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Hematopoietic stem cells (HSCs) undergo a functional decline during aging. The

intrinsic characteristics of aged HSCs have been well-described and include a

strong myeloid bias, an increase in total number, and a decrease in functionality

during transplantation. The impact of the aged bone marrow microenvironment,

or niche, on HSCs is less well understood. It is critical to understand the changing

condition of the niche during aging, and its ability to support HSCs, as this could

reveal the very signals and mechanisms needed to improve HSC fitness.

Furthermore, heterochronic transplantation provides an approach to test the

influence of an aged recipient niche on young donor HSCs, and conversely, of a

young recipient niche on aged donor HSCs. Importantly, these experiments

demonstrated that donor HSC engraftment is reduced if the recipient niche is

aged, and conversely, the young niche can rejuvenate aged donor HSCs. Here we

will focus on the interactions between aged HSCs and their microenvironment.

We will highlight current controversies, research gaps, and future directions.
KEYWORDS

aging, hematopoietic stem cells, niche, inflammation, microenvironment, immune
function, endothelial cells, mesenchymal stromal cells
Introduction

The aged hematopoietic compartment is characterized by skewed differentiation

towards myeloid lineages and decline in normal cellular functions. These aging-

associated abnormalities occur in the primitive HSCs, as well as in terminally

differentiated immune cells (1, 2). Aged HSCs undergo phenotypic expansion but show

reduced reconstitution and self-renewal capabilities upon stress (3–5). The proportion of

myeloid-biased HSCs (my-HSCs) is increased during aging, leading to decreased

lymphopoiesis, primarily in B cells, and diminished adaptive immunity; this is

concomitant with increased myelopoiesis and incidence of myeloid malignancies (6–8).

The essential role of my-HSCs in driving aged hematopoietic phenotypes is supported by a

recent report, showing that antibody-mediated depletion of my-HSCs in aged mice

rejuvenates the hematopoietic compartment and restores some features of youthful

immunity (9).
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Reciprocal transplants have shown that aged HSCs and

progenitors transplanted into young recipients can partly reverse

the aging phenotype (10–13). Conversely, young HSCs and

progenitors can adopt an aged phenotype when transplanted into

aged recipients (14). This provides strong evidence that the bone

marrow (BM) microenvironment has a significant impact on HSCs

throughout the lifespan. There is still controversy related to both the

changes in niche cell numbers and their spatial distribution in the

BM during aging that will be discussed in further detail below

(15–21).

Aged HSCs exhibit distinct physical properties and molecular

hallmarks. They can be sufficiently distinguished from young HSCs

using deep machine-learning techniques based solely on their

morphology (22). When transplanted, aged HSCs lodge further

from the endosteum after homing (23, 24). In addition, aged HSCs

display molecular hallmarks in comparison to young HSCs,

including elevated small Rho GTPase Cdc42, loss of protein

polarity (23), and altered epigenetic architecture (1). Although it

remains unclear how these molecular alterations contribute to

dysregulated HSC functions, targeting elevated Cdc42 via its

specific inhibitor is shown to rejuvenate aged HSCs (23).

Megakaryocytes are an important component of the HSC niche

and are thought to regulate HSC quiescence by secreting various

factors, including CXCL4 (25–27). Analysis of the spatial

relationship between HSCs and megakaryocytes has shown that

HSCs are significantly closer to megakaryocytes in the niche, further

supporting a functional relationship between the cell types (20, 25).

Multiple studies have shown that megakaryocytes and

megakaryocyte progenitors (MkP) expand in aged BM (14–17,

20). One hypothesis is that an increased distance between HSCs

and megakaryocytes during aging contributes to loss of quiescence.

However, there is still not a consensus on whether the distance

between HSCs and megakaryocytes significantly changes during

aging; some approaches show an increase (15, 17), while others do

not (20).

Downregulation of DNA repair pathways cause early onset of

aging-like phenotypes in mouse and human (28–30), suggesting

that DNA damage and accumulation of DNA damage contribute to

aged HSC phenotypes, for example, increased incidence of Clonal

Hematopoiesis of Indeterminate Potential (CHIP) (31). CHIP refers

to the expansion of peripheral blood cells derived from HSCs with

at least one somatic driver mutation in healthy elderly individuals

(32–34). CHIP is strongly linked to aging and confers an increased

risk for blood cancers, non-hematological diseases (e.g.,

cardiovascular disease), and all-cause mortality (32–35). There is

an approximately 2-3-fold increase in mutation frequency in aged

HSCs (36, 37). However, such a linear increase in the frequency

over time does not correlate with the exponential increase in CHIP

and myeloid leukemia seen in the elderly. Mathematical modeling

of HSC aging based on evolutionary theories further suggests that

accumulation of DNA damage in HSCs is insufficient to alter HSC

fitness (38, 39). Rather, these models suggest that extrinsic

mechanisms in aged BM microenvironment are the major

selective driving force for aging-associated CHIP and myeloid

leukemia. This hypothesis is supported by the known roles of
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different BM microenvironment cell types in regulating adult

HSC functions as detailed below.

Clonal hematopoiesis is associated with aging and leukemia

initiation, and therefore must be studied in the context of the aged

niche. Using a pool of transduced donor hematopoietic progenitor

cells, Vas et al. found that transplantation into aged recipients

reduced clonality compared to young recipients (40). This study

also found that transplant of hematopoietic progenitor cells into an

aged microenvironment produced the characteristic increase in

myeloid and decrease in lymphoid cell output associated with

aged HSCs.
Immune cells

HSCs and terminally differentiated immune cells exhibit

functional decline during aging, as well as significant changes in

lineage output (i.e, reduction or expansion of certain subsets). Aged

immune cells are the main contributor to “inflammaging”, which

refers to unresolved BM microenvironment and systemic

inflammation in the absence of pathogens, through secreting

inflammatory cytokines (41, 42). One example is IL-1 produced

by myeloid cells that increases during aging, creating a vicious cycle

of Tet2+/− clonal expansion that contributes to CHIP via increased

HSPC proliferation (31). Similarly, chronic inflammation induced

with IL-1b injections in young mice can recapitulate aspects of

hematopoietic aging (19, 43). Another example is Ccl5 (RANTES)

that is enriched in the aged microenvironment (12). Exposure of

young HSCs to Ccl5 induced the same myeloid bias observed in

aged HSCs. Interestingly, in Ccl5 knockout (KO) mice there was an

increase in lymphocytes, suggesting that Ccl5 is required for steady-

state balance of lymphoid and myeloid lineages. As evidence that

the microenvironment has the potential to ameliorate aged HSCs,

transplant of aged HSCs into Ccl5 KO recipients helped balance

lineage output, with significantly fewer myeloid and more B cells

being produced. Mechanistically, Ccl5 activates the mTOR pathway

that has a critical role in the aging process.

The development of single cell RNA-Seq (scRNA-seq)

technology has provided a comprehensive view of all immune cell

types during aging, validating and further expanding our

perspective on aged immunity (2). Since most of these studies

were performed on immune cells harvested from peripheral tissues

instead of BM, how the microenvironment impacts immunity

during aging remains largely unknown.

Diminished phagocytosis by macrophages, neutrophils, and

dendritic cells, and their reduced efferocytosis to engulf apoptotic

cells, have been described in aged mice and humans (44–46).

Consistent with the increased proportion of my-HSCs during

aging, there is a gradual expansion of circulating myeloid cell

populations, mainly monocytes and neutrophils, relative to

lymphoid cell populations. Although significant changes occur in

tissue-resident macrophages during aging, analysis of circulating

monocytes (i.e., macrophage precursors) reveals an expansion of

non-classical monocytes without significant transcriptomic

alterations in young vs old healthy humans (2). By contrast,
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changes in short-lived neutrophils are observed in aged mouse BM,

with significant expansion of the IL-1b-expressing subset of

neutrophils (47, 48), suggesting a role for the aged BM

microenvironment in age-associated neutrophil dysregulation.

The expansion of pro-inflammatory aged neutrophils can be

ameliorated by systemic dietary intervention, such as NAD(+)

augmentation with nicotinamide riboside (49), providing a

metabolic preventative approach.

The age-associated decrease in lymphopoiesis is primarily

reflected in a reduced B cell compartment. Despite their

decreased number, a progressive increase in B cell clonality is

seen in aging mice, which is attributed to a cluster of plasma B

cells (50). In addition, the aged B cell compartment shows altered B

cell composition and function, such as increased incidence of

monoclonal gammopathy of undetermined significance in mice

and humans that has been associated with pre-malignant multiple

myeloma (51), and expansion of “age-associated B cells” in mice

(52, 53). These age-associated B cells are distinct from the

conventional naïve and memory B cells and are thought to arise

in response to damage-associated molecular patterns, such as debris

and chromatin from apoptotic cells, via the TLR7/TLR9 axis. These

age-associated B cells secret IL-4 and IL-10 on activation (52),

further contributing to inflammaging.

As essential players in anti-infection and anti-cancer immunity,

T cells, including both CD4+ and CD8+ T cells, undergo aging-

associated changes in both mice and humans (2). It was proposed

that T cell aging is represented by two-tier molecular hallmarks

(54). The primary hallmarks include thymic involution,

mitochondrial dysfunction, profound genetic and epigenetic

alterations, and loss of proteostasis. The secondary hallmarks

include reduction of the TCR repertoire, naïve-memory

imbalance, T cell senescence, and lack of effector plasticity.

Together, these age-associated changes in T cells lead to

immunodeficiency and inflammaging. Therefore, the aged

adaptive immune system is characterized by T cell dysfunction

that is responsible for elevated susceptibility to infection and cancer,

as well as increased autoimmunity. Recent evidence indicates that

age-associated intrinsic alterations in CD4+ T cells are sufficient to

reduce humoral responses in young mice (55) and accelerate

organism-wide aging phenotypes (56, 57). Since T cell

development and mature T cells mainly stay outside the BM, it is

conceivable that the impact of an aged BM microenvironment may

be limited to BM-resident T cells. In addition to their contribution

to inflammaging, BM-resident CD4+ Treg cells promote the

survival and clonal advantage of aged HSCs through MHC II

engagement and Connexin 43-mediated transfer of cAMP (58).

In summary, aged hematopoietic cells contribute significantly to

increased BM inflammation, which in turn further exacerbates

hematopoietic dysfunction.
Bone marrow endothelial cells

The BM vasculature is heterogeneous, with vessels that vary in

both function and location, and there has been ongoing debate
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about the primary niche for HSCs in the BM (59). In broad terms,

these are classified as endosteal capillaries and central marrow

sinusoids, with both regions having been considered as the true

home of HSCs (20, 60–62). More specifically, small capillaries in

endosteal regions of the metaphysis and trabecular bone of the

diaphysis, called transition zone vessels (TZVs) (61), or Type H

capillaries (CD31High, Emcn+ (63)), connect to arterioles and are

surrounded by osteoprogenitors (61, 63, 64). Sinusoids or Type L

vessels (CD31Low, Emcn+ (63)), are broad and fenestrated, found

throughout the BM, and facilitate trafficking of hematopoietic cells

into and out of the circulation (65).

The changes that occur in BMECs during aging are still being

resolved, with different research groups presenting multiple views

(Figure 1). Some have observed that endosteal ECs, like arterioles

and TZVs, are reduced during aging, but overall EC volume and

area occupancy are unchanged, leading to the conclusion that BM

sinusoids are preserved upon aging (15). Other studies also found

ECs near the endosteum of aged BM were reduced and central

marrow sinusoids were unchanged, although small capillaries

throughout the BM are increased (16, 18). In contrast to these

studies, Wu et al. recently showed that BM sinusoids are more

abundant in aged BM, and the number of arterioles is unchanged

(20). In a study of middle-aged female mice, histological analysis of

bones showed no change in the number of sinusoids and arterioles,

however, fluorescence-activated cell sorting (FACS), followed by

scRNA-seq and analysis, showed a slightly higher percentage of

arterioles and lower percentage of sinusoids (66). It has been

difficult to reliably quantify aged BMECs and mesenchymal

stromal cells (MSCs) by FACS, presumably because the cells

become more fragile (13, 19, 21, 66, 67). These studies have used

different protocols, types of bones, imaging techniques, and FACS

to quantify niche cells in the aged BM, and these methods must be

comprehensively compared before a consensus can be reached.

Ultimately, it must be determined if and how the changing

proportions and spatial distribution of BMECs during aging

directly impacts HSC function.

Importantly, it may be functional changes and the supportive

capacity of aged BMECs, such as cytokine production, that is more

relevant than cell number or spatial relationships between HSCs

and niche cell types. The reduced function of vasculature during

aging has been well-described and reviewed elsewhere (68). Aged

blood vessels become dilated, leaky, and have overall poor function.

Reduced vascular endothelial growth factor (VEGF) signaling

during aging, and associated capillary loss, may underlie the aging

phenotype in many organ systems (69). Aged ECs have significantly

lower levels of KITLG (aka SCF) and CXCL12 (aka SDF-1) (13, 18,

70). The AKT/mTOR axis specifically in ECs is required for

maintaining HSC function (71). While mTOR inhibition is widely

accepted as rejuvenating and promoting longevity (72), in BMECs

reducing mTOR signaling negatively impacts HSC function (71).

Aged ECs are sufficient to induce aging phenotypes in young HSCs

(13), and similarly, chronic activation of inflammatory pathways in

BMECs of young mice recreates the aging-associated myeloid-

biased differentiation of HSCs (73). Blocking activated

inflammatory pathways in BMECs can rescue HSC function (73),
frontiersin.org

https://doi.org/10.3389/frhem.2025.1525132
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Gao et al. 10.3389/frhem.2025.1525132
and likewise, young ECs have the capacity to restore some function

in aged HSCs (13). Interestingly, young ECs can provide

radioprotection for transplant recipients when co-infused with

HSCs (13). Activation of Notch signaling in aged BMECs can

restore some of the HSC support function, as the number of

arterioles, capillaries, and phenotypic HSCs increased, but the

number of functional HSCs did not increase, as determined by

limiting dilution transplantation (18). Together, these findings

suggest there is therapeutic potential in rejuvenating the aged

niche to restore HSC function during aging.
Age-related neural alterations and
their impact on HSC aging

The bone marrow receives a generous supply of nerves that enter

the cavity with the vasculature that carry nutrients into the BM.

Imaging and tracing studies revealed that the BM is largely comprised

of sympathetic and sensory nerve fibers (17, 74–76). Many nerve

fibers in the BM are tightly associated with arterioles, with very few

nerve terminals located in the hematopoietic parenchyma and sinus

walls. Sympathetic nerves are known to regulate various functions of

HSCs at steady state and disease progression mainly via stromal cells,
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mediated by neurotransmitter noradrenaline binding to adrenergic

receptors (17, 75–77). A recent study revealed that nociceptive nerves

regulate HSCmobilization via the secretion of calcitonin gene-related

peptide (CGRP) that acts directly on HSCs via CGRP receptor (74).

Neuropathy is common in elderly people. Consistent with this

notion, one study revealed a significant reduction of bone marrow

sympathetic innervation in old compared to young femurs (17).

This study also indicated that surgical denervation or deletion of

Adrb3 in young mice induces dramatic remodeling of the HSC

niche and leads to premature aging-like changes in HSCs. Notably,

they showed that supplementation of an ADRb3 agonist,

BRL37344, in old mice significantly rejuvenates the in vivo

function of aged HSCs. This study highlights a potential novel

approach for niche-targeted stem cell rejuvenation therapy.

Similarly, neuropathy is also found in a mouse model of an aged-

related blood disease, myeloproliferative neoplasm (MPN), induced

by a mutant form of Janus kinase 2 (JAK2V617F) (77). Treatment

with the same ADRb3 agonist BRL37344 blocks myeloid expansion

and disease progression. However, studies regarding the neural

alterations with age and their contributions to HSC aging remain

controversial. A conflicting study using whole-mount imaging of

skulls and thick tibial sections did not find reduced sympathetic

nerve fibers in the aged BM, and instead actually found increased
FIGURE 1

Different views of the changing bone marrow microenvironment during aging. Sinusoidal vessels and MSCs (CXCL12-abundant reticular (CAR)/Lepr+
cells) are abundant throughout the BM and are therefore always close to an HSC. Megakaryocytes promote HSC quiescence by producing CXCL4
(25). There is a consensus that during aging: 1) HSC and megakaryocyte numbers increase; 2) there is an increase in myeloid-biased HSCs (My-HSC);
3) inflammatory cytokines increase (e.g., IL-1b and IL-6), and IGF1 levels decrease; 4) osteoclasts increase and osteoblasts decrease, contributing to
bone loss. Aged BM Model 1: The endosteal niche is compromised, with decreased numbers of TZVs and arterioles; it follows there are fewer HSCs
near the endosteum. Sinusoids are largely unchanged in the central marrow, but capillaries are increased. There is greater distance between HSCs
and megakaryocytes (15–19). Aged BM Model 2: The endosteal niche is intact and there is no change in arteriole numbers. Sinusoids in the central
marrow are more abundant and shorter. There is no change in distances between HSCs and the endosteum, sinusoids, arterioles, or
megakaryocytes. HSCs and progenitors tend to cluster closer together (20). Not shown: For clarity, many cell types, such as myeloid cells, have been
excluded. Nestin-GFP+ MSCs, other MSC subtypes, and TH+ sympathetic nerve fibers are not shown because a consensus has not been reached on
the abundance of these cell types during aging. Created in BioRender. Tamplin, O (2025). https://BioRender.com/l27j847.
frontiersin.org
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sympathetic innervation (78). Whether these discrepancies result

from the use of different bones and methodologies will require

further investigation. In the latter study, they found that increased

bone marrow adrenergic innervation promotes myeloid expansion

through activating ADRb2 (16). Interestingly, this study revealed

that ADRb3 exhibits opposite regulation of myelopoiesis as

compared with ADRb2. Lack of ADRb3 accelerates HSC aging,

and chronic treatment with an ADRb3 agonist BRL37344 reduces

HSC expansion and restores their myeloid skewing. The situation is

further complicated by a phase II clinical trial that treated JAK2-

V617F-positive patients with the sympathomimetic agonist

mirabegron that yielded a slight overall hematologic improvement

in a subset of patients, but didn’t reduce the JAK2-V617F allele

burden (79). This raised the possibility that modulation of only one

adrenergic signaling pathway is insufficient, and other alternative

mechanisms may compensate. Further studies of other adrenergic

signaling pathways are needed to clarify the neural contributions to

the bone marrow niche and HSCs with age.
Perivascular mesenchymal
stromal cells

BM perivascular MSCs wrap around the blood vessels and

represent an important cellular component in the HSC niche.

MSCs have the potential to self-renew and differentiate into bone,

fat and cartilage, and are highly enriched in niche factor expression,

such as CXCL12 and SCF. However, BM MSCs are a very

heterogenous cell population (80, 81), and it remains unresolved

how the overall number of MSCs changes during aging. Some

studies suggested a decline in MSC number in old individuals (82,

83), or no significant changes (84, 85), whereas other studies

revealed an increase and/or decrease in different subsets of MSCs

(17, 19). These discrepancies may be explained by different markers

used to define MSCs, or different processing methodologies.

However, despite these differences, common functional

dysregulation of aged MSCs has been described. Importantly,

when aged skeletal stem cell-derived stroma (i.e., bone, cartilage,

and mesenchymal lineages, but not fat) is used for co-culture with

young HSCs, it has the effect of producing age-related myeloid

skewing of hematopoietic output (86, 87).

First, MSCs form colony-forming unit-fibroblasts (CFU-F) in

vitro, and aged MSCs showed reduced CFU-F activity and reduced

expression of HSC niche factors, including CXCL12, SCF, and

ANGPT1. IGF1 produced by MSCs declines during aging and has

a significant contribution to the HSC aging phenotype (11, 66). This

dysregulation of aged MSCs could be rejuvenated by activating

adrenergic signaling. Another common feature of MSCs from old

individuals is their reduced osteoblast differentiation and increased

bias toward adipocyte differentiation, with old bones showing an

increase in the adipogenic marker PPARg (88, 89). In old mice the

adipogenic potential of Sca-1+ MSCs was unchanged but the

osteogenic potential of Sca-1- MSCs was reduced (88). Loss of

trabecular bone was also observed in old bones. Accumulation of
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marrow adipose tissue (MAT) was pronounced in old mice after

being fed a high fat diet. Importantly, accumulation of adipocytes in

the bone marrow contributes to age-related impairment of

hematopoiesis. This age-related adipogenic skewing contributes to

loss of osteoblasts, and increased BM adiposity, leading to a change

in overall BM cellularity and bone density. The balance between

adipo-osteogenic differentiation is regulated by critical signaling

pathways (Extracellular matrix-Integrin, Wnt, Notch, BMP,

Hedgehogs, and FGFs) and key transcription factors, such as

PPARg and C/EBPs for adipogenesis, and Runx2 and Osterix for

osteogenesis (90). Recent studies also revealed microRNAs, circular

and long RNAs as additional regulators in controlling the adipo-

osteogenic balance (91–93). Adipocytes were considered to be

negative regulators of hematopoiesis (94), however, growing

evidence suggests they are involved in HSC regeneration (95, 96).

Adipocytes are much less abundant in mouse bones compared to

human bones that have increased adiposity during aging that

correlates with increased adjacent myeloid cells and CD34+ stem

and progenitor cells (97). An accumulation of osteoclasts from

macrophages was observed with aging. The disruption of the

balance between bone-forming osteoblast and bone-resorbing

osteoclast leads to an imbalance in bone remodeling and often

contributes to bone loss associated with osteoporosis (98). This is

consistent with age- and menopause-induced bone loss seen in

clinic (99).

Aging is characterized by increased inflammation, which is

accompanied by cellular senescence. Consistent with other aging

tissues, there is a strong inflammatory signature that emerges in

MSCs and the aging stroma (16, 100). The stroma of middle-aged

telomerase knockout mice (Terc-/-) had a dramatic increase in G-

CSF levels and was less able to support HSCs (101). Recent studies

have identified bone marrow stromal cells as sensors of age-

associated changes and as a source of IL-1b to drive the

proinflammatory nature of the bone marrow niche and HSC

aging (19). These studies showed that blocking IL-1 signaling

could rejuvenate hematopoietic aging and indicated that targeting

IL-1 is a novel strategy to improve blood production during aging.

The accumulation of BM adipocytes and increased fatty bone

marrow and inflammatory signals during aging, specifically IL-6,

can promote clonal hematopoiesis (102). Some studies found that

BM MSCs underwent senescence in vitro along with aging,

including increased DNA damage response and upregulation of

senescence associated genes, p16(INK4a), p53, and p21. However,

further studies are needed to investigate the senescence-associated

phenotypes in bone marrow MSCs in vivo.
Sex-related differences

There are clear sex-related differences in hematopoiesis during

aging (103–106). Our understanding of this has been complicated

because studies have used, for example, only males (107), only

females (66), or males and females (108). Sex-related differences in

hormone levels, such as estrogen, increase HSC proliferation in
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females (109). Follicle-stimulating hormone (FSH) is higher in

middle-aged and old female mice (104). Sex-related differences

have also been found between male and female MSCs, with

females having a lower CFU-F capacity (110). Female mice were

more responsive to VEGF alleviation of aging phenotypes than

males (69). The changes in sex hormones that occur during aging

contribute to adipocyte accumulation in the BM (111, 112).

Interestingly, the increase in HSC number that is associated with

aging occurs in middle age (60-70 weeks) for female mice and at old

age (85-90 weeks) for males (104). Although these middle-aged

female mice had the aging hallmark of increased HSC frequency,

they did not have the inflammatory signatures of old mice. These

data suggest mouse studies must be carefully designed to consider if

males and females will be grouped together, and how middle aged

versus old will be defined. These factors could add to the already

high degree of variability associated with aging phenotypes that may

be partially resolved with larger sample sizes. To gain a more

consistent understanding of changes in hematopoiesis across the

lifespan of mouse models, not only the precise age, type of bone, and

experimental methods must be considered, but also the sex.
Discussion

A barrier to progress in this field is, of course, the time and cost

required to age different mutants and transgenic lines. Although

there are colonies of aged wild-type mice that are available to

researchers, a shift in focus to middle-aged mice will make aging

studies more accessible, as the wait time to reach study age could be

reduced by 6 months (66).

There is ongoing debate about the importance of HSC location

and distance between niche cells in the microenvironment (59).

This is further complicated by the changes observed in both HSC

and niche cell populations over the lifespan. An alternative

perspective is that the spatial relationships between HSCs and

niche cells may not be the most significant factor that impacts

HSC regulation and function. Stated another way, perhaps the

changes in distance between HSCs and niche cells during aging,

at least those that do not require direct contact, such as Notch and

Integrin, do not translate into functional changes. For example,

during embryonic development, the effect of SHH and BMP

morphogen gradients during patterning of the neural tube can

extend up to ~100 microns, or many cell diameters (113).

There are also additional layers of spatial information present in

the BM microenvironment, such as local oxygen tension and

metabolites that are higher near the endosteum (114, 115).

Furthermore, significant systemic changes are measurable in the

BM fluid during aging that broadly indicate an inflammatory state

(19, 66). Parabiosis has shown young blood-borne factors can

rejuvenate old mice, just as old blood can accelerate aging of young

mice (116). These studies show the exciting potential to reverse some

of the effects of aging in HSCs and the BM microenvironment.
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