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The myeloproliferative neoplasms (MPNs) – polycythemia vera, essential

thrombocytosis, and primary myelofibrosis – are chronic blood cancers that

originate from hematopoietic stem cells carrying driver mutations which activate

cytokine signaling pathways in hematopoiesis. MPNs are associated with high

symptom burden and potentially fatal events including thrombosis and

progression to more aggressive myeloid neoplasms. Despite shared driver

mutations and cell of origin, MPNs have an extremely heterogenous clinical

course. Their phenotypic heterogeneity, coupled with their natural history

spanning several years to decades, makes personalized risk assessment

difficult. Risk assessment is necessary to identify patients with MPNs most likely

to benefit from clinical trials aimed at improving thrombosis-free, progression-

free and/or overall survival. For MPN trials to be powered for survival endpoints

with a feasibly attained sample size and study duration, risk models with higher

sensitivity and positive predictive value are required. Traditional MPN risk models,

generally linear models comprised of binary variables, fall short in making such

trials feasible for patients with heterogenous phenotypes. Accurate and

personalized risk modeling to expedite survival-focused interventional MPN

trials is potentially feasible using machine learning (ML) because models are

trained to identify complex predictive patterns in large datasets. With automated

retrievability of large, longitudinal data from electronic health records, there is

tremendous potential in using these data to develop ML models for accurate and

personalized risk assessment.
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Background on MPN clinical features,
disease progression, and
trial endpoints

Myeloproliferative neoplasms (MPNs) – including polycythemia

vera (PV), essential thrombocytosis (ET), and primary myelofibrosis

(PMF) – are chronic hematologic malignancies originating from

hematopoietic stem cells that acquire mutations in genes involved in

the activation of cytokine signal transduction pathways responsible for

hematopoiesis (1). More than ~85% of MPN patients harbor mutually

exclusive driver mutations in Janus kinase 2 (JAK2), calreticulin

(CALR), and the thrombopoietin receptor (MPL), which are pivotal

in disease initiation and propagation (1). However, the pathogenesis of

MPNs is tremendously more complex, involving an intricate interplay

of genetic, epigenetic, microenvironment, and inflammatory

abnormalities (1). Consequently, the phenotype and clinical course

are highly heterogenous, often complicated by various symptoms,

thrombotic events, and progression to more aggressive myeloid

neoplasms. “MPN progression” hereafter refers to the objective

transition of ET/PV and prefibrotic PMF to secondary myelofibrosis

(SMF) and overt PMF respectively, or ET/PV/PMF/SMF to

accelerated-phase MPN (AP-MPN), or blast-phase MPN/acute

myeloid leukemia (AML) as defined by the International Working

Group-Myeloproliferative Neoplasms Research and Treatment (IWG-

MRT), the World Health Organization (WHO) and the International

Consensus Criteria (ICC) (2, 3). These prognosis-defining events

occur over a highly variable timespan of a few years to several

decades from initial diagnosis (4). Unfortunately, no predictive

models exist for MPN progression, and current survival models do

not capture biological or clinical heterogeneity and often rely heavily

on non-modifiable risk factors like age.

Putative clinical and molecular risk factors for MPN progression

(5) frequently reported include advanced age (6); prior thrombosis (7);

elevated leukocyte count with emphasis on neutrophils (8) and higher

neutrophil-to-lymphocyte ratio (9); type and mutational allele

frequencies of driver mutations (e.g. JAK2, CALR, MPL) (10) or

triple negative disease (11); high-risk coexisting mutations in genes

involved in epigenetic regulation (e.g. IDH1/2), transcription

regulation (e.g. TP53, RUNX1, and IKZF1), RNA splicing (e.g.

SF3B1, U2AF1, and SRSF2) (12); cytogenetic abnormalities (13); and

proinflammatory markers (14). Several prognostics scores including

IPSET (15), AAA (16), DIPSS plus (17), MIPSS-ET/PV (18), MIPSS70

(19), and GIPSS (20), incorporate varying combinations of the above

risk factors. The myriad potential risk factors for progression, coupled

with the chronic heterogenous nature of MPNs, present significant

challenges in classification, prognostication, and outcomes prediction,

as well as in developing therapies that effectively prevent disease

progression and improve survival.

Preventing MPN progression and related complications remains

pivotal in clinical care to reduce and potentially eliminate excess

mortality from MPNs (21). Unfortunately, unlike most oncology

trials, MPN trials do not prioritize progression-free survival (PFS) or

overall survival (OS) as primary endpoints. Instead, they target proxy

endpoints such as hematologic response, spleen volume reduction

(SVR), and symptom improvement, which do not necessarily predict
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survival (22, 23). Because MPN complications and mortality are

uncommon events in randomly selected subgroup over a short study

period (1-3 years), trials will be underpowered to meet a survival

endpoint, unless a high-risk population is more accurately identified.

Secondly, while OS is a well-defined but challenging endpoint to

achieve, PFS or event-free survival (EFS) are more easily attainable

but must be well-defined.

None of the trials leading to FDA approval of MPN-directed

therapy were conducted with PFS or OS as the primary endpoint. The

randomized COMFORT-1 and 2 trials, which compared the JAK

inhibitor (JAKi) ruxolitinib to placebo and best available therapy for

intermediate-2 and high-risk myelofibrosis, used SVR and symptom

response as primary endpoints (24, 25). Although these trials were not

powered for survival, post-hoc analyses with longer follow-up showed

evidence for survival benefit (26). Extrapolating from these analyses, a

similar 2-year study powered to detect an OS difference would require

a sample size of approximately 1,900 patients (based on a hazard ratio

of 0.70 [95% CI, 0.54–0.91]; with 80% power, alpha 0.05, 1:1

randomization) (26). Following the COMFORT trials, most studies

have adopted similar endpoints of SVR and symptom response.

While disease-modifying therapies, such as interferon-alfa (IFN-a)
show promise in depleting MPN stem cell pools and achieving durable

molecular remissions (27–29), similar endpoint challenges remain. In

the PROUD-PV/CONTINUATION-PV trials, which assessed

ropeginterferon alfa-2b vs hydroxyurea control, the primary

endpoint was non-inferiority in achieving complete hematological

response with normal spleen size (PROUD-PV) and improved

disease burden (CONTINUATION-PV) (28). Event-free survival

(EFS) was later assessed through an extended 6–7-year follow-up

analysis, showing a significantly higher EFS favoring ropeginterferon

alfa-2b (0.94 vs 0.82; log-rank test; p = 0.04). However, clinical events

were rare and median EFS was not reached (30).

The use of molecular response endpoints, such as JAK2V617F

variant allele frequency (VAF) reduction (31), as a proxy for

disease-modifying activity or survival has been suggested for

clinical trial design, though its correlation to clinical outcomes

remains debated (32). Both ruxolitinib (33, 34) and ropeginterferon

(28–30) have shown sustained reductions in JAK2V617F VAF in ET

and PV that correlates with improved PFS, EFS but not OS (35–37).

While these reports are promising for the utility of VAF as a proxy,

it is not clear it can reliably predict survival outcomes or be used to

select/risk-stratify patients for survival-powered trials.

We conducted a prospective study across 107 ET, PV, and PMF

patients, comparing JAK2V617F whole blood VAF to “MPN fitness”

– a novel biomarker based on lineage specific biases in JAK2V617F

differentiation and clonal expansion. We reported a stronger

association between JAK2V617F-driven MPN stem and progenitor

cell fitness and EFS compared to JAK2V617F VAF and EFS, with a

significantly higher area under the curve (AUC) for MPN fitness

than JAK2V617F VAF quartiles (0.8 vs 0.67, P = 0.003) (38).

This work highlighted the complex biology underlying the

heterogenous MPN phenotypes despite shared driver mutations,

as well as the challenges in identifying the highest-risk patients for

clinical trials using clinically available tests.

Despite proposed mechanisms for MPN treatment resistance and

progression, the exact causes and predictors for these outcomes
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remain elusive (39, 40), and current risk stratification models fall

short in many aspects. For example, in ET, no models currently exist

to predict progression, even though CALR andMPLmutations in ET

carry a significantly greater risk of progression to SMF compared to

JAK2-mutated ET, as demonstrated by at least 3 recent independent

cohorts (10). Similarly in PV, theELN/National Comprehensive

Cancer Network (NCCN) risk stratification model (41) for

thrombosis (with “high-risk” PV defined only by age > 60 years or

a history of thrombosis) predicts only a 2-3% probability of

thrombosis per year and does not predict progression risk (21).

This positive predictive value (PPV) of ~0.03 at best would necessitate

thousands of patients for a short-term study (Figure 1).

The CYTO-PV study, which included a broad range of PV

patients, reported a thrombosis incidence rate of 2.7% over a 3-year

period in the group with stringent hematocrit control (target < 45%)

(42). Although this rate is significantly higher than in the general

population, it is still too low to justify a 2-year randomized clinical

trial (RCT) designed to detect a statistically significant 50%

reduction in thrombosis outcomes, which would require

thousands of patients. If, however, one can more specifically

enrich for those 2.7% who do experience thrombosis using more

precise risk models, the required sample size could be much smaller,

making it feasible to conduct an RCT targeting thrombosis-

free survival.
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In this setting, ML stands as a formidable tool in addressing

these significant challenges in MPN research. ML techniques can

dynamically model population- and patient-level risk using

comprehensive datasets, overcoming limitations of traditional

methods that often suffer from overfitting and confirmation bias.

By objectively identifying actionable risk factors and providing

individualized predictions, ML enables a precision oncology

approach to modeling progression and event risks.
Introduction to machine learning in
clinical research and trials

ML has a broad spectrum of medical applications that extend from

image recognition for diagnostic analysis in radiology and pathology,

natural language processing (NLP) and large language models (LLM)

for the interpretation and transformation of unstructured data within

electronic health records (EHR) into research-ready data (43–46).

Specific use-cases of ML include leveraging NLP to efficiently

transcribe pathology reports and other free-text sub-structured

documents from the EHR into data tables for research, which has

demonstrated high performance (47–51). Additionally, the analysis of

histopathologic whole slide images (WSI) can be used to support

classification and prognostication (52–54). In MPNs, ML has the
FIGURE 1

Standard MPN trial enrollment versus efficient MPN trial using artificial intelligence (AI) supported trial matching and machine learning (ML)-based
risk stratification model with high positive predictive value (PPV). Cohort size and accrual time dramatically reduced using AI resources and high PPV
predictive model. Figure was created in BioRender. Bliss, J. (2024) https://BioRender.com/l21l866.
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potential to assist clinicians in disease diagnosis, classification, and

prognostication (43, 55, 56) while also enabling more precise risk

stratification models aimed at improving EFS (e.g. reducing

thrombosis, AML transformation, or death) (57, 58).

ML encompasses algorithms designed to predict outcomes

accurately, unlike conventional statistical analyses that focus on

inferring relationships between covariates (55). In ML, a key

distinction exists between classifier and regression algorithms,

which differ in the nature of the output variable they are designed

to predict. Classifier algorithms are used to predict categorical

output variable, such as whether a patient will survive two years

post-diagnosis. In contrast, regression models are used to model

continuous outcomes, such as estimating median survival time.

While classifier algorithms categorize individuals into distinct

groups, regression models provide quantitative estimates which

can then be discretized, allowing for more nuanced predictions (59).

Additionally, ML models are traditionally classified into

supervised and unsupervised categories, though there are other

strategies including reinforcement learning and semi-supervised

learning. Supervised ML involves creating a model using a training

dataset with known labels and then testing it to ensure applicability

and generalizability beyond the training subset (43, 55). Supervised

algorithms enhance their accuracy by minimizing a loss function

(i.e., the discrepancy between expected outcomes and the actual

results), which refines model hyperparameters to predict

probabilities or continuous values (55). Examples of supervised

ML in MPN research include the use of multiple LASSO (Least

Absolute Shrinkage and Selection Operator) classifiers, which has

now been surpassed by more sophisticated models for prediction

tasks such as random forest and support vector machines, which in

turn are being surpassed by even more sophisticated deep learning

algorithms. An example of supervised ML in this space is our

group’s use of a random forest ML models to classify predictors of

thrombosis in PV patients (58). Conversely, unsupervised ML is

valuable for discovering new data patterns when outcomes are

unknown. Unsupervised algorithms undergo training to learn these

associations without the need for direct labels. An example in MPN

research is the use of Bayesian networks to analyze genetic data

from MPN patients and discover genomic groupings within MPNs

(60). Several other deep learning techniques have been used in the

MPN space (61–66). Moving forward, ML can be leveraged towards

two interrelated purposes: to optimize clinical trial matching

algorithms and develop more accurate risk stratification systems

that target survival endpoints more robustly.

Broadly, clinical trial eligibility criteria are notoriously complex

and non-standardized, making patient screening a manual and

inefficient endeavor (67). Owing to this, it is no surprise that less

than 3% of oncology patients participate in RCTs (68) and about

20% of phase II-III oncology trials fail due to poor accrual (69). A

recent survey found that the median duration from study planning

to initiation exceeds 700 days (70) with recruitment resources

costing approximately $1.2 billion in research spending and

consuming up to 30% of drug development timelines (71).
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Traditional clinical trial design and accrual often fail to capture

patient population complexity and heterogeneity (72). Recent

efforts to validate ML algorithms for trial matching, such as IBM

Watson for matching patients to breast and lung cancer trials, has

shown high accuracy and positive predictive value (73–75). For

example, in breast cancer, the Clinical Trial Matching Clinical

Decision Support System (CDSS) achieved over 80% accuracy

(75), while IBM Watson’s model achieved 91.6% accuracy in lung

cancer trials [64], demonstrating its effectiveness in matching

thousands of patient metrics with eligibility criteria in just 15.5

seconds per patient.

Beyond this, open-source tools have been created with promising

results, including trial matching for pediatric leukemia patients and

studies on ClinicalTrials.gov (76). Private entities have made strides in

improving trial eligibility through ML (73, 77–82). Liu et al. utilized

advanced statistical approaches, known as Trial Pathfinder, on data

from over 60,000 patients with advanced non-small cell lung cancer to

assess how individual features impact machine learning predictions

(83). There are two primary ML-based methodologies for matching

patients to appropriate clinical trials. The first, often referred to as the

“structure-then-match” approach, involves restructuring eligibility

criteria into a standardized format (76, 84–86). This allows for

direct comparison with patient data, streamlining the initial

screening process. Conversely, “end-to-end” systems leverage ML to

identify patterns within both patient data and eligibility criteria (87).

These patterns are then used to directly match patients with relevant

trials, improving efficiency. Together, these examples illustrate a future

where clinical trial leaders might soften specific criteria to streamline

recruitment without compromising key trial endpoints.

Beyond improving trial matching efficiency, ML can enhance

MPN risk stratification strategies to identify patients most likely to

benefit from the intervention. Outcomes for trials making it to

completion are disappointing especially given the high resource

utilization. For example, among the top ten highest-grossing drugs

in the U.S., for each patient who benefits from an approved drug, 3-

24 patients do not benefit (72). In MPNs, the five FDA approved

drugs – four of which are JAKi – were approved based on SVR,

symptoms benefit, and/or hematologic response, but none were

powered to evaluate survival benefit. Despite some post-hoc

evidence of survival benefit, JAKi drugs are not used with the

objective of preventing disease progression or prolonging life. In

contrast, some oncology drugs fail to receive approval for not

improving OS, despite improving PFS and other drugs are

approved for long-term use based on preventing recurrence but

without OS benefit. An example of the latter is breast cancer

endocrine therapy, where extended use of aromatase inhibitors

(e.g. 10 vs 5 years) has shown significant benefits in preventing

recurrence, despite no impact on overall survival (5-year OS 93%

(95% CI, 92 – 95) for letrozole and 94% (95% CI, 92 – 95) for

placebo (HR 0.97; P = 0.83)) (88). The integration of ML in this area

for MPNs is therefore of burgeoning interest, as it could enhance

the accuracy of identifying patients who are most likely to benefit

from long-term therapies and improve overall treatment outcomes.
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ML carries the power to revolutionize clinical trial eligibility

criteria and improve risk stratification by freely exploring robust

data to gain a deeper understanding of clinical characteristics

associated with outcomes of interest, leading to more targeted,

efficient trials and better patient outcomes. Our approach aims to

capitalize on big data and ML to develop accurate predictive

models, making clinical trials powered to evaluate survival

endpoints more feasibly.
Discussion and future directions on
ML in MPN research and clinical trials

As previously mentioned, the heterogeneity and complexity of

MPNs has posed significant challenges to the accurate prognostication

of disease progression, morbidity, treatment response, and mortality.

The application of ML in MPN research and clinical practice is

emerging as an engine of discovery and the future of the field. The

utility of ML in MPN diagnostics and drug discovery have been

described elsewhere (89–94). Here, we look at the use of ML in MPN

prognostication and its deployment for clinical trial design and

accrual (Figure 1).

There have been some advancements in the use of ML systems in

characterizing MPN progression. Bejan et al. (95) developed an

algorithm to classify MF using NLP with negation detection of MF

keywords, medications, and ICD coding, enriched with a separate

algorithm to identify patients tested for JAK2V617F in the Synthetic

Derivative de-identified research EHR. The group was able to predict

MF and JAK2V617F status, showing the feasibility of creating a MPN

database with retrospective genotyping of biobanked DNA. Li et al.

used weighted gene co-expression network analysis (WGCNA) to

identify genes associated with primaryMF, which ended up including

MPL, SLC4A1, CALR, and EPB42 (96). A support vector machine

demonstrated high reliability with AUCs up to 0.922 (96). Shen et al.

applied a LASSO model to the prediction of secondary MF using

platelet transcriptome studies, demonstrating a proof-of-principle for

disease risk stratification and progression (94). Ryou et al. developed

a ML system to measure bone marrow reticulin fibrosis, a continuous

index of fibrosis (CIF), which demonstrated excellent predictive

accuracy when paired with megakaryocyte analysis in

distinguishing between ET and pre-fibrotic MF (AUC 0.94) (52)

and was applied in the analysis of outcomes of a phase II clinical trial

(97). Verstovsek et al. developed a random survival forest (RSF)

model to predict hydroxyurea resistance (98). The composite ROC-

AUC was 0.71, suggesting that accessible clinical variables could be

used to predict the likelihood of patients developing resistance to

hydroxyurea prior to starting therapy (98). ML has also been used to

assess likelihood of treatment resistance in other malignancies (99,

100) as well as prediction of drug synergy (101). Mora et al. (102)

applied a RSF model which incorporated both phenotypic and

genotypic variables at time of secondary MF diagnosis in the

MYSEC PM (Myelofibrosis Secondary to PV and ET-Prognostic

Model) database to identify predictors of thrombosis. The authors
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showed the model was able to predict thrombotic risk following

secondary MF diagnosis.

Given the current exponential trajectory of ML development and

its proposed uses in MPN research and treatment, the development of

robust risk stratification models is critical. Our overarching solution to

the challenges of powering MPN trials for survival is to capitalize on

large data and ML capabilities to develop accurate predictive models

for survival that would enrich for high-risk patients. To include

automated workflows and incorporate ML approaches for big data

analyses, our group has established an MPN-focused Research Data

Repository (RDR) that consolidates meticulously curated information

from our MPN-specific Research Electronic Data Capture (REDCap)

databases, integrates both raw and processed data from EHRs, and

incorporates data from external entities, such as the CDC’s National

Death Index. This comprehensive collection encompasses all pertinent

clinical, laboratory, and outcomes data, systematically organized in

accordance with the Observational Medical Outcomes Partnership’s

Common Data Model (OMOP-CDM) (103). The aim is to use these

big data and informatic tools for development and global validation of

ML-based risk prediction models.

If a ML model is rigorously validated, attention can be turned to

ML-driven MPN clinical trials focused on the use of such models

for targeted and efficient patient accrual. The ability to identify

patients at highest risk for the clinical endpoint of interest (e.g.

resistance to first line therapy, MPN associated thromboembolism,

disease progression to MF or leukemia, etc.) will allow clinical

investigators to perform trial accrual more rapidly and accelerate

the time to events of interest. This should significantly reduce the

time and cost of research in a field that has thus far been held back

by these challenges secondary to the innate characteristics of MPNs.

In this paper, we have explored the role of machine learning as a

transformative force in the clinical research landscape for MPNs.

The inherent complexity and chronicity of MPNs pose substantial

barriers in patient diagnosis, prognostication, and therapeutic

interventions. ML offers a promising solution, with its capacity to

effectively sift through vast datasets and unearth patterns that may

elude conventional analysis. The prospective application of ML to

enhance patient stratification and predict disease trajectories in

MPNs is particularly noteworthy. As ML algorithms grow more

sophisticated and undergo external validation, their integration into

clinical trials will allow for accurate prognostication of MPNs,

streamline patient selection for trials, assess efficacy of new

therapeutic strategies more efficiently, and advance our ability to

improve MPN morbidity and mortality. The future of MPN

research and treatment is set to be deeply intertwined with the

advancements in ML, promising a new era of personalized medicine

that optimizes care for patients with these challenging malignancies.
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