequately. Second, the
cloud service provider can quickly vary the physical assignment of a
serverless function across physical machines and possibly even data
centers that reside in different geographic locations. Accordingly,
the cloud provider can leverage the ability of Cassandra’s geo-
distributed multi-datacenter replication capabilities to deliver
minimized response times (Zafar et al., 2016). Furthermore, the
cloud provider can launch a new replica in a the new datacenter
before scheduling the functions to that datacenter—in a manner
that is analogous to cache pre-fetching—to avoid increased latency
during database warm-up periods. Third, since the topology of
serverless DAGs is known prior to DAG execution, predicting the
workload read/write pattern for ephemeral storage is much easier
and can be directly guided by the topology (e.g., fan-out, fan-
in, scatter, broadcast, shuffle, etc.). This allows the cloud service
provider to efficiently tune the ephemeral storage (Cassandra in our
use case) to better handle the dynamic changes in the workload and
deliver optimized performance/$.

2.6. Design of Asgard

Asgard is designed on top of SOPHIA (Mahgoub et al., 2019),
with changes made to adapt it to serverless workloads. The main
contributions of this work is not the system itself but rather to
answer the overarching question of if NoSQL databases can be used
for serverless workloads. The different components of Asgard as
shown in Figure 1 are as follows:

1. Serverless DAG workloads: The serverless DAG definition is
provided by the user, typically in the form of a JSON (Amazon,
2023a), listing all the different dependencies of the different
stages.

2. Topology analyzer: The DAG definition is inspected to extract
the read-write ratios of the ephemeral data in all the different
stages depending on if it is a fan-out or fan-in.

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

3. Dynamic configuration engine: The read-write ratios are
used in an optimizer to identify the optimal configurations
for the NoSQL database cluster. This configuration is then
opportunistically applied to the cluster, similar to the design in
SOPHIA (Mahgoub et al., 2019).

3. Experimental setup

We implement our serverless applications on AWS-
Lambda (Amazon, 2021b) using different storage systems,
while we deploy Cassandra and Asgard in Amazon EC2. We
compare the following systems in our evaluation:
Amazon S3 (Amazon, 2021c): Amazon’s Simple Storage Service—
state-of-practice for storing ephemeral data in serverless.

ElastiCache Redis (Redis, 2021): Amazon’s offering of Redis
through its ElastiCache service. Redis is also a state-of-practice for
in-memory storage, although it has higher costs. The instance used
for this is r5.large, which belongs to the AWS memory optimized
family recommended for Redis Amazon (2022).

Cassandra (default): Vanilla installation of a single node of
Cassandra on an i3.large EC2 instance. The instance comes with an
NVMe SSD storage, which is used to store the data. i3.large is used
for this since it is optimized for low latency and very high random
I/O performance which makes it a common starting point for
Cassandra. This can further be tuned to use an optimized instance
type (as referenced in Section 4.3).

Cassandra (Asgard Lite): This is an installation of a single node of
Cassandra on an i3.large EC2 instance with a reduced functionality
version of Asgard (Lite), containing the (open sourced) static
configuration tuner Rafiki (Mahgoub et al., 2017). The database is
tuned with Asgard Lite before running a given application. The
Lite version is used since we evaluate only on a single application at
a given time.

Cassandra (Asgard): This version of Cassandra (also on i3.large)
has the full Asgard system deployed, which uses a Cost-Benefit
Analyzer (CBA) adapted from SOPHIA (Mahgoub et al., 2019),
to dynamically switch configurations to maximize Perf/$. Here,
the full version is used for a simple pipeline of intermixed Video
Analytics and LightGBM applications to demonstrate a dynamic
workload. The same Cassandra instance is used for both workloads
even though they share no data. This setup has the advantage of
amortizing costs across applications by using a multi-tenant model.
The benefit in CBA is the increase in throughput due to the new
optimal configuration over the old configuration:

B =
∑

k∈[0,TL]

Hsys(W(k),CT
sys(k))

where Hsys is the throughput of Cassandra given a workload W(k)
and time-varying configuration CT

sys(k). TL is the look-ahead time
for the incoming workload. The cost is the transient throughput dip

due to reconfiguration:

C =
∑

k∈[1,M]

Hsys(W(tk),Ck) · Tr

where Ck is a configuration plan and Tr is the duration Cassandra
is offline during reconfiguration.

S3 is configured to be in the same region as the AWS λ functions
for the application while Redis and all variants of Cassandra are
configured to be in the same VPC as the λ

functions for efficient communication. Note that the availability
zone of S3 cannot be configured and we can only specify what
region it is in. The data however is replicated across at least 3
availability zones (Amazon, 2021d).

3.1. Applications

To explore the usage of NoSQL databases for ephemeral
data in serverless analytics frameworks, we adopt a Video
Analytics pipeline from Klimovic et al. (2018b) and a Machine
Learning pipeline (LightGBM) from Carreira et al. (2018). These
two applications are suitable for serverless workloads as their
components can be split into small λ functions that perform tasks
in parallel. They also showcase different types of fanout with respect
to how data is passed from one stage of the DAG to another—
scatter and broadcast. The former means that a larger piece of data
is split equally and each split is sent to a child function while the
latter means that the same data is sent to all the children functions.
The types can impact the database due to their different read-
write characteristics. In a scatter fanout, there is a write for each
parallel function, followed by a read for each parallel function. In
a broadcast fanout, there is only one write, followed by a read
for each parallel function. To run the evaluation applications, the
AWS Lambda framework is used with Python as the runtime
environment.

3.1.1. Video Analytics
The Video Analytics application (whose DAG structure is

shown in Figure 2) performs object classification for different
frames of a video. In the first stage of the DAG, a λ function splits
the input video into n smaller chunks (of size 10s in our evaluation
for higher parallelization) and stores them in an ephemeral storage
service. It then triggers n λs in the second stage to process
these chunks. In this stage, one representative frame is extracted
from each chunk and is also stored in ephemeral storage, before
triggering a λ for the final stage. In the final stage, each frame is
analyzed using a pre-trained deep learning model (MXNet, 2021)
and the classification outputs a probability distribution over 1,000
classes. These results can then be stored in a durable, long-term
storage. This application is also an example of a scatter fanout as
the bigger video chunk is broken down into smaller chunks for
individual processing. The dataset for Video Analytics consists of
racing videos from YouTube, with classification targets including
cars, race-cars, people, and race tracks.

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

FIGURE 3

DAG overview for LightGBM application.

3.1.2. LightGBM
LightGBM, whose DAG structure is shown in Figure 3, trains

an ensemble predictor (a random forest) by training many decision
trees. In the first stage, a function performs Principal Component
Analysis (PCA) on the input training data and broadcasts this to
functions in the second stage, which trains decision trees by using
90% of the data for training, and a random 10%, for validation.
The number of functions in this stage is a user parameter (set to
six in our evaluation). In the final stage, the model files for these
trees are combined to form a random forest to test on testing data.
This application is an example of a broadcast fanout since the PCA
stage broadcasts the same data to every function in the second
stage to train the random forest. The NIST (Grother, 1995) and
MNIST (Deng, 2012) datasets are used for this application. Both
datasets contain images of handwritten digits. These images are
then pre-processed into matrices with grayscale values before being
split into a training/testing sets. The first stage of the DAG (PCA)
is run with these two sets to get a PCA-transformed dataset. The
results of classification are the predicted numbers for the testing set.

4. End-to-end evaluation

In this section, we show the superiority of Asgard over state-of-
practice serverless ephemeral storage options (S3 and Redis). In all
experiments, we denote Perf/$ to refer to throughput normalized
by dollar cost. We keep the configurations (number of cores and
memory sizes) for the serverless functions the same across all
storage options. This is done to factor out any possible differences
in latency or throughput that is not due to storage.

4.1. Video Analytics

In this application, we see from Figure 4 that both variants of
Cassandra outperform the state-of-practice (S3) in both Perf/$ and
E2E latency. Cassandra with its default configuration outperforms
S3 by 189% and Redis by 326% in the Perf/$ metric. With a static
configuration tuner configuring Cassandra for this Video Analytics
application (taking into account the scatter fanout and 50-50 read-
write split), we see that the Perf/$ is 47% better than the default

configuration. In terms of the E2E latency, Cassandra with Asgard
is 150% faster than S3 and 106% faster than Redis. Also note that
Redis has a 21% faster E2E latency than S3, but the overall cost leads
its Perf/$ to be 118% lesser than S3. Redis is slower than Cassandra
even though it has an in-memory store since the ephemeral data in
this application are small chunks of videos and images with each
item being accessed only once. Each shard in a replication group
has only one read/write node and up to five read-only nodes in
AWS ElastiCache Redis (Amazon, 2023c). Thus, for an application
with a scatter fanout and a fairly balanced read-write ratio, NoSQL
databases are a viable option for ephemeral data.

4.2. LightGBM

We see from Figure 5 that both variants of Cassandra
outperform S3 (by around 32%) in the Perf/$ metric. Redis has
the highest Perf/$ for this application, being 16% better than
Cassandra with Asgard Lite. This is because the application uses
a broadcast fanout with many parallel reads of the same object.
Redis can handle this better due to its r5.large instance being
a memory-optimized instance to support these operations. In
contrast, Cassandra is deployed on an i3.large instance with an SSD,
which is slower than reading directly from memory. S3 has the
lowest Perf/$ in this application because the data access latency is
the highest.

In terms of E2E latency, we see that Redis has the lowest latency
while S3 has a similar latency as that of Cassandra with Asgard
Lite. This is because of the structure of the ephemeral data. In
LightGBM, the ephemeral data volumes are large and these are
read in parallel, which is better handled by S3. Cassandra can also
be deployed as a cluster to exploit parallel reading, but the cost
tradeoffs for the extra nodes is not worth the small increase in
read throughput. Another extension is to dynamically tune Redis
using the same principle that we have used here in Asgard. Thus,
NoSQL databases are suitable for applications with a broadcast
fanout as well.

4.3. Instance placement of Cassandra

In this micro-experiment, we fix the database to be a default
installation of Cassandra while we vary the EC2 instance it is
placed on. We consider three popular options for the installation
of Cassandra, namely i3.large (instance with a dedicated NVMe
SSD disk), m5.large (a general-purpose instance), and c5.large
(a compute-optimized instance). Figure 6 shows the two metrics
(Perf/$ and E2E latency) for Video Analytics and Figure 7 shows
the metrics for LightGBM. We can see that for Video Analytics,
the compute-optimized c5.large instance has the best Perf/$ (75%
better than m5.large and 29% better than i3.large). This can be
borne out by the scatter fanout of the Video Analytics application.
Each item of ephemeral data is written once and read once. Thus,
it turns into a relatively more compute-intensive task with multiple
queries. m5.large has the lowest Perf/$ since each read and write
is done over the network on EBS storage without the benefits
of the compute-optimized cores. For LightGBM, however, we see

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

that m5.large has the highest Perf/$ (8.9% better than i3.large
and 8.1% better than c5.large). This can be explained due to the
broadcast fanout of LightGBM. The same transformed PCA files
are read in parallel which benefits the network based EBS storage.
Furthermore,m5.large instances have a higher memory to compute
ratio compared to c5.large,

which means that frequently accessed files can be cached more
inm5.large as opposed to c5.large. Thus, this experiment shows the
need for a system on top of a database tuner to also tune the EC2
instance that the NoSQL database is installed on. Doing this can
lead to the best overall Perf/$.

4.4. Dynamic workloads

In this experiment, we show the benefits of using a dynamically
tuned Cassandra node, as opposed to a default static node.
We use a combination of the two applications, Video Analytics
and LightGBM, in bursts of five serial invocations each. Video
Analytics, due to its scatter fanout, has a configuration optimized
for 50% write and 50% reads. LightGBM, on the other hand, is a
read-heavy application (with large read sizes) due to its broadcast
fanout and thus is optimized for a 100% reads. In a real world
setting, there could be a variety of invocation patterns with the two
applications being interleaved differently. Asgard, using its CBA
reconfigures the database based on the incoming workload (e.g.,
scatter vs. broadcast) and hence optimizes the Perf/$ over all phases
of the workload. It may decide to leave the same configuration
to avoid the reconfiguration cost if it predicts the new workload
to be short-lived. From Figure 8, we can see that there is only
a slight gain (2.6% increase in Perf/$ and 1.3% decrease in E2E
latency) by dynamically tuning the database. However, this can
save the end user thousands of dollars if implemented at a large
scale. Also, varying request patterns, within a single application, can
be handled well with the dynamic optimization. Furthermore, the
figure shows much smaller error bars for Cassandra with Asgard,
which shows the stability of the performance under our auto-
tuning solution. Here we have not shown the comparison with
the non-Cassandra baselines as our prior experiments (Figure 5)
already demonstrated the superiority of vanilla Cassandra. The
comparisonwith a static configuration (Asgard-Lite) is also omitted
for the same reason. According toMahgoub et al. (2019), a dynamic
configured database achieves 17.6% higher throughput than the
static optimized configuration.

4.5. Discussion: what conditions make
NoSQL suitable for serverless?

As seen in the evaluation, there are many dimensions
of consideration. In this section, we briefly summarize each
dimension and its suitability to NoSQL databases.
1. DAG fanout: The current state of practice, S3 (or any other blob
storage), performs poorly with scatter fanout due to its fixed strong
read-over-write consistency (Amazon, 2023b) which doubles write
time. NoSQL stores can be tuned to different levels of consistency

FIGURE 4

Comparison of NoSQL databases vis-à-vis S3 for Video Analytics.

Asgard Lite has higher Perf/$ & E2E latency than all baselines due to

the scatter fanout attribute of Video Analytics.

FIGURE 5

Comparison of NoSQL databases vis-à-vis S3 for the LightGBM

application. Cassandra outperforms S3 in terms of Perf/$ while

Redis outperforms all baselines due to the broadcast fanout

attribute of LightGBM.

based on the read-write characteristics of the application. This
makes it better for scatter fanout. For broadcast fanout, or a heavy-
read application, performance is more comparable between all the
baselines.
2. Data size: Ephemeral data sizes can vary between a few KB to
hundreds of MB between stages of a DAG. For applications with
larger sizes, S3 has a lower cost of adoption due to the included
replication and parallel reads but a NoSQL store with replication
can have better performance.
3. Instance placement: While NoSQL databases already have
marginal performance improvement over the current state of
practice, tuning the instance that the database is in can have further
performance benefits as shown in Section 4.3. On average, SSD
based instances with high network bandwidth are more expensive
but offer lower latency. This consideration is left to an orthogonal
work or to the application developer based on the characteristics of
the application.
4. Workload Rate: NoSQL databases perform better here with
bursty serverless workloads since they can be scaled in or out faster.

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

FIGURE 6

Comparison of EC2 instance types running Cassandra for the Video

Analytics application. c5.large has the best Perf/$ since the

ephemeral data is small in size and is only written/read once (no

parallel reads).

FIGURE 7

Comparison of EC2 instance types running Cassandra for the

LightGBM application. m5.large has the best Perf/$ since the

ephemeral data is large in size and the broadcast fanout of the

application results in multiple parallel reads over the network (EBS).

5. Related work

Ephemeral storage systems for serverless environments: Some
prior works have identified this issue of storing ephemeral data
in serverless applications and have designed storage systems to
optimize on performance and cost. Pocket (Klimovic et al., 2018b)
is an ephemeral data store providing a highly elastic, cost-effective,
and fine-grained solution. Pocket has similar performance to
ElastiCache Redis but is better optimized for cost through its
intelligent storage-tier selection. Pocket is deployed to support
concurrent jobs in multi-tenant use cases. It is designed to be
operated primarily by a cloud provider who can offer a pay-as-
you-go pricing tier to their customers since the cost of running
Pocket can be amortized over different users and applications. Our
work in Asgard provides a solution for a user-managed NoSQL
database setup. This work can be extended to cloud datastore
deployments by training a workload/performance predictor and an
optimizer to generate VM configurations as defined in the design
of OptimusCloud (Mahgoub et al., 2020).

FIGURE 8

Comparison of a default Cassandra node to a node that is

dynamically tuned based on the workload. Cassandra with Asgard

shows a minor improvement over the default configuration since it

picks the best configuration to use to optimize Perf/$. At a large

scale and di�erent request patterns, this di�erence can get bigger.

Locus (Pu et al., 2019) is another serverless analytics system that
combines cheap and slow storage with fast and expensive storage to
reach an overall performant and cost-effective system.
Application-specific automatic cloud configurations: As shown
in Figures 6, 7, it is not always trivial to pick the VM instance
for an application. Other systems can be used orthogonally to the
NoSQL database to provide configurations for cloud instances.
CherryPick (Alipourfard et al., 2017) uses Bayesian optimization
to build performance models for different applications and chooses
cloud VM configurations based on these models. Selecta (Klimovic
et al., 2018a) uses Latent Collaborative Filtering to predict the
performance of an application with different configurations, with
small training data, and uses this to rightsize cloud storage and
compute resources.
NoSQL database configuration: Orthogonal to our study, it is
possible to improve the raw performance of Cassandra and other
key-value stores by hosting them on faster media, such as NVMe.
There is a slew of works that have done this outside of the
serverless context (Xia et al., 2017; Hao et al., 2020). In this paper
we have shown the performance/$ operating point of Cassandra
on “regular” storage media is a viable option for serverless data.
Therefore, we did not feel the need to explore faster storage
media in our experiments. Further, we did not need to use more
sophisticated configurators for Cassandra (or NoSQL datastores in
general) to show viability—there are several recent works in this
space (Zhu et al., 2017; Wylot et al., 2018; Zhang et al., 2019).

6. Conclusion

Serverless functions provide an interesting set of opportunities
for developers to not have to worry about the infrastructure around
which their code runs. However, in more complicated workloads
involving ephemeral data between different stages of a serverless
application, it is not always clear what storage system to use for
these intermediate datasets. In this work, we analyzed a popular
NoSQL storage system, Cassandra, along with Asgard, an automatic
database tuner with a cost benefit analyzer. We challenged the
previous notion that NoSQL databases do not provide value for
ephemeral data since they focus on durability and reliability.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

Our evaluation using AWS Lambda on two popular serverless
applications quantitatively shows that they have better Perf/$ than
the current state-of-practice (S3), without sacrificing raw E2E
latency. This happens because the NoSQL database in clustered
mode can handle parallel read-write queries and the database can
be hosted on the right-sized VM instance, balancing the widely
varying resource requirements of the applications’ data passing.We
also showed that using a database tuner with workload awareness,
though adding development overhead, provides benefits.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

KS: System design, running experiments, writing the paper,
and generating figures. AM: System design and architecture. ZZ:
Experiments against baselines. UP: Experiments against baselines.
SC:Writing the paper, system design and architecture, and funding.

Funding

This material is based in part upon work supported by
the National Science Foundation under Grant Numbers
CNS2146449 (NSF CAREER award) and funding from
CNS-2038986/2038566.

Acknowledgments

The authors thank the reviewers for their insightful comments
and the associate editor, Fred Douglis, for his constructive and
enthusiastic feedback.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author SC declared that they were an editorial board
member of Frontiers, at the time of submission. This had no impact
on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References

Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., et al. (2018). “Sand:
towards high-performance serverless computing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC) (Boston, MA), 923–935.

Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M.
(2017). “Cherrypick: Adaptively unearthing the best cloud configurations for big
data analytics,” in 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17) (Boston, MA), 469–482.

Amazon (2021a). Configuring Functions in the AWS Lambda Console. Available
online at: https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html
(accessed December 19, 2022).

Amazon (2021b). Configuring Functions in the AWS Lambda Console. Available
online at: https://aws.amazon.com/lambda/features/ (accessed December 19, 2022).

Amazon (2021c). S3. Available online at: https://aws.amazon.com/s3/ (accessed
December 19, 2022).

Amazon (2021d). S3 FAQs. Available online at: https://aws.amazon.com/s3/faqs/
(accessed December 19, 2022).

Amazon (2022). Choosing Your Node Size. Available online at: https://docs.
amazonaws.cn/en_us/AmazonElastiCache/latest/red-ug/nodes-select-size.html
(accessed December 19, 2022).

Amazon (2023a). Amazon States Language. Available online at: https://docs.
aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
(accessed December 19, 2022).

Amazon (2023b). AWS S3 Consistency. Available online at: https://aws.amazon.
com/s3/consistency/ (accessed December 19, 2022).

Amazon (2023c). Understanding Redis Replication. Available online at: https://docs.
aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis.Groups.html
(accessed December 19, 2022).

Ao, L., Izhikevich, L., Voelker, G. M., and Porter, G. (2018). “Sprocket: a serverless
video processing framework,” in Proceedings of the ACM Symposium on Cloud
Computing (New York, NY), 263–274.

Bhasi, V.M., Gunasekaran, J. R., Thinakaran, P., Mishra, C. S., Kandemir, M. T., and
Das, C. (2021). “Kraken: adaptive container provisioning for deploying dynamic dags
in serverless platforms,” in Proceedings of the ACM Symposium on Cloud Computing
(New York, NY), 153–167.

Carreira, J., Fonseca, P., Tumanov, A., Zhang, A., and Katz, R. (2018). “A case for
serverless machine learning,” inWorkshop on Systems forML and Open Source Software
at NeurIPS, Vol. 2018 (Montreal, QC).

Cassandra (2021). Apache Cassandra. Available online at: https://cassandra.apache.
org/ (accessed December 19, 2022).

Cassandra, A. (2022). Compaction (Cassandra Documentation). Available online
at: https://cassandra.apache.org/doc/4.1/cassandra/operating/compaction/index.html
(accessed December 19, 2022).

Curino, C., Jones, E. P. C., Zhang, Y., and Madden, S. R. (2010). Schism: A
Workload-Driven Approach to Database Replication and Partitioning. New York, NY:
VLDB Endowment.

DataStax (2022). The Write Path to Compaction. Available online at: https://
docs.datastax.com/en/cassandra-oss/2.1/cassandra/dml/dml_write_path_c. (accessed
December 19, 2022).

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/faqs/
https://docs.amazonaws.cn/en_us/AmazonElastiCache/latest/red-ug/nodes-select-size.html
https://docs.amazonaws.cn/en_us/AmazonElastiCache/latest/red-ug/nodes-select-size.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://aws.amazon.com/s3/consistency/
https://aws.amazon.com/s3/consistency/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis.Groups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis.Groups.html
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/doc/4.1/cassandra/operating/compaction/index.html
https://docs.datastax.com/en/cassandra-oss/2.1/cassandra/dml/dml_write_path_c.
https://docs.datastax.com/en/cassandra-oss/2.1/cassandra/dml/dml_write_path_c.
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Shankar et al. 10.3389/fhpcp.2023.1127883

Daw, N., Bellur, U., and Kulkarni, P. (2020). “Xanadu: mitigating cascading cold
starts in serverless function chain deployments,” in Proceedings of the 21st International
Middleware Conference (New York, NY), 356–370.

Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Sign. Process. Mag. 29, 141–142.
doi: 10.1109/MSP.2012.2211477

Duan, S., Thummala, V., and Babu, S. (2009). Tuning database
configuration parameters with ituned. Proc. VLDB Endow. 2, 1246–1257.
doi: 10.14778/1687627.1687767

Fouladi, S.,Wahby, R. S., Shacklett, B., Balasubramaniam, K. V., Zeng,W., Bhalerao,
R., et al. (2017). “Encoding, fast and slow: low-latency video processing using thousands
of tiny threads,” in 14th {USENIX} Symposium on Networked Systems Design and
Implementation {NSDI} 17) (Boston, MA), 363–376.

Gilad, E., Bortnikov, E., Braginsky, A., Gottesman, Y., Hillel, E., Keidar, I., et al.
(2020). “Evendb: optimizing key-value storage for spatial locality,” in Proceedings of the
Fifteenth European Conference on Computer Systems (New York, NY), 1–16.

Google (2021). Google Cloud Functions. Available online at: https://cloud.google.
com/functions/pricing (accessed December 19, 2022).

Grother, P. J. (1995). Nist Special Database 19 Handprinted Forms and Characters
Database. Gaithersburg, MD: National Institute of Standards and Technology.

Hao, M., Toksoz, L., Li, N., Halim, E. E., Hoffmann, H., and Gunawi, H. S. (2020).
“Linnos: predictability on unpredictable flash storage with a light neural network,” in
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20) (Boston, MA), 173–190.

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., et al.
(2019). Cloud Programming Simplified: A Berkeley View on Serverless Computing. EECS
Department, University of California, Berkeley, CA, United States. Available online at:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

Klimovic, A., Litz, H., and Kozyrakis, C. (2018a). “Selecta: heterogeneous cloud
storage configuration for data analytics,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (Boston, MA), 759–773.

Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., and Kozyrakis, C.
(2018b). “Pocket: elastic ephemeral storage for serverless analytics,” in 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18) (Boston,
MA), 427–444.

Mahgoub, A., Medoff, A. M., Kumar, R., Mitra, S., Klimovic, A., Chaterji, S.,
et al. (2020). “{OPTIMUSCLOUD}: heterogeneous configuration optimization for
distributed databases in the cloud,” in 2020 {USENIX} Annual Technical Conference
USENIX ATC 20) (Boston, MA), 189–203.

Mahgoub, A., Shankar, K., Mitra, S., Klimovic, A., Chaterji, S., and Bagchi, S.
(2021). “{SONIC}: Application-aware data passing for chained serverless applications,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21) (Boston, MA),
285–301.

Mahgoub, A., Wood, P., Ganesh, S., Mitra, S., Gerlach, W., Harrison, T., et al.
(2017). “Rafiki: a middleware for parameter tuning of nosql datastores for dynamic
metagenomics workloads,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference (New York, NY), 28–40.

Mahgoub, A., Wood, P., Medoff, A., Mitra, S., Meyer, F., Chaterji, S., et al. (2019).
“{SOPHIA}: Online reconfiguration of clustered nosql databases for time-varying
workloads,” in 2019 {USENIX} Annual Technical Conference USENIX ATC 19 (Boston,
MA), 223–240.

Mahgoub, A., Yi, E. B., Shankar, K., Elnikety, S., Chaterji, S., and Bagchi, S. (2022a).
“{ORION} and the three rights: Sizing, bundling, and prewarming for serverless
{DAGs},” in 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22) (Boston, MA), 303–320.

Mahgoub, A., Yi, E. B., Shankar, K., Minocha, E., Elnikety, S., Bagchi, S.,
et al. (2022b). Wisefuse: Workload characterization and dag transformation for
serverless workflows. Proc. ACM Meas. Anal. Comp. Syst. 6, 1–28. doi: 10.1145/
3530892

Microsoft (2021).Azure Functions. Available online at: https://azure.microsoft.com/
en-us/pricing/details/functions/ (accessed December 19, 2022).

MXNet (2021). Using Pre-trained Deep Learning Models in MXNet. Available
online at: https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/
pretrained_models.html (accessed December 19, 2022).

Pu, Q., Venkataraman, S., and Stoica, I. (2019). “Shuffling, fast and slow: scalable
analytics on serverless infrastructure,” in 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19) (Boston, MA), 193–206.

Rausch, T., Hummer, W., Muthusamy, V., Rashed, A., and Dustdar, S. (2019).
“Towards a serverless platform for edge {AI},” in 2nd {USENIX} Workshop on Hot
Topics in Edge Computing (HotEdge 19) (Renton, WA).

Redis (2021). Redis. Available online at: https://redis.io/ (accessed December 19,
2022).

Röger, H., and Mayer, R. (2019). A comprehensive survey on parallelization and
elasticity in stream processing. ACM Comp. Surv. 52, 1–37. doi: 10.1145/3303849

Scylla (2018). Scylladb Datasheet. Available online at: https://www.scylladb.com/
wp-content/uploads/datasheet_why-scylladb.pdf (accessed December 19, 2022).

Scylla DB (2021). Scylladb: The Real-Time Big Data Database. Available online at:
https://www.scylladb.com/ (accessed December 19, 2022).

Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., et al. (2020).
“Serverless in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20) (Boston, MA), 205–218.

Shankar, K., Wang, P., Xu, R., Mahgoub, A., and Chaterji, S. (2020). “Janus:
benchmarking commercial and open-source cloud and edge platforms for object and
anomaly detection workloads,” in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD) (New York, NY), 590–599.

Sullivan, D. G., Seltzer, M. I., and Pfeffer, A. (2004). Using probabilistic
reasoning to automate software tuning. SIGMETRICS Perform. Eval. Rev. 32, 404–405.
doi: 10.1145/1005686.1005739

Tran, D. N., Huynh, P. C., Tay, Y. C., and Tung, A. K. (2008). A new
approach to dynamic self-tuning of database buffers. ACM Transact. Stor. 4, 1–25.
doi: 10.1145/1353452.1353455

Van Aken, D., Pavlo, A., Gordon, G. J., and Zhang, B. (2017). “Automatic database
management system tuning through large-scale machine learning,” in Proceedings of
the 2017 ACM International Conference on Management of Data (New York, NY),
1009–1024.

Wylot, M., Hauswirth, M., Cudré-Mauroux, P., and Sakr, S. (2018). Rdf data
storage and query processing schemes: a survey. ACM Comp. Surv. 51, 1–36.
doi: 10.1145/3177850

Xia, F., Jiang, D., Xiong, J., and Sun, N. (2017). “Hikv: a hybrid index key-value store
for dram-nvm memory systems,” in USENIX Annual Technical Conference (USENIX
ATC) (Santa Clara, CA), 349–362.

Zafar, R., Yafi, E., Zuhairi, M. F., and Dao, H. (2016). “Big data: the nosql and
rdbms review,” in 2016 International Conference on Information and Communication
Technology (ICICTM) (Kuala Lumpur: IEEE), 120–126.

Zhang, H., Tang, Y., Khandelwal, A., Chen, J., and Stoica, I. (2021).
“Caerus:{NIMBLE} task scheduling for serverless analytics,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21) (Boston,
MA), 653–669.

Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B., et al. (2019). “An end-to-
end automatic cloud database tuning system using deep reinforcement learning,” in
Proceedings of the 2019 International Conference on Management of Data (New York,
NY), 415–432.

Zhu, Y., Liu, J., Guo, M., Bao, Y., Ma, W., Liu, Z., et al. (2017). “Bestconfig:
tapping the performance potential of systems via automatic configuration tuning,” in
Proceedings of the 2017 Symposium on Cloud Computing (New York, NY), 338–350.

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1127883
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.14778/1687627.1687767
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://doi.org/10.1145/3530892
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/pretrained_models.html
https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/pretrained_models.html
https://redis.io/
https://doi.org/10.1145/3303849
https://www.scylladb.com/wp-content/uploads/datasheet_why-scylladb.pdf
https://www.scylladb.com/wp-content/uploads/datasheet_why-scylladb.pdf
https://www.scylladb.com/
https://doi.org/10.1145/1005686.1005739
https://doi.org/10.1145/1353452.1353455
https://doi.org/10.1145/3177850
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Asgard: Are NoSQL databases suitable for ephemeral data in serverless workloads?
	1. Introduction
	2. Preliminaries
	2.1. NoSQL databases and Cassandra
	2.1.1. Write workflow
	2.1.2. Compaction

	2.2. Adaptive configuration tuning
	2.3. Serverless computing
	2.4. Desired features of datastores for serverless systems
	2.5. NoSQL key features for serverless computing
	2.6. Design of Asgard

	3. Experimental setup
	3.1. Applications
	3.1.1. Video Analytics
	3.1.2. LightGBM

	4. End-to-end evaluation
	4.1. Video Analytics
	4.2. LightGBM
	4.3. Instance placement of Cassandra
	4.4. Dynamic workloads
	4.5. Discussion: what conditions make NoSQL suitable for serverless?

	5. Related work
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

