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Maternal obesity, often linked to the consumption of a high-fat Western-style

diet (WSD), poses significant risks to both maternal and fetal health. This review

explores the impact of maternal obesity on fetal hematopoietic stem and

progenitor cells (HSPCs), highlighting how metabolic and inflammatory shifts in

the maternal environment affect HSPC proliferation, differentiation, and long-

term immune system development. Maternal obesity leads to hormonal

imbalances, increased inflammatory cytokines, placental insufficiency, and

altered nutrient availability that disrupt normal HSPC function, potentially

predisposing offspring to immune dysfunction, metabolic disorders, and

cardiovascular diseases later in life. Notably, maternal obesity skews HSPC

differentiation toward the myeloid lineage, which can impair adaptive immune

responses and increase the risk of autoimmune diseases and infections.

Furthermore, maternal diet-driven epigenetic and transcriptional

reprogramming of fetal HSPCs exacerbates chronic inflammation, reinforcing a

pro-inflammatory phenotype in downstream progeny that persists into postnatal

stages. The review also emphasizes the need for further research to clarify the

mechanisms underlying these effects across different species and developmental

stages, as well as the potential for targeted interventions to mitigate the adverse

impacts of maternal obesity on fetal hematopoiesis and lifelong

health outcomes.
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Introduction

Maternal obesity has emerged as a significant public health concern, driven by a complex

interplay of dietary habits, lifestyle choices, and genetic predispositions. The prevalence of

obesity, particularly linked to the consumption of high-fat Western-style diet (WSD)

characterized by high caloric intake and low nutritional quality, has increased dramatically in
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recent decades. In the United States, more than 40% of pregnant

women are classified as obese in 2019 (1), with prepregnancy obesity

rates rising with ~11% increase in prevalence between 2016 and 2019

(2). This condition poses substantial risks not only to maternal health

but also to the developing fetus, with obesity prior to pregnancy

identified as a critical risk factor for a range of maternal and fetal

complications. Specifically, maternal obesity significantly increases the

risk of gestational diabetes (GD) mellitus, which can lead to excessive

fetal growth (macrosomia) and complications during delivery (3–5).

Maternal obesity is also linked to a higher incidence of hypertensive

disorders, such as gestational hypertension and preeclampsia, which

can result in serious complications including placental abruption and

preterm birth (6, 7). Maternal obesity is also associated with an

increased risk of stillbirth and can contribute to long-term health

implications for offspring, including obesity, metabolic syndrome, and

cardiovascular diseases (8–18).

Moreover, children born to obese mothers often exhibit

immunological complications, such as reduced immune responses

to ex vivo stimulation with toll-like receptor (TLR) ligands (12, 19)

and bacterial/viral pathogens, which increase their susceptibility to

infections (20). Studies have shown that these children may have

altered immune cell development, leading to a higher risk of

conditions like asthma and other allergic diseases (21, 22). The

dysregulation of innate immunity in early life can have long-term

consequences on metabolic diseases and behavioral disorders,

further complicating their health outcomes. Despite the growing

body of literature addressing these implications, there remains a

notable gap in our understanding of how maternal obesity affects

developmental hematopoiesis—the process by which blood cells are

formed during fetal development. Limited data exist on how

maternal obesity influences this critical aspect of fetal growth,

highlighting the need for further research to elucidate the

mechanisms involved and the potential long-term consequences

for offspring.
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This review will specifically focus on primitive hematopoietic

stem cells (HSCs) and hematopoietic progenitor cells (HPCs),

collectively referred to as hematopoietic stem and progenitor cells

(HSPCs). It will examine both sex-specific and species-specific

aspects of developmental hematopoiesis, including the impact of

maternal obesity and gestational diabetes mellitus on HSPC

proliferation, differentiation, metabolic programming,

mitochondrial function, and overall functional characteristics.

Additionally, the impact of maternal obesity on the immune

system has been addressed in other review articles (22–25). The

effects of obesity on hematopoiesis and the bone marrow niche in

adults have been detailed in several excellent reviews (26–30).
Developmental hematopoiesis and
bone marrow niche formation

Developmental hematopoiesis is a complex and dynamic

process that involves the formation of HPCs and mature blood

cells from HSCs (Figure 1). This process is crucial for establishing a

functional hematopoietic system, which is essential for maintaining

homeostasis and responding to physiological demands throughout

an organism’s life. During fetal development, hematopoiesis occurs

in several waves that involve the migration of HSCs between

different tissues. Several review articles provide a detailed

discussion on developmental hematopoiesis (31–35). Initially,

hematopoiesis takes place in the yolk sac, where primitive

hematopoiesis generates early red blood cells and immune cells

(36–38). During this stage, the primary immune cells produced are

primitive macrophages, which play a role in early immune

responses (39, 40). These cells are short-lived and are eventually

replaced by definitive erythrocytes produced later in development

(41). Following the emergence of definitive HSPCs in the aorta

gonad mesonephros (AGM) during the first trimester, the fetal liver
FIGURE 1

Timeline of developmental hematopoiesis. During fetal development, hematopoiesis occurs in several distinct waves, involving the sequential
migration of hematopoietic stem cells (HSC) between different tissues. Initially, HSC emerge in the aorta-gonad-mesonephros (AGM) region during
the first trimester, marking the first site of definitive hematopoiesis. As development progresses, the fetal liver (FL) becomes the primary
hematopoietic niche during the second trimester, serving as the main site for HSC expansion. In the early third trimester, HSCs begin transitioning
from the FL to the fetal bone marrow, where they establish the long-term hematopoietic system that persists into adulthood. This relocation
coincides with vascular development, bone ossification, and the formation of the central marrow cavity, all of which are essential for creating a
functional bone marrow microenvironment that supports lifelong hematopoiesis. Bone marrow adipocytes emerge during postnatal development.
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becomes the main embryonic niche for HSC expansion during the

second trimester (42, 43). During the early third trimester, HSCs

begin relocating from the fetal liver (FL) to the fetal bone marrow

(34). The regulation of developmental hematopoiesis involves a

variety of intrinsic and extrinsic factors. The bone marrow

microenvironment, including adipocytes, osteolineage, stromal

cells, megakaryocytes and endothelial cells, provides essential

paracrine signals that support HSC maintenance and function

(33, 44–49). This emergence of HSCs in the fetal bone marrow

coincides with the development of the fetal bone marrow vascular

system, bone ossification, and formation of the central marrow

cavity (50, 51) (Figure 1).

Bone marrow adipogenesis begins postnatally, with the first

adipocytes appearing in the distal skeleton (e.g., long bones like the

tibia and femur) and gradually expanding to more central regions

(e.g., vertebrae, sternum and ribs) with age (28, 52) (Figure 1).

While bone marrow adipogenesis is typically postnatal, the

premature appearance of bone marrow adipocytes during

prenatal development may have pathological impacts on immune

cell development in the fetus. The role of bone marrow adipocytes

in hematopoiesis regulation remains contentious. Evidence from

two studies suggests that bone marrow adipocytes act as negative

regulators of hematopoiesis in vivo. In an initial study, Naveiras

et al. demonstrated that fatless mice or wild-type mice treated with a

peroxisome proliferator-activated receptor-gamma (PPARg)
inhibitor, which inhibits adipogenesis, exhibited enhanced HSC

engraftment following irradiation (53). Additionally, the absence of

bone marrow adipocytes in fatless mice led to a compensatory

increase in osteogenesis after hematopoietic ablation. These

findings were later corroborated by another study, which showed

that bone marrow adipocytes suppress both hematopoietic recovery

and osteogenesis post-irradiation (54). Since transplanted HSCs

predominantly home near endosteal bone surfaces following bone

marrow ablation (35), it is possible that bone marrow adipocytes

indirectly inhibit HSC engraftment by suppressing osteoblast

differentiation. Given that osteoblasts and adipocytes originate

from a common bone marrow mesenchymal progenitor

population (52), increased adipogenesis may directly impair

osteogenesis, thereby reducing HSC engraftment. In addition to

their effects on osteogenesis, bone marrow adipocytes may also

influence HSC function through local paracrine signaling. For

instance, studies in mice have demonstrated that bone marrow

adipocytes produce stem cell factor (SCF), which plays a crucial role

in hematopoietic regeneration following irradiation or

chemotherapy (55) and in restoring myelopoiesis after metabolic

stress induced by a high-fat diet (HFD) (56).

In line with these findings, human acute myeloid leukemia has

been shown to disrupt the bone marrow adipocyte niche, leading to

impaired myelo-erythropoiesis, while in vivo administration of

PPARg agonists stimulated bone marrow adipogenesis and

reversed leukemia-induced hematopoietic failure (57). Notably,

both obesity (30) and aging (58) are associated with increased

bone marrow adipogenesis, coinciding with a shift toward myeloid-

biased hematopoiesis. As of today, there are no comprehensive

reports detailing developmental bone marrow adipogenesis.
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Studies in non-human primates (NHPs) showed that maternal

obesity can induce an adipogenic environment in the fetal

bone marrow, characterized by an increase in adipocyte numbers

and size (59, 60). This change can disrupt the bone marrow niche,

which is essential for maintaining HSC function. Therefore,

our understanding is limited to the postnatal context. Future

studies on prenatal adipogenesis may uncover new insights into

the links between early adipocyte development and immune

system formation.

Impact of maternal obesity on HSPC
number, proliferation and
differentiation

The impact of maternal obesity on fetal HSCs and their progeny is

not fully understood, but several studies have begun to elucidate its

effects (Figure 2). One earlier study by Kamimae-Lanning et al. (61)

demonstrated a reduction in the frequencies of primitive c-Kit+ Sca1+

HSCs in the fetal liver of mice exposed to diet-induced maternal

obesity. Recent studies also demonstrated that male but not female

offspring of obese dams showed a decrease in primitive bonemarrow c-

Kit+ Sca1+ HSC numbers and the development of glucose intolerance

in mice (62). These findings align with studies in adult mice, which

shows that diet-induced obesity leads to a shift in HSCs capable of self-

renewal toward maturing multipotent progenitor cells. The increased

differentiation potential in these cells results in enhanced myeloid

ex vivo colony-forming capacity (63). This suggests that obesity

stimulates the differentiation of HSCs while simultaneously

reducing their proliferation, ultimately leading to a decreased HSC

population (Figure 2).

In contrast, studies in NHPs demonstrated different and

conflicting outcomes. Sureshchandra et al. found that maternal

obesity was not associated with changes in the frequencies and in

vitro colony-forming capacity of CD34+ HSPCs derived from the

fetal bone marrow (60). In parallel, maternal WSD disrupted B-cell

development by downregulating essential transcription factors

(BCL11A, BTG2, HHEX) and cell adhesion molecules (CD164,

ITGA4, ESAM) in common lymphoid progenitors (CLPs), leading

to a significant reduction in fetal bone marrow B-cell numbers (60).

The functional consequences of these changes were evident in

transplantation studies using immunodeficient NOD/SCID/

IL2rg-/- mice. Thirteen weeks post-engraftment, fetal bone

marrow CD34+ HSPCs from WSD-exposed fetuses showed

significantly lower engraftment efficiency in mouse bone marrow

compared to controls. While B-and T-cell frequencies remained

unchanged, myeloid cell populations, including monocytes and

granulocytes, were markedly reduced in the bone marrow of

engrafted mice. Interestingly, colony-forming assays indicated no

intrinsic differences in granulocyte-macrophage (CFU-GM) or

erythroid (BFU-E) progenitor numbers, suggesting that maternal

WSD primarily impaired in vivo differentiation and regenerative

potential rather than altering intrinsic lineage commitment (60).

However, another NHP study by Nash et al. reported that exposure

to a maternal WSD resulted in increased frequencies of bone
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marrow HSPCs in both fetuses and juvenile offspring from obese

dams (59). Interestingly, ex vivo erythroid colony-forming capacity

was reduced in CD34+ HSPCs derived from obese dams (59). These

contrasting findings highlight the complexity of maternal obesity’s

effects on fetal HSPC proliferation and underscore the need for

further research to clarify these relationships across different

species, developmental stages, and hematopoietic tissues.
Impact of maternal obesity on
proinflammatory cytokines

Maternal obesity alters the metabolic environment in utero,

characterized by elevated levels of inflammatory cytokines

(23, 64–66), altered nutrient availability, and alterations in the

hormonal milieu, including changes in insulin, IGFI/II, leptin and

adiponectin levels (67–69). These factors can significantly impact

the fetal hematopoietic system (Figure 3). Studies have shown

that a HFD can lead to a hyperinflammatory state in the fetal

environment, which may disrupt normal HSPC differentiation

(22, 25, 70). One of the primary proposed mechanisms through

which maternal obesity affects HSPC differentiation is the
Frontiers in Hematology 04
elevation of inflammatory cytokines such as C-reactive protein

(CRP), tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6)
and monocyte chemo-attractant protein-1 (MCP-1) (71–77),

although the role of inflammatory cytokines in maternal

obesity-induced inflammation remains controversial (65).

Inflammatory cytokines can influence HSPC differentiation by

promoting myeloid lineage commitment at the expense of

lymphoid development and self-renewal (29, 78, 79). This shift

can lead to an imbalance in immune cell populations, potentially

increasing the risk of autoimmune diseases and infections in

the offspring.

Theoretically, multiple factors can contribute to a

hyperinflammatory fetal bone marrow microenvironment, similar to

the inflammatory remodeling of the bone marrow observed in aging.

For example, excess bone marrow adipose tissue can lead to altered

proinflammatory signaling pathways in HSPCs (28, 30, 34). Moreover,

maternal obesity can have a significant impact on the stromal cells that

support HSPCs. Stromal cells are essential for maintaining the HSPC

niche, where they provide signals that regulate the self-renewal,

differentiation, and overall function of hematopoietic cells (34, 44, 47,

80). In aged bone marrow, inflammation is marked by the loss of

osteoprogenitors at the endosteum, expansion of inflammatory

mesenchymal stromal cells (MSCs), and deterioration of the
FIGURE 2

The impact of maternal obesity on HSPCs. Maternal obesogenic diet, lifestyle, and genetic factors can influence fetal development through several
potential mechanisms, including inflammation, nutrient alterations, hormonal imbalance, maternal microbiome dysregulation, and placental
insufficiency. These factors may directly affect HSPC function and regulation, leading to changes in proliferation rates and HSPC numbers, the
development of myeloid-biased HSPC differentiation at the expense of lymphoid and erythroid differentiation, activation of a proinflammatory
program in HSPCs, and reduced expression of anti-inflammatory factors. Additionally, they can promote increased glycolysis at the expense of
oxidative phosphorylation and impair the regenerative properties of HSPCs in vivo.
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sinusoidal vasculature. This chronic inflammatory state, primarily

driven by interleukin-1b (IL-1b), leads to the persistent activation of

emergency myelopoiesis, skewing HSC differentiation toward myeloid

lineages and impairing regenerative and self-renewal capacity (78, 81).

Given that blocking IL-1 signaling has been shown to mitigate these

aging-related defects (78), targeting IL-1 may also represent a potential

strategy to prevent maternal inflammation-induced alterations in

fetal hematopoiesis.

Importantly, studies have suggested that proinflammatory

cytokines play a crucial role in selecting for and promoting clonal

hematopoiesis (CH). Increased levels of inflammatory cytokines

and chemokines, such as IL-1b, IL-6, and TNF-a, have been

strongly associated with CH in human studies (82–84). Chronic

inflammation creates a selective pressure that favors the expansion

of HSPCs harboring CH-associated mutations, as these mutant

clones often exhibit resistance to inflammatory stress. This

inflammatory-driven clonal expansion has been linked to an

increased risk of hematologic malignancies and cardiovascular

diseases, highlighting the significant interplay between systemic

inflammation and CH progression (84). However, whether chronic
Frontiers in Hematology 05
maternal inflammation promotes CH and hematopoietic

malignancies in the offspring remains unknown (Figure 3). The

impacts of obesity on bone marrow inflammation and the

mechanisms underlying enhanced myelopoiesis in adults have

been extensively reviewed (29, 85, 86).
Maternal obesity and the maternal-
fetal interface

The dysregulation of the maternal-fetal interface can have

lasting effects on fetal immune system development (Figure 3).

However, the specific mechanisms remain largely unknown due to

the intricate network of maternal signals originating from or

transmitted through the placenta. Alterations in placental

function, including disruptions in nutrient and oxygen transport,

inflammatory signaling, and immune cell composition, can impact

fetal hematopoiesis. During pregnancy, the maternal immune

system faces the unique challenge of tolerating the genetically

distinct fetus while still maintaining immune defenses. Instead of
FIGURE 3

Transgenerational effects of maternal obesity on hematopoiesis and immunity. Maternal obesity is associated with excess body fat, insulin resistance,
and dyslipidemia, leading to altered levels of circulating molecules, including glucose, fatty acids, and microbial metabolites. Additionally, maternal
obesity induces a proinflammatory milieu in adipose tissue and the placenta, promoting the accumulation of proinflammatory M1 macrophages at
the expense of alternatively activated M2 macrophages. Proinflammatory cytokines secreted by tissue-resident and circulating immune cells, along
with metabolic factors, can cross the placenta and enter fetal circulation, directly influencing fetal growth and HSPC programming via epigenetic
mechanisms. Disruptions in the placental immune environment can impair the maternal-fetal interface, leading to immune tolerance breakdown and
inflammation. Both circulating and niche-specific factors affect HSPC development and fate commitment, resulting in dysregulated differentiation
and abnormal seeding of peripheral tissues immune cells. Offspring of obese mothers are at an increased risk of obesity, which further influences
HSPC development within their own lifetime. The combined effects of prenatal and postnatal obesogenic stimuli have lasting impacts on stem cells
and their progeny, increasing the risk of obesity, chronic inflammation, infectious diseases, and potentially malignant hematopoiesis in
future generations.
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rejecting the fetus as a foreign entity, the maternal immune system

undergoes significant adaptations, particularly at the maternal-fetal

interface. This involves a delicate balance between immune

tolerance and protective immunity (87). The detailed biology of

the placental immune landscape is beyond the scope of this review

and has been extensively discussed in several excellent review

articles (87–91).

In brief, the maternal decidua, which lines the uterus during

pregnancy, consists primarily of decidual natural killer cells,

decidual macrophages, and T cells. These immune cells play a

crucial role in maintaining maternal-fetal tolerance, facilitating

placental development, and regulating immune responses at the

maternal-fetal interface (87, 88). In contrast, the immune

composition within the fetal chorionic villi is exclusively made up

of myeloid cells, including fetal Hofbauer cells and placenta-

associated maternal monocytes and macrophages (92). Hofbauer

cells, which originate from the fetus, reside in the mesenchymal core

of the chorionic villi and contribute to placental development, blood

vessel formation, immune modulation, and defense against

pathogens. Meanwhile, placenta-associated maternal monocytes

represent a diverse population of maternal monocytes and

macrophages that infiltrate the placenta, supporting immune

regulation and tissue remodeling. Together, these maternal and

fetal immune cells establish a carefully regulated environment that

ensures proper fetal development while protecting against

infections and excessive inflammation (87–91).

Extensive research has been conducted to elucidate the impact of

maternal obesity on macrophages, revealing significant alterations in

their function, polarization, and inflammatory responses. Macrophages

are highly plastic immune cells that regulatematernal-fetal interactions,

aiding in implantation, placental development, and immune tolerance

[reviewed in (88–90)]. During early pregnancy, macrophages exhibit an

M1-dominant phenotype to facilitate implantation. As pregnancy

progresses, a mixed M1/M2 phenotype supports trophoblast invasion

and vascular remodeling. Later, anM2-dominant environment ensures

fetal tolerance and growth (88–90). Before labor, M1 macrophages re-

emerge to initiate an inflammatory response necessary for childbirth.

Imbalancedmacrophage polarization is linked to complications such as

preeclampsia, preterm labor, and fetal growth restriction (93–96).

Maternal obesity significantly impacts the function and phenotype of

macrophages during pregnancy, contributing to immune dysregulation

at both systemic and placental levels. Obesity alters monocyte

activation, shifting them toward an immune-tolerant state by

suppressing genes involved in interferon signaling, reactive oxygen

species responses, and inflammatory activation (97). Monocytes from

obese pregnant women fail to show the expected inflammatory

response to LPS stimulation in late pregnancy, lack upregulation of

activation markers, and do not undergo chromatin remodeling

necessary for enhanced immune responses. Additionally, obesity

leads to increased expression of markers associated with insulin

resistance in monocytes, further complicating metabolic and immune

adaptations during pregnancy (97).

At the placental level, obesity influences macrophage

accumulation and polarization, leading to an increased presence

of monocyte-derived macrophages while reducing the proportion of
Frontiers in Hematology 06
pro-inflammatory decidual macrophages (98, 99) (Figure 3). This

shift is believed to be a compensatory response to mitigate obesity-

induced inflammation. However, studies suggest that obesity still

promotes a pro-inflammatory state, as placental macrophages

exhibit heightened secretion of inflammatory cytokines, including

TNF-a, IL-6, and IL-1b, particularly in response to immune

challenges (71, 99–101). Given these effects, maternal obesity is

strongly linked to pregnancy complications such as GD,

preeclampsia, and preterm birth, emphasizing the critical role of

macrophages in mediating the inflammatory and metabolic

consequences of obesity during gestation. Further research is

needed to understand how placental immune homeostasis

impacts fetal hematopoiesis and immune system development in

the offspring.

Metabolic programming of adipose
tissue macrophages by maternal
obesity

The ontogeny of adipose tissue macrophages (ATMs) begins

during embryonic development and continues throughout life,

influenced by both intrinsic genetic programming and

environmental factors such as maternal diet and nutrient

availability (reviewed in (102–104)). ATMs arise from two

primary sources: erythro-myeloid progenitors (EMPs) originating

from the yolk sac and HSCs that later emerge in the fetal liver and

bone marrow (105). EMP-derived macrophages appear first,

emerging at approximately embryonic day 7 (E7) in mice and

around week 3 in human gestation. These progenitors migrate to

various tissues, including adipose depots, and establish the first

wave of tissue-resident macrophages, often referred to as yolk-sac

macrophages (39). By embryonic day 8.5 to E10, circulating EMPs

infiltrate developing tissues, giving rise to macrophages that play

essential roles in tissue remodeling and immune regulation (39).

Around E10.5, HSCs emerge from the aorta-gonad-mesonephros

region, migrate to the FL, and differentiate into fetal monocytes. By

E13.5, these monocytes begin colonizing tissues, including adipose

depots, contributing to the ATM pool and establishing a long-lived

population of self-renewing resident macrophages (39). After birth,

additional ATMs are recruited from circulating bone marrow-

derived monocytes, particularly in response to metabolic demands

and inflammatory stimuli. During the neonatal period, adipose

tissue continues to develop, and the interplay between resident

ATMs and infiltrating monocytes shapes the immune environment

of the tissue (106).

Under normal physiological conditions, ATMs in lean, healthy

adipose tissue primarily support lipid metabolism, tissue

remodeling, and thermogenesis. However, exposure to HFD,

obesity, and inflammation leads to increased recruitment of

monocyte-derived ATMs, many of which adopt a pro-

inflammatory phenotype that contributes to insulin resistance and

metabolic dysfunction (107, 108) (Figure 3). Recent single-cell

transcriptomics studies have identified two major ATM

populations that arise from distinct developmental pathways. The
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first, perivascular macrophages (PVMs), are primarily derived from

embryonic yolk-sac macrophages or FL monocytes and are self-

renewing. These macrophages maintain vascular function, clear

apoptotic cells, and regulate immune responses, contributing to

adipose tissue homeostasis. The second, lipid-associated

macrophages (LAMs), are mainly derived from bone marrow

monocytes that infiltrate adipose tissue in response to lipid

accumulation (109). LAMs express markers such as TREM2 and

CD9, which are associated with lipid metabolism and inflammation.

In obesity, LAMs form crown-like structures (CLS) around dying

adipocytes, aiding in lipid clearance but also contributing to chronic

low-grade inflammation and metabolic dysfunction (107).

The developmental trajectory of ATMs is strongly influenced by

early-life environmental factors, particularly maternal diet. A high

maternal intake of omega-6 fatty acids has been shown to promote

an inflammatory ATM phenotype, increasing the offspring’s

susceptibility to obesity and metabolic disease (110–112).

Conversely, omega-3 fatty acids support an anti-inflammatory

ATM profile, which enhances metabolic health by improving lipid

metabolism and reducing inflammation (113, 114). ATMs exhibit

remarkable plasticity, meaning they can transition between different

functional states depending on environmental cues. While early in

life, ATMs predominantly support metabolic and immune

homeostasis, chronic metabolic stress, such as obesity, can

reprogram them toward a pro-inflammatory phenotype. This

shift contributes to sustained inflammation, insulin resistance,

and metabolic disorders. Understanding the ontogeny of ATMs,

particularly their early developmental programming, is crucial for

identifying therapeutic targets that may help prevent metabolic

diseases, including obesity and type 2 diabetes, later in life.
Metabolic programming of fetal
HSPCs by maternal obesity

NHP studies showed that maternal WSD induced long-term

proinflammatory programming in fetal bone marrow and fetal liver

CD34+ HSPCs through transcriptional and epigenetic

modifications. Increased chromatin accessibility in inflammatory

gene regions (FOS/JUN, NF-kB, C/EBPb, STAT6) led to persistent

immune activation, while metabolic shifts in HSPCs and their

progeny favored glycolysis over oxidative phosphorylation,

reinforcing an inflammatory phenotype (59) (Figure 2). Maternal

WSD also skewed HSPC differentiation toward the myeloid lineage,

resulting in an increased proportion of HSPCs but a reduction

in erythroid progenitors (59). Additionally, maternal gut

microbiome dysbiosis likely contributed to immune priming (60,

115), while elevated oleic acid in fetal and juvenile hematopoietic

tissues, combined with increased bone marrow adiposity, further

exacerbated inflammation (59). Collectively, these findings suggest

that maternal diet-driven immune reprogramming predisposes

offspring to chronic inflammatory conditions (Figure 3).

Single-cell RNA sequencing of fetal bone marrow HSPCs from

maternal WSD-exposed fetuses revealed significant transcriptional
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changes, including upregulation of inflammatory pathways such as

Toll-like receptor (TLR), TNF-a, and NOD-like receptor (NLR)

signaling. Key proinflammatory genes (S100A8/9, NFKB1A,

PTGS2) were highly expressed in primitive HSCs and CMPs,

promoting a myeloid-biased immune response (60). Together,

these findings highlight the profound impact of maternal diet on

fetal HSPC development, altering metabolic programming,

inflammatory potential, and regenerative function in a way that

may predispose offspring to immune dysfunction and chronic

disease later in life.

While the mechanisms contributing to altered developmental

hematopoiesis in women with obesity remain elusive, enhanced

fetal growth (macrosomia), characterized as large for gestational age

(LGA), has been shown to impact HSPCs (116) (Figure 3). Research

indicates that LGA neonates exhibit DNA hypermethylation in key

regulatory regions of cord blood CD34+ HSPCs. These

modifications affect transcription factors such as EGR1, KLF2,

SOCS3, and JUNB, which are essential for maintaining stem cell

quiescence and differentiation potential. Single-cell transcriptomic

and chromatin accessibility analyses further reveal that these

epigenetic changes correlate with decreased expression of genes

involved in stem cell self-renewal, as well as reduced chromatin

accessibility in critical regulatory regions (116). This study is in line

with the earlier report showing intrauterine growth restriction

(IUGR) and LGA births influence the epigenetic programming of

cord blood CD34+ HSPCs, including a global shift towards DNA

hypermethylation in both IUGR and LGA groups. This epigenetic

response exhibited sexual dimorphism, with IUGR males and LGA

females showing the most significant alterations. The DNA

methylation changes were enriched in regulatory regions affecting

genes involved in glucose homeostasis and stem cell function (117).

These studies emphasize the importance of early-life epigenetic

programming and its sex-specific consequences, highlighting the

need for further research into how fetal growth extremes contribute

to age-related diseases (62, 116, 118).
Metabolic programming of fetal
HSPCs by gestational diabetes
mellitus

GD is a pregnancy complication associated with adverse health

outcomes for both mothers and offspring, with long-term

consequences such as increased risks of metabolic diseases and

atherosclerosis in adult offspring (119–122). While maternal

glucose control has mitigated some perinatal risks, the

mechanisms driving these transgenerational effects remain

unclear (122). Recent study in mice showed that GD can induce

long-term memory in primitive HSCs of offspring (123). In this

study, researchers developed two independent GD mouse models: a

genetic model using Ins2Akita/+ mice, which have a mutation

leading to insulin deficiency, and a pharmacological model using

streptozotocin (STZ) injections to induce diabetes during

pregnancy. This metabolic memory led to a skewed myeloid
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lineage expansion and increased susceptibility to atherosclerosis in

adulthood. Mechanistically, the acquisition of this memory was

linked to the activation of the advanced glycation end product

receptor (AGER) and the nucleotide-binding oligomerization

domain-like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome. These pathways promoted placental inflammation,

which in turn induced epigenetic changes in HSPCs, including

upregulation of DNA methyltransferase 1 (DNMT1) (123). These

epigenetic modifications were associated with long-term

dysregulation of the immune system and hematopoiesis,

accelerated atherosclerosis development when challenged with a

HFD. Despite having normal metabolic profiles in adulthood, GD

offspring displayed altered immune responses, including reduced

inflammatory cytokine production in response to infections. These

changes suggested that GD leads to a long-term functional imprint

on the hematopoietic system, affecting immune and inflammatory

responses in adulthood (123). This study aligns with an earlier

report showing that STZ-induced maternal hyperglycemia during

the last trimester in rat dams led to an increase in myeloid

progenitors in male offspring but not in female offspring exposed

to a HFD (124).

Human studies have primarily focused on the impact of GD on

umbilical cord blood, which represents fetal circulation and serves

as a key source of HSPCs. One study reported that GD in women is

associated with an increased proportion of CD34+ HSPCs in cord

blood (125). Another study found that pregnant women with GD

exhibit elevated numbers of CD34+ HSPCs and CMPs but a

reduced number of CLPs in cord blood (126). In contrast, some

studies suggest that GD is linked to a decrease in CD34+ HSPC

numbers in cord blood (127, 128). The lack of a complete

understanding of how GD and maternal obesity impact

developmental hematopoiesis highlights significant challenges in

clinical studies and underscores the importance of developing

translationally relevant animal models to study these effects in

settings that closely mimic human pregnancy and the

pathophysiology of the response to metabolic challenges

during gestation.
Conclusions and future directions

In conclusion, the impact of maternal obesity and gestational

diabetes on the differentiation of fetal HSCs underscores the

intricate relationship between maternal health and offspring

development. However, there remains a significant gap in

understanding how maternal obesity influences distinct stages

of HSPC development, including the emergence of definitive

hematopoiesis in the AGM region, the migration dynamics

of HSPCs from primary hematopoietic sites to the FL and

bone marrow, and the specific contributions of maternal diet,

metabolic status, and adiposity to developmental hematopoiesis.
Frontiers in Hematology 08
A deeper understanding of these mechanisms is crucial for

developing targeted interventions to mitigate the adverse effects

of maternal obesity on fetal hematopoiesis and improve long-

term health outcomes. Future research should focus on

delineating the precise developmental pathways affected by

maternal metabolic conditions and exploring potential

nutritional and therapeutic strategies to promote healthy fetal

hematopoiesis. Additionally, the use of novel NHP models with

translational relevance will be instrumental in uncovering the

effects of maternal metabolism on offspring immunity, providing

critical insights for human health.
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