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Interference of daratumumab
and efficacy of plerixafor on
haematopoietic stem cell
collection in Multiple Myeloma
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Michele Cavo1,2* and Elena Zamagni1,2
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2Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy, 3IRCCS
Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
The impact of daratumumab on CD34+ hematopoietic stem cell (HSC)

mobilization has recently been a matter of concern. To address this issue, we

compared CD34+ HSC-related outcomes in patients with multiple myeloma

treated with daratumumab-based quadruplets (N = 44) and bortezomib/

thalidomide/dexamethasone (N = 50) before cyclophosphamide-based

mobilization. Plerixafor was more often required in the daratumumab group

(52% vs. 20%, p = 0.002) and, despite a lower total yield, retained its efficacy in

boosting HSC harvesting (+90% vs. +79%, p = 0.463). As a result, the same

proportion of patients reached their planned collection goal in the two groups,

suggesting its potential to overcome the interference of daratumumab on HSC

mobilization. No clinically significant differences were observed in the immediate

post-autologous HSC transplant interval in the two groups.
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1 Introduction

Daratumumab (D)-based combination therapies have become the new standard of care

in newly diagnosed multiple myeloma (NDMM), with autologous stem cell transplantation

(ASCT) remaining an essential phase in the treatment paradigm for eligible (TE) patients

(pts). Concerns have been recently raised about the adverse impact of D on CD34+

hematopoietic stem cell (HSC) mobilization: sub-analyses of clinical trials (1, 2) and

retrospective studies (3–10) have shown lower peaks circulating CD34+ cells, increased use

of plerixafor (PLX), higher number of days of leukapheresis, lower yields of collected HSCs,
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and more mobilization failures in D-treated compared with non-D-

treated pts. A delayed engraftment after ASCT in pts in the D-

groups has also been discussed (1, 3, 7).
2 Methods

We ran a retrospective analysis of 44 TE-NDMM pts who

received D-based induction therapies before ASCT between 2019

and 2022 at our institution. Twenty-six pts (59%) were treated with

D-bortezomib/thalidomide/dexamethasone (DVTd) outside

clinical studies, as per our institutional practice after its approval

in Italy in December 2021; the remaining 18 pts (41%) were

randomly assigned to the D-bortezomib/cyclophosphamide/

dexamethasone (DVCd) arm of the phase 2 EMN18 trial

(NCT03896737). Pts exposed to lenalidomide as part of induction

were excluded, to specifically assess the impact of D on HSCs. Fifty

TE-NDMM pts matched for age and sex who had received VTd

induction between 2017 and 2021 served as the control group.

At the end of induction, all pts received mobilization therapy on

an outpatient basis, consisting of cyclophosphamide (CY) at 2 g/m2,

as per our policy, or 3 g/m2, according to the EMN18 trial design,

followed by 10 mcg/kg/day granulocyte-colony stimulating factor (G-

CSF) from day +6. Circulating CD34+ cells were assessed starting on

day +11 after CY with the BD™ stem cell kit and cytofluorimetric

assay. Pts with >40 CD34+ cells/µL underwent daily leukapheresis

with the Spectra Optia® Apheresis System for up to three consecutive

days. Poor mobilizers (<20 CD34+ cells/µL) and pts with 20–40

CD34+ cells/µL after an additional day of G-CSF therapy received

PLX at the dose of 0.24 mg/kg, followed by leukapheresis on the next

day. PLX was also administered after the first or second day of HSC

collection in case of suboptimal harvesting.

The minimum target of CD34+ cells/kg to safely perform a single

or double ASCT was set at 3 × 106 and 6 × 106, respectively.

The indication for single or double ASCT has changed over time

based on the results of the EMN02 trial (11) and the most recent

EHA/ESMO guidelines (12); accordingly, the EMN18 trial

design required tandem ASCT only in pts with high-risk

cytogenetics. CD34+ cells were cryopreserved in liquid nitrogen

with homologous plasma and dimethyl sulfoxide; before each

ASCT, post-thaw CD34+ cell vitality was assessed by trypan blue

staining. Neutrophil recovery was defined as >500/µL and platelet

recovery was defined as >20,000/µL without transfusions.

The primary endpoints of our analysis were the number of total

harvested CD34+ cells and the achievement of the collection goal;

secondary endpoints included other collection outcomes, PLX use and

efficacy, and post-ASCT engraftment and complications. Univariate

analyses were performed with the Kruskal–Wallis test for numerical

variables and Fisher’s exact test for categorical variables.
3 Results

Baseline characteristics were comparable between the two groups

(Supplementary Table 1). The majority of pts in both groups received

four cycles of induction therapy; in the remaining pts, two additional
Frontiers in Hematology 02
cycles were administered to maximize the depth of response, or as a

bridge in case of delayed HSC collection (Supplementary Table 2).

Regarding our primary endpoints, a trend toward lower total

median CD34+ collected cells was observed in D pts over controls

(6.74 vs. 8.03 × 106 CD34+ cells/kg, p = 0.06) (Supplementary

Figure 1); overall, 84% of pts met their planned collection goal and

more than 90% of pts harvested enough CD34+ cells to perform at

least one ASCT in both groups.

The median number of days of leukapheresis was similar (1.94 vs.

1.68, p = 0.08), but D pts had a significantly lower HSC yield on the

first day of collection (3.48 vs. 5.92 × 106 CD34+ cells/kg, p = 0.004),

which resulted in a significantly higher proportion of D pts needing

more than a single apheresis (78% vs. 56%, p = 0.047) to reach the

collection goal. Mobilization failure was observed in three D pts vs. no

patient in the control group, but the difference was not significant.

One D-treated patient and 4 VTd pts successfully underwent a

second mobilization attempt to reach their planned collection

target; this difference was influenced by the higher collection goal

in VTd pts and was not statistically significant (Table 1).

The three D pts who failed mobilization were likely to have

lower hemoglobin concentration at diagnosis (6.2, 6.4, and 10.8 g/dL,

respectively) than the other pts in the same group (median, 11.6 g/dL).

No other baseline characteristics and neither the number of induction

cycles (hence of D doses), D-free interval before CY, use of CY as part

of induction therapy, nor response to induction or mobilizing CY dose

showed a significant impact on harvest outcomes.

PLX was used in 23 D and 10 VTd pts (52% vs. 20%, p = 0.002), of

whom 8 and 5 received two doses, respectively (not significant). Timing

and indications for PLX were similar: the first dose (PLX1) was mostly

given to poor mobilizers, while the second dose (PLX2) was mostly

administered after the first day of leukapheresis, aimed at reaching the

6 × 106 CD34+ cells/kg goal (Table 1). No patient-, disease-, or therapy-

related variables were associated with the use of PLX in D pts.

The median peak of circulating CD34+ cells/µL on the first

planned collection day was significantly lower in the D group than

in the control group (21 vs. 81, p < 0.001). We analyzed the kinetics

of circulating CD34+ cells in the D subgroup upon PLX use: the

median CD34+ cell concentration was significantly higher after

PLX1 and PLX2 compared to pre-PLX (42 and 30 vs. 9 CD34+ cells/

µL with padj < 0.001 and 0.034, respectively; the decrease after PLX2

was not significant) (Figure 1). Notably, these data were not

available for all D pts.

Among D pts who received PLX, the median yield of CD34+

collected cells was null, 3.48 × 106 cells/kg, and 1.94 × 106 cells/kg

before PLX, after PLX1, and after PLX2, respectively. The benefit was

similar in controls: the median increase in collected CD34+ cells after

PLX1 was of +90% and +79% in D and VTd pts, respectively, and of

+10 and +16% after PLX2, compared with pre-PLX (Figure 2;

Supplementary Figure 2). PLX enabled 83% of D pts and 40% of

controls to reach their collection goal and ensured the harvesting of

enough cells for at least one ASCT in all but two pts in the D group.

To date, all VTd pts and 93% of D pts have undergone one

ASCT (ASCT1). The rate of a suboptimal stem cell yield hampering

a second planned ASCT (ASCT2) was 16% in both groups. The

proportion of pts who actually received a double ASCT in the D

group (11%) was lower than that in the control group (44%),
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reflecting the aforementioned data from the literature (11, 12) and

the EMN18 trial design; five D pts were waiting to undergo the

procedure at the time of analysis.

Post-thaw CD34+ cell vitality was higher in the D vs. VTd

group prior to ASCT1 (75% vs. 67%, p = 0.024), and the median

number of reinfused CD34+ cells/kg was similar in the two groups.

Nevertheless, hematopoietic recovery was slower in D pts after

ASCT1, for both neutrophils (12 vs. 11 days, p < 0.001) and platelets
Frontiers in Hematology 03
(14 vs. 12 days, p < 001), and more erythrocyte transfusions (36%

vs. 14% of pts requiring ≥2 units, p = 0.031) were needed in D pts.

However, no significant difference was found in terms of platelet

transfusions, incidence of febrile neutropenia, life-threatening

infectious complications, antibiotic therapy duration, or length of

hospitalization among the two groups (Table 2). The comparison of

the same variables for ASCT2 showed no statistical difference

between the two groups.
TABLE 1 CD34+ collection outcomes and plerixafor use.

D group
N = 44

VTd group
N = 50

p-value

Total stem cell yield, ×106

CD34+ cells/kg, median (range)
6.74 (0.00–14.83) 8.03 (1.05–16.38) 0.06

Stem cell yield on 1° leukapheresis day, ×106

CD34+ cells/kg, median (range)
3.48 (1.14–14.83) 5.92 (1.05–16.38) 0.004

Collection goal met, n (%) 37 (84) 42 (84) 1

Stem cell yield >3 × 106 CD34+ cells/kg, n (%) 40 (91) 49 (98) 0.285

Stem cell yield >6 × 106 CD34+ cells/kg, n (%) 32 (73) 41 (82) 0.327

Collection days, median (range) 1.94 (1–3) 1.68 (1–3) 0.08

Collection days >1, n (%) 32 (78) 28 (56) 0.047

Mobilization failure, n (%) 3 (7) 0 (0) 0.198

Circulating CD34+ cells on 1° planned leukapheresis day, cells/mm3, median [IQR] 20.90 [7.10, 42.50] 81.17 [32.98, 129.79] <0.001

PLX, n (%) 23 (52) 10 (20) 0.002

1 dose, n (%) 15 (65) 5 (50)
0.664

2 doses, n (%) 8 (35) 5 (50)

PLX administration N = 23 N = 10

Before 1° leukapheresis, n (%) 14 (61) 5 (50)

0.841After 1° leukapheresis, n (%) 7 (39) 4 (40)

After 2° leukapheresis, n (%) 2 (9) 1 (10)

PLX1 goals

To reach 3 × 106 CD34+ cells/kg, n (%) 6 (26) 3 (30)
0.817

To reach 6 × 106 CD34+ cells/kg, n (%) 3 (13) 2 (20)

PLX2 administration N = 8 N = 5

Before leukapheresis, n (%) 0 (0) 0 (0)

1After 1° leukapheresis, n (%) 6 (75) 4 (80)

After 2° leukapheresis, n (%) 2 (25) 1 (20)

PLX2 goals

To reach ≥3 × 106 CD34+ cells/kg, n (%) 3 (37) 1 (20)
0.385

To reach ≥6 × 106 CD34+ cells/kg, n (%) 5 (62) 3 (60)

ASCT1 performed, n (%) 39 (93) 50 (100) 0.183

ASCT2 performed, n (%) 5 (11) 22 (44) 0.001

ASCT2 not performed for insufficient collection, n (%) 7 (16) 8 (16) 1
fro
ASCT, autologous stem cell transplant; D, daratumumab; IQR, interquartile range; n, number; PLX, plerixafor; PLX1, first dose of plerixafor; PLX2, second dose of plerixafor; VTd, bortezomib/
thalidomide/dexamethasone.
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4 Discussion and conclusions

Collectively, our analysis confirmed the interference of D-based

induction therapies on the subsequent HSC mobilization, which

was not affected by the cumulative D dose, or by the D-free interval

before mobilization or CY dose in the range between 2 and 3 g/m2.

This is in line with the results of two other monocentric studies

showing no impact of D-free interval before leukapheresis (6),
Frontiers in Hematology 04
number of D doses, or both (9). A Swedish multicentric study

found an impact of age and radiation on the total stem cell yield

(13), while a recently published case report from the Mayo Clinic

group presented a case of a successful mobilization after a 3-month

washout period from prolonged D administration (20 doses)

following two previous mobilization failures closer to D (14). CY

at the dose of 4 g/m2 combined with on-demand PLX has recently

been reported to be effective in most pts receiving DVTd induction
FIGURE 1

Circulating CD34+ cells in daratumumab-treated patients who received plerixafor (PLX). In daratumumab-treated pts, circulating CD34+ cells
increased from 9 CD34+ cells/µL pre-PLX (range 3–30 CD34+ cells/µL) to 42 CD34+ cells/µL after the first dose of PLX (PLX1, range 10–92 CD34+
cells/µL, padj < 0.001) and to 30 CD34+ cells/µL after the second dose (PLX2, range 10–50 CD34+ cells/µL, padj = 0.034); the decrease after PLX2
was not statistically significant. Pre-PLX, N = 14; after PLX1, N = 14; after PLX2, N = 5.
FIGURE 2

CD34+ cells collected in patients who received PLX. The median CD34+ cell yield in D vs. VTd pts was 0 (range 0–1.52) vs. 0.60 (range 0–3.19)
CD34+ cells/kg pre-PLX; 3.48 (range 0–9.93) vs. 2.95 (range 0.88–6.05) CD34+ cells/kg after PLX1; 1.94 (range 0.69–3.06) vs. 1.70 (range 1.09–
4.19) CD34+ cells/kg after PLX2. The median increase in CD34+ cell yield was similar in the two groups: by 1.9 times in D pts vs. 1.8 times in VTd pts
(p = 0.463) after PLX1 and by 1.1 vs. 1.2 times (p = 1) after PLX2, compared to pre-PLX. Pre-PLX D, N = 22; VTd, N = 10; after PLX1 D, N = 22; VTd,
N = 10; after PLX2 D, N = 8; VTd, N = 5. D, daratumumab; PLX, plerixafor; PLX1, first dose of plerixafor; PLX2, second dose of plerixafor; VTD,
bortezomib/thalidomide/dexamethasone.
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therapy, though the lack of a control group hampered researchers to

draw any firm conclusions (13).

Since numerous studies have demonstrated a higher

requirement for PLX in D-treated pts, our analysis was aimed at

evaluating its efficacy in this population compared with a non-D-

treated group. PLX has shown to be effective in improving

circulating CD34+ cell levels and mitigating the effects of D on

HSC collection outcomes, demonstrating efficacy in boosting the

CD34+ cell yield similar to that of the control group. These data are

consistent with recent findings showing upregulation of cell

adhesion genes on CD34+ cells after D-based therapy, suggesting

this mechanistic effect as potentially crucial in impairing the

mobilization of HSCs (15).

Overall, the addition of D to the induction triplets did not

significantly compromise the feasibility of planned ASCT(s).

Engraftment was slightly delayed after ASCT1, but this did not

translate into higher rates of complications.

The main limitations of our study include the small sample size

reflecting the monocentric design and the retrospective nature,

which may have limited the statistical power of several analyses.

On the other hand, the case–match comparison somewhat increases

the reliability of the study. Published experiences comprise a variety
Frontiers in Hematology 05
of D-based combinations, mobilization strategies, and collection

targets, making a proper meta-analysis impractical. Prospective

randomized studies are required to formally assess the optimal

mobilization strategy for D-treated pts.
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