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Hematopoiesis is a complex and tightly regulated process that drives the

formation of mature blood cells from a single hematopoietic stem cell. This

complex process occurs within the bone marrow, which, once disrupted or

deregulated, subverts normal hematopoietic development, allowing leukemic

cells to emerge, proliferate, and thrive. Notably, several cellular populations and

paracrine factors within the bone marrow fuel leukemia expansion and

progression. This review presents an overview of the main microenvironmental

components that promote myeloid leukemia progression, discussing the

emerging therapeutical strategies that target both leukemic cells and the

supportive bone marrow microenvironment – targeting both the seed and

the soil.
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1 Hematopoiesis

Hematopoiesis is the lifelong, complex, and hierarchical mechanism that orchestrates

the differentiation of all blood cells. From a single cell, hematopoiesis produces white blood

cells, red blood cells, and platelets, which are responsible for immune responses, oxygen

delivery, and stopping bleeding in case of blood vessel damage, respectively (1).

This process relies on hematopoietic stem cells (HSCs), which possess the unique capacity

for self-renewal and differentiation into two primary lineages: lymphoid and myeloid. From

HSCs, common lymphoid progenitors generate B and T lymphocytes and dendritic and natural

killer cells. Moreover, common myeloid progenitors initiate the production of erythrocytes,

megakaryocytes, macrophages, granulocytes, and other cell types from this lineage (2–4).

HSCs progressively lose their self-renewal capability and become committed to specific

lineages upon differentiation (5, 6). This model is considered a tree-like hierarchy.

However, single-cell sequencing technologies have brought numerous advantages,

including insights into cell heterogeneity, developmental processes, identification of rare
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cell types and subpopulations, and tracking cell fate decisions.

According to these studies, it is suggested that multipotent HSCs

gradually become lineage committed through a transitional process,

where the progenitor cells are in intermediate states before their full

differentiation. Therefore, current views perceive HSC

differentiation as a continuum (7–9).

HSC differentiation occurs in specialized microenvironments

(or niches) located within the bone marrow (BM) that are

intricately regulated and sustained by a combination of intrinsic

factors, like transcription factors and epigenetic regulators, extrinsic

factors (2, 5), and also non-hematopoietic cells (10).

Extrinsic factors like cytokines, chemokines, and growth factors

secreted by BM cellular components also regulate hematopoiesis.

Among the most pivotal for HSC regulation are the stromal cell-

derived factor 1 (SDF-1, also known as CXCL12), which binds to the

CXC-chemokine receptor 4 (CXCR4), and stem cell factor (SCF) that

interacts with the c-Kit receptor (CD117) (1, 5). Additionally,

interleukin-3 (IL-3), interleukin-5 (IL-5), interleukin-6 (IL-6),

thrombopoietin (TPO), Fms-like tyrosine kinase 3 ligand (FLT3L),

and vascular endothelial growth factor (VEGF) are other paracrine

molecules essential for hematopoiesis (6).
2 Leukemia

Leukemia is a BM disorder characterized by the abnormal

proliferation of mutant HSCs and progenitor cells, disrupting

regular hematopoietic differentiation. While this malignant disorder

comprises two primary categories—myeloid and lymphoid— this

review will mainly focus on myeloid malignancies: Acute Myeloid

Leukemia (AML), Chronic Myeloid Leukemia (CML), and BCR-

ABL1 negative Myeloproliferative Neoplasms (MPN).

Extensive research over the years has identified several

mutations occurring within the developing HSCs that result in

AML (11, 12). The mutations implicated in AML can be divided

into two main groups. The first group, class I mutations, provide

cells with a proliferative advantage, while class II mutations

predominantly interfere with hematopoietic differentiation and

subsequent apoptosis (13).

Mutations in the FLT3 and KIT genes are canonical examples of

class I mutations in AML. These genes encode tyrosine kinase

receptors, whose mutation initiates internal signaling pathways,

leading to uncontrolled growth and expansion of HSCs,

contributing to leukemogenesis (14, 15). On the other hand, class

II mutations encompass examples such as those found in the

CEBPA and RUNX1 genes, which encode transcription factors

crucial for hematopoietic differentiation (16, 17).

Nonetheless, AML extends beyond the class I/II mutations

framework, encompassing a spectrum of additional genetic

alterations that involve pivotal epigenetic regulators and

housekeeping genes (11, 13). The DNMT3A gene encodes a

methyltransferase crucial for HSC differentiation. Mutations in

DNMT3A are early events in leukemogenesis, leading to diminished

enzymatic activity (18). Similarly, mutations in TET2, occurring at the

onset of leukemogenesis, result in DNA hypermethylation. This
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aberrant methylation alters the expression of genes critical to HSC

function, thereby deregulating hematopoiesis (19). Housekeeping genes

are also crucial in AML. The NPM1 gene encodes a chaperone protein

involved in cellular homeostasis. Mutations in NPM1 disrupt its

subcellular localization, affecting the stabilization and localization of

essential proteins, such as p14ARF, a regulator of the p53 pathway (20).

Moreover, the IDH1 and IDH2 genes, which encode enzymes essential

for metabolic processes, are also mutated in AML. These mutations

lead to the production of 2-Hydroxyglutarate (2-HG), an

oncometabolite that inhibits DNA demethylation enzymes (21).

The BCR-ABL1 fusion oncogene characterizes CML, and the

resulting fusion protein exhibits constitutive kinase activity. Such

constitutive activation sustains the fueling of downstream signaling

pathways that are associated with cell growth and proliferation

(JAK-STAT, PI3K-Akt, and MEK-ERK), contributing to the

leukemic transformation of HSCs and disease progression (22, 23).

Essential Thrombocytosis (ET), Polycythemia vera (PV), and

Primary myelofibrosis (PMF) constitute a distinct subset of myeloid

malignancies known as BCR-ABL1 negative myeloproliferative

neoplasms (MPN), distinguished by specific genetic alterations in

the JAK2, MPL, and CALR genes. The JAK2V617F mutation,

characterized by the substitution of valine with phenylalanine at

codon 617, results in the continuous phosphorylation of JAK2 kinase,

constitutively activating the JAK-STAT pathway and disrupting HSC

regulation. Similarly, mutations in the MPL gene, which encodes a

thrombopoietin receptor critical for megakaryopoiesis, also lead to

autonomous activation of the JAK-STAT pathway, enabling

abnormal HSC proliferation. Moreover, the CALR gene encodes

calreticulin that regulates protein folding and calcium signaling,

and mutations in this gene modulate receptor signaling activation,

ultimately driving aberrant proliferation and survival in developing

HSCs (24).
3 The bone
marrow microenvironment

The BM is a remarkably complex tissue, housing a variety of

cell types, both hematopoietic and non-hematopoietic, that

support HSC differentiation and expansion (25–27). Recent

advances in cutting-edge imaging techniques, such as confocal

and intravital microscopy, more complex and physiological

animal models, and RNA sequencing studies, led to identifying

several cell types that promote HSC development and their

localization within specific BM niches. However, this increased

level of resolution has also led to conflicting data across different

studies. These discrepancies arise from variations in techniques,

animal models, and the types of bones analyzed, making the

precise localization of HSCs within the BM a subject of ongoing

debate and controversy (3, 28). Nonetheless, despite these current

controversies and conflictual data, in this review, we decided to

discuss cellular components of the BM microenvironment,

focusing on two particular regions: the endosteal niche, which is

adjacent to the bone endosteum, and the perivascular niche,

located within the BM central region (6, 29).
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The endosteal niche comprises mainly osteoblasts (OBs) and

osteoclasts (OCs). OBs play a pivotal role by providing essential

paracrine signals, such as SDF-1, SCF, and Osteopontin (OPN), that

are crucial for HSC function, homing, self-renewal, and quiescence

(30–34). In myeloid neoplasia, OBs demonstrate a tumor-

suppressor role, as reduced numbers in patient samples correlate

with disease progression (35). Conversely, restoring OB frequency

in mouse models decreases leukemic burden and extends survival

(36). Additionally, myeloid leukemia cells have been found to

influence OB differentiation, promoting their proliferation and

expansion even with chemotherapy exposure (36–40). The OCs

are responsible for bone reabsorption (41) and contribute to HSC

regulation by physically creating endosteal niches (42) and

degrading paracrine factors implicated in HSC mobilization (43).

However, studies investigating the role of OCs in modulating

myeloid leukemia progression are scarce.

The perivascular niche is a highly dynamic microenvironment

characterized by several cell types like adipocytes, Endothelial cells

(ECs), Sympathetic neural cells (SNCs) and Mesenchymal Stem

cells (MSCs).

Adipocytes, originating from MSCs, are reservoirs for HSCs

and progenitor cells (44) and can support hematopoiesis by

secreting SCF (45–47). In leukemia, adipocytes are critical in the

dysregulation of cellular energetics by providing fatty acids for cell

metabolism (48), sustaining cell survival and migration, and

conferring protection against chemotherapy cytotoxicity (49–52).

Interestingly, obesity, associated with increased adipose tissue, has

been shown to correlate with poorer outcomes (53).

The BM vasculature forms a network of arterioles and sinusoids

that deliver essential nutrients and oxygen (54). The ECs are the key

components, reside at the interface between blood vessels and the BM,

and express distinctive surface markers like CD31, MECA-32, VE-

Cadherin, VCAM-1, and VEGFR-2 (55, 56). Moreover, ECs regulate

HSC homeostasis by secreting SDF-1 and SCF and expressing Notch

ligands (57, 58). In myeloid leukemias, blasts migrate towards ECs,

establishing direct interactions through cell adhesion molecules and

indirect effects via paracrine factors, also providing protection against

chemotherapy-induced cytotoxicity (59–65).

The central nervous system (CNS) also regulates hematopoiesis

(66), and central to this regulation are the SNCs (29, 67). By

releasing catecholamines, sympathetic neuronal fibers innervate

OBs and MSCs and modulate SDF-1 and SCF secretion, thereby

modulating HSC homeostasis. Additionally, non-myelinating

Schwann cells govern HSC quiescence through transforming

growth factor – b (TGF-b) signaling (68–70). In leukemic pre-

clinical models, reduced SNC activity resulted in remodeled BM,

which, in turn, affected MSCs and sympathetic neurons, leading to

leukemic blast proliferation and expansion (39, 71).

MSCs differentiate into several cell types like OBs, adipocytes,

and stromal cells (72). These cells exhibit a wide range of surface

markers like Nestin, Leptin receptor (LepR), CD51, CD140a, and

Sca-1, reflecting their functional diversity regarding self-renewal,

multipotency, and distribution (73, 74). Moreover, MSCs are the

main source of SCF and SDF-1 within the BM (57, 75), particularly

the MSC Nestin+ LepR+ cells (76, 77). In leukemia, MCSs facilitate

the homing and retention of AML blasts and, due to their increased
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Notch and NF-kB signaling, also stimulate the proliferation,

survival, and chemoresistance of leukemic blasts (78–82).

Similarly, in CML, SDF-1 expression levels also increase the

proliferation and chemoresistance of leukemic blasts (83). In

MPN, MSCs emerge as crucial drivers of fibrosis, and several

molecular players have been identified: the alarmin complex

S100A8/S100A9 and the TGFb, JAK2/STAT3, and NFkB
signaling pathways (84, 85).
4 Targeting the bone
marrow microenvironment

Leukemia patients frequently resist treatment, often due to the

emergence of genetic mutations that alter the drug targets (86).

Nonetheless, BM components are also crucial modulators of

leukemia pathophysiology, and recognizing its importance in

protecting leukemic cells from therapeutic interventions stirred the

development of alternative strategies that disrupt this symbiosis.

Thus, the concept of targeting both the ‘seed’ (leukemic cells) and

the ‘soil’ (the supportive BM microenvironment) has emerged. It

suggests that effective treatment requires eliminating leukemic cells

and their supportive microenvironment and has gained traction due

to compelling evidence from (pre)-clinical studies demonstrating that

a combined treatment strategy yields superior efficacy (6, 87–91).

Recently, we discussed four distinct strategies: adhesion molecules,

angiogenesis, hypoxia, and the SDF-1/CXCR4 axis (6). Here, we

explore the latest advancements and broaden our discussion to other

topics (Figure 1 and Table 1).
4.1 Adhesion molecules

The physical interaction between leukemia cells and their

microenvironment is crucial for their sustained expansion, and

several adhesion molecules are under investigation. The E-Selectin

receptor is an essential regulator of HSC function and mediates the

chemoresistance of AML blasts (123). Uproleselan, an E-Selectin

inhibitor, enhanced chemotherapy efficacy and reduced leukemia

burden in an AML pre-clinical model (60). Currently, it is

undergoing evaluation in several clinical trials (phase I/II/III)

to assess its efficacy in combination with chemotherapy

(NCT03616470, NCT03701308, NCT04848974, and NCT05054543).

Notably, preliminary data from a phase I/II trial (NCT02306291)

showed impressive patient responses, with high remission rates and

reduced mortality observed by combining both strategies (124). VLA-

4 is implicated in AML proliferation and chemoresistance (80, 92),

and its inhibition in mouse models increased chemotherapeutic effects

and extended mouse survival (93–95). Targeting VLA-4 is currently

being evaluated in a phase II clinical trial (NCT01010373). The CD44

receptor regulates the BM homing of leukemic blasts (125, 126). In

AML and CML pre-clinical models, CD44 inhibition with antibodies

reduced leukemia burden (96, 97, 127). RG7356, an anti-CD44

monoclonal antibody, was evaluated in a phase I clinical trial

(NCT01641250) and showed encouraging results on safety and

tolerability (98).
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FIGURE 1

Targeting the bone marrow microenvironment. This concept stems from the fact that targeting leukemic cells (with standard chemotherapy or
targeted therapy) and inhibiting the BM microenvironmental factors will be more effective in the clinical setting than just targeting leukemic cells.
See the text for further details.
TABLE 1 Summary of the therapeutic strategies targeting the bone marrow microenvironment.

Targeting
strategy Target Agent

Mechanism
of action Clinical trial Condition

Current status*/
Main findings Reference

Adhesion
molecules

E-Selectin Uproleselan
E-Selectin
antagonist

NCT03616470 AML Active - 388 patients enrolled NA

NCT03701308 AML Suspended NA

NCT04848974 AML Active - 37 patients enrolled NA

NCT05054543 AML Status unknown NA

NCT02306291 AML

Treatment well tolerated;
Increased remission rate (35%
CR - phase I and 52% CR –

phase II) and overall survival

(84)

(Continued)
F
rontiers in Hema
tology
 04
 frontiersin.org

https://doi.org/10.3389/frhem.2024.1429916
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Semedo et al. 10.3389/frhem.2024.1429916
TABLE 1 Continued

Targeting
strategy Target Agent

Mechanism
of action Clinical trial Condition

Current status*/
Main findings Reference

VLA-4 AS101 VLA-4 inhibitor NCT01010373 AML Suspended NA

CD44 RG7356
Anti-CD44
monoclonal
antibody

NCT01641250 AML

Treatment well tolerated and
safe; few patients responded (2/
44) and achieved stable disease

with hematological
improvement (1/44)

(92)

Angiogenesis

VEGF Bevacizumab
Anti-VEGF
monoclonal
antibody

NCT00096148 AML Completed - no results posted NA

NCT00023920 CML Completed - no results posted NA

NCT00015951 AML
Treatment associated-toxicity;
half of the patients partially

responded (48% - OR)
(93)

NTR904 AML
No improvement of therapeutic
outcomes with the treatment

(94)

NCT00667277 MPN
Study prematurely terminated

due to high toxicity; no
responses observed

(95)

Tubulin OXi4503
EC

cytoskeleton
destabilizer

NCT01085656 AML
Treatment tolerated;
poor response rate

(1/18 - CR; 1/18 - PR)
(96)

NCT02576301 AML

Treatment tolerated; low
response rate (19% - OR) with

extended OS in
responding patients

(97)

Angiopoietin-
1/2

Trebananib
Angiopoietin-1/2
inhibitor peptide

NCT01555268 AML

Treatment tolerated; some
patients responded (1/13 - PR)

and achieved stable
hematological disease (2/13)

(98)

Bone
marrow
fibrosis

IL1b Canakinumab
Anti-IL-1b
monoclonal
antibody

NCT05467800 MPN Active - recruiting NA

Lysyl Oxidase

PAT-1251 LOXL2 inhibitor NCT04054245 MPN Study withdraw NA

PAT-1251 LOXL2 inhibitor NCT04679870 MPN Active - 21 patients enrolled NA

PXS-5505 pan LOX inhibitor NCT04676529 MPN Active - recruiting NA

Simtuzumab
Anti-LOXL2
monoclonal
antibody

NCT01369498 MPN
Treatment well tolerated but no

improvement of
treatment outcomes

(99)

TGF-b

GC1008
Anti-TGF-b
monoclonal
antibody

NCT01291784 MPN
Treatment-associated toxicity;
very modest response rate

(100)

AVID200 TGF-b 1/3 trap NCT03895112 MPN

Treatment well tolerated;
suppression of TGF-b signaling

in most patients; clinical
benefit in 2/21 patients

(101)

KER-050 Activin ligand trap NCT05037760 MPN Active - recruiting NA

Bone
remodeling

MET, AXL,
and VEGFR

Cabozantinib
Receptor tyrosine
kinase inhibitor

NCT01961765 AML
Treatment tolerated; some
patients displayed blast

reduction (4/18)
(102)

Ubiquitin-
proteosome

Bortezomib
26S proteosome
subunit inhibitor

NCT00505700 AML

Treatment tolerated; majority
of patients achive complete
response (19/31 - CR and

3/31 - PR)

(103)

(Continued)
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TABLE 1 Continued

Targeting
strategy Target Agent

Mechanism
of action Clinical trial Condition

Current status*/
Main findings Reference

NCT00382954 AML
Treatment tolerated; some
patients achived complete

response (20% - CR)
(104)

NCT01736943 AML
Treatment tolerated; the

majority of patient responses
were transient

(105)

NCT00742625 AML

Treatment tolerated; majority
of patients achieved complete
response (65% - CR and 4%

- PR)

(106)

NCT01371981 AML
Treatment-associated toxicity

and no improvement of
treatment outcomes

(107)

NCT00666588 AML
Treatment tolerated but no

improvement of
treatment outcomes

(108)

Carfilzomib NCT01137747 AML
Treatment tolerated; modest

anti.leukemic responses (2/18 -
PR and 4/18 - no progression)

(109)

Ixazomib NCT02070458 AML
Treatment tolerated; half of the
patients partially responded

(53% - CRi)
(110)

Hypoxia

DNA

PR-104
Hypoxia activated

DNA cross-
linking drug

NCT01037556 AML
Some adverse effects observed;

modest response rate
(10/31 - OR)

(111)

TH-302
Hypoxia activated

DNA
alkylating drug

NCT01149915 AML
Treatment tolerated;

very limited response rate
(6% - OR)

(112)

Mitochondrial
Complex I

IACS-010759
Mitochondrial

Complex
I inhibitor

NCT02882321 AML
Treatment-associated toxicity

and no improvement of
treatment outcomes

(113)

SDF-1/
CXCR4 axis

CXCR4 Plerixafor CXCR4 inhibitor

NCT00512252 AML

Treatment well tolerated;
half of the patients responded
(46% - OR) and increased blast

peripheral mobilization

(114)

NCT01319864 AML

Treatment well tolerated;
patients response rate was low
(3/13 - OR) but resulted in

increased blast
peripheral mobilization

(115)

NCT00906945 AML

Treatment well tolerated;
patients response rate was low
(30% - OR) but resulted in

increased blast
peripheral mobilization

(116)

NCT01435343 AML
Treatment tolerated; half of the
patients responded (50% - OR)

(117)

NCT01352650 AML

Treatment tolerated; half of the
patients responded (43% - OR)
and increased blast peripheral
mobilization was observed

(118)

NCT00943943 AML

Treatment tolerated; some
patients responded (36% - OR)
and increased blast peripheral
mobilization was observed

(119)

(Continued)
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4.2 Angiogenesis

The vasculature is another BM component whose targeting is an

appealing therapeutic strategy in leukemia. One notable target,

VEGF, is a crucial mediator of angiogenesis and is implicated in

AML chemoresistance (62). Bevacizumab, an anti-VEGF antibody,

was approved to treat solid cancers, but its efficacy in myeloid

neoplasia has been very limited (128–130). Another compound,

Combretastatin-A1-diphosphate (OXi4503), disrupts ECs

microtubules, hindering the vascular architecture (131). In a pre-

clinical AML model, OXi4503 disrupted BM vasculature, decrease

tumor burden, and extend mouse survival (132). However, despite

its safety and tolerability in clinical trials (NCT01085656,

NCT02576301), it resulted in modest response rates when

combined with standard chemotherapy (133, 134). The

interaction between Angiopoietin and its receptor Tie is also

pivotal in regulating AML physiology (99). Trebananib

(AMG386), an Angiopoietin inhibitor, underwent evaluation in a

phase I clinical trial (NCT01555268), but the outcomes were

disappointing, with minimal patient response (100).
4.3 Bone marrow fibrosis

The development of BM fibrosis is the hallmark of PMF, the

most aggressive condition in MPN (135). Fibrosis is characterized

by the BM deposition of reticulin and collagen fibers, and pro-

inflammatory cytokines, lysyl oxidase (LOX), and TGF-b
signaling have been shown to modulate this process (101, 102,

136, 137).

IL-1b is one such pro-inflammatory cytokine (102, 137), and

Canakinumab (anti-IL1b antibody) is currently being evaluated in a

phase II clinical trial (NCT05467800). LOX is an extracellular enzyme

that catalyzes the collagen-elastin cross-link, promoting fibrosis (136)

and is upregulated in PMF patients (103, 104). Importantly, several

clinical trials evaluated LOX inhibition without any known results

(NCT04054245, NCT04679870, and NCT04676529). Nonetheless,
Frontiers in Hematology 07
Simtuzumab, an anti-LOX antibody, was assessed in a phase II

clinical trial (NCT01369498) with minimal improvement of BM

fibrosis (105). Regarding the TGF-b signaling, GC-1008, an anti-

TGF-b antibody, demonstrated a modest reduction in spleen size

reduction and anemia recovery (NCT01291784) (106). However, the

AVID200, a potent and selective TGFb 1/3 trap, suppressed TGF-b
signaling and resolved BM fibrosis in a pre-clinical model (107). In

the clinical setting (NCT03895112), AVID200 was tolerated and

suppressed TGF-b signaling (108). The KER-050 compound is

another TGF-b inhibitor currently being evaluated in clinical

trials (NCT05037760).
4.4 Bone remodeling

Osteolytic lesions are common in cancer patients, resulting

from dysregulated bone remodeling due to OB/OC dynamic

imbalance. Cabozantinib, a receptor tyrosine kinase inhibitor,

exhibits bone remodeling activity by inhibiting OC activity and

bone resorption (138). In a phase I clinical trial (NCT01961765),

Cabozantinib was well tolerated and demonstrated suppressive

signaling activity in leukemic blasts (109).

The ubiquitin-proteasome network is an attractive target due to

its importance in bone metabolism. Proteasome inhibitors, like

Bortezomib, were tested in AML due to their clinical impact in

Multiple Myeloma (MM) (110). Bortezomib, when combined with

chemotherapy, was well tolerated (NCT00505700, NCT00382954)

(139, 140) but failed to elicit sustained responses and delay disease

progression in older (NCT01736943, NCT00742625) (141, 142) and

pediatric patients (NCT01371981, NCT00666588) (111, 143).

Other proteasome inhibitors like Carfilzomib and Ixazomib

demonstrated bone-modulating capabilities by regulating OB/OC

cellular function (112). In clinical trials, Carfilzomib demonstrated

tolerability and induced modest anti-leukemic activity

(NCT01137747) (113), but remarkably, Ixazomib treatment in

combination with chemotherapy, induced responses in half of the

patients (NCT02070458) (144).
TABLE 1 Continued

Targeting
strategy Target Agent

Mechanism
of action Clinical trial Condition

Current status*/
Main findings Reference

BL-8040 NCT01838395 AML

Treatment well tolerated; some
patients responded (29% - OR);

increased blast peripheral
mobilization and extended

survival was observed

(120)

LY2510924 NCT02652871 AML
Treatment tolerated; some

patients responded (36% - OR)
(121)

Ulocuplumab
Anti-CXCR4
monoclonal
antibody

NCT01120457 AML

Treatment tolerated; half of the
patients responded (51% - OR)
and increased blast peripheral
mobilization was observed

(122)
AML, Acute Myeloid Leukemia; CML, Chronic Myeloid Leukemia; CR, complete response; MPN, BCR-ABL1 Myeloproliferative Neoplasm; NA, not applicable; OR, overall response; OS, overall
survival; PR, partial response.
*The information was retrieved from clinicaltrials.gov on the 13th June, 2024.
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4.5 Hypoxia

The BM is highly hypoxic, contributing to chemoresistance in

leukemic cells by upregulating Hypoxia-inducible factor 1 (HIF-1)

(145). Hypoxia-activated drugs are unique compounds that remain

inactive under normoxic conditions but are activated in low oxygen

conditions (hypoxia) and induce cytotoxicity by interfering with

DNA synthesis (146). In AML, hypoxia-induced drugs (PR-104,

TH-302, and IACS-010759) demonstrated robust efficacy in pre-

clinical models by reducing tumor burden and extending survival

(114, 147, 148). Unfortunately, phase I clinical trials revealed limited

efficacy for PR-104 and TH-302 (NCT01037556, NCT01149915)

(115, 116), while IACS-010759, besides limited efficacy, also

resulted in increased toxicity in the patients (NCT02882321) (117).
4.6 SDF-1/CXCR4 axis

This signaling axis is essential in the BM homing of leukemic cells,

rendering it a desirable target for therapeutic intervention and several

compounds have been developed to neutralize it, including Plerixafor

[Mozobil – approved for clinical use – (118)], BL-8040, LY2510924,

and Ulocuplumab. In myeloid neoplasia, therapeutic blockade of the

SDF-1/CXCR4 axis led to leukemic cell peripheral mobilization and

increased sensitivity to chemotherapy in pre-clinical models (119–

122), spurring the clinical investigation of this pathway. Plerixafor

treatment in AML patients demonstrated safety and tolerability

(NCT00512252, NCT01319864) (149, 150), and its combination

with chemotherapy (NCT00906945 and NCT01435343) (151, 152),

hypomethylating agents (NCT01352650) (153) and signaling

inhibitors (NCT00943943) (154) yielded promising results regarding

leukemic blast reduction and peripheral mobilization. Other strategies,

like BL-8040 and LY2510924 (CXCR4 inhibitors) and Ulocuplumab

(Anti-CXCR4 antibody), have also undergone clinical evaluation and

demonstrated favorable safety profiles, tolerability, reduced leukemic

burden, and increased peripheral blast mobilization (NCT01838395,

NCT02652871, and NCT01120457) (155–157).
5 Conclusions

Several seminal discoveries unveiled the significant roles of the

BM; it is also a crucial supportive microenvironment for the

proliferation and survival of leukemic cells (6). The interactions

between the leukemic cells and the BM microenvironment are

complex, and this symbiosis facilitates the expansion, thriving,

and evasion of chemotherapeutic cytotoxic effects by the leukemic

blasts. The therapeutic approach in myeloid neoplasia, particularly

AML, is evolving, with increasing consideration given to the

interactions between leukemic cells and the BM.

Here, we discussed several BM targets currently under evaluation

in clinical trials (Table 1), with promising results combined with

standard therapy. Such therapeutic strategies include adhesion

molecules, BM fibrosis, and the SDF-1/CXCR4 axis. These clinical

studies should be reinforced and expanded to more extensive clinical

trials and other myeloid malignancies like CML and MPN.
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In sharp contrast, targeting other BM components, like

vasculature and bone remodeling, yielded disappointing results

with very dismal patient responses and associated toxicity. These

results underscore the importance of carefully evaluating these

targeting strategies, the molecular targets, and even the drug design.

Nonetheless, it is expected that shortly, some of the most

promising targets will receive approval from regulatory agencies like

the FDA and EMA, thus integrating into the arsenal available to

clinicians. Such integration will enhance the outcomes and prognosis

for patients with leukemia, particularly in the AML context.

Finally, it is crucial to continue expanding the therapeutic options

in myeloid neoplasia by identifying novel BM microenvironmental

components and elucidating their significance in leukemic

cell expansion.
Author contributions

CS: Writing – original draft, Writing – review & editing. RC:

Writing – original draft, Writing – review & editing. AA: Writing –

review & editing. BC: Conceptualization, Funding acquisition,

Investigation, Supervision, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Centro de Investigação Interdisciplinar em Saúde
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